Properties

Label 405.3.h.c.269.1
Level $405$
Weight $3$
Character 405.269
Analytic conductor $11.035$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(134,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.134"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,0,6,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.1
Root \(1.68614 + 0.396143i\) of defining polynomial
Character \(\chi\) \(=\) 405.269
Dual form 405.3.h.c.134.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(1.50000 + 2.59808i) q^{4} +(-4.55842 + 2.05446i) q^{5} +(8.61684 + 4.97494i) q^{7} -7.00000 q^{8} +(0.500000 - 4.97494i) q^{10} +(-8.61684 - 4.97494i) q^{11} +(-17.2337 + 9.94987i) q^{13} +(-8.61684 + 4.97494i) q^{14} +(-2.50000 + 4.33013i) q^{16} +22.0000 q^{17} -4.00000 q^{19} +(-12.1753 - 8.76144i) q^{20} +(8.61684 - 4.97494i) q^{22} +(10.0000 + 17.3205i) q^{23} +(16.5584 - 18.7302i) q^{25} -19.8997i q^{26} +29.8496i q^{28} +(-34.4674 - 19.8997i) q^{29} +(-14.5000 - 25.1147i) q^{31} +(-16.5000 - 28.5788i) q^{32} +(-11.0000 + 19.0526i) q^{34} +(-49.5000 - 4.97494i) q^{35} +(2.00000 - 3.46410i) q^{38} +(31.9090 - 14.3812i) q^{40} +(-34.4674 + 19.8997i) q^{41} +(-17.2337 - 9.94987i) q^{43} -29.8496i q^{44} -20.0000 q^{46} +(-29.0000 + 50.2295i) q^{47} +(25.0000 + 43.3013i) q^{49} +(7.94158 + 23.7051i) q^{50} +(-51.7011 - 29.8496i) q^{52} +31.0000 q^{53} +(49.5000 + 4.97494i) q^{55} +(-60.3179 - 34.8246i) q^{56} +(34.4674 - 19.8997i) q^{58} +(-34.4674 + 19.8997i) q^{59} +(-22.0000 + 38.1051i) q^{61} +29.0000 q^{62} +13.0000 q^{64} +(58.1168 - 80.7616i) q^{65} +(-17.2337 + 9.94987i) q^{67} +(33.0000 + 57.1577i) q^{68} +(29.0584 - 40.3808i) q^{70} +59.6992i q^{71} -89.5489i q^{73} +(-6.00000 - 10.3923i) q^{76} +(-49.5000 - 85.7365i) q^{77} +(5.00000 - 8.66025i) q^{79} +(2.50000 - 24.8747i) q^{80} -39.7995i q^{82} +(-9.50000 + 16.4545i) q^{83} +(-100.285 + 45.1980i) q^{85} +(17.2337 - 9.94987i) q^{86} +(60.3179 + 34.8246i) q^{88} +59.6992i q^{89} -198.000 q^{91} +(-30.0000 + 51.9615i) q^{92} +(-29.0000 - 50.2295i) q^{94} +(18.2337 - 8.21782i) q^{95} +(112.019 + 64.6742i) q^{97} -50.0000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 6 q^{4} - q^{5} - 28 q^{8} + 2 q^{10} - 10 q^{16} + 88 q^{17} - 16 q^{19} + 3 q^{20} + 40 q^{23} + 49 q^{25} - 58 q^{31} - 66 q^{32} - 44 q^{34} - 198 q^{35} + 8 q^{38} + 7 q^{40} - 80 q^{46}+ \cdots - 200 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.250000 + 0.433013i −0.963525 0.267617i \(-0.913764\pi\)
0.713525 + 0.700629i \(0.247097\pi\)
\(3\) 0 0
\(4\) 1.50000 + 2.59808i 0.375000 + 0.649519i
\(5\) −4.55842 + 2.05446i −0.911684 + 0.410891i
\(6\) 0 0
\(7\) 8.61684 + 4.97494i 1.23098 + 0.710705i 0.967234 0.253887i \(-0.0817093\pi\)
0.263744 + 0.964593i \(0.415043\pi\)
\(8\) −7.00000 −0.875000
\(9\) 0 0
\(10\) 0.500000 4.97494i 0.0500000 0.497494i
\(11\) −8.61684 4.97494i −0.783349 0.452267i 0.0542666 0.998526i \(-0.482718\pi\)
−0.837616 + 0.546259i \(0.816051\pi\)
\(12\) 0 0
\(13\) −17.2337 + 9.94987i −1.32567 + 0.765375i −0.984626 0.174673i \(-0.944113\pi\)
−0.341042 + 0.940048i \(0.610780\pi\)
\(14\) −8.61684 + 4.97494i −0.615489 + 0.355353i
\(15\) 0 0
\(16\) −2.50000 + 4.33013i −0.156250 + 0.270633i
\(17\) 22.0000 1.29412 0.647059 0.762440i \(-0.275999\pi\)
0.647059 + 0.762440i \(0.275999\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.210526 −0.105263 0.994444i \(-0.533568\pi\)
−0.105263 + 0.994444i \(0.533568\pi\)
\(20\) −12.1753 8.76144i −0.608763 0.438072i
\(21\) 0 0
\(22\) 8.61684 4.97494i 0.391675 0.226134i
\(23\) 10.0000 + 17.3205i 0.434783 + 0.753066i 0.997278 0.0737349i \(-0.0234919\pi\)
−0.562495 + 0.826801i \(0.690159\pi\)
\(24\) 0 0
\(25\) 16.5584 18.7302i 0.662337 0.749206i
\(26\) 19.8997i 0.765375i
\(27\) 0 0
\(28\) 29.8496i 1.06606i
\(29\) −34.4674 19.8997i −1.18853 0.686198i −0.230558 0.973059i \(-0.574055\pi\)
−0.957972 + 0.286860i \(0.907388\pi\)
\(30\) 0 0
\(31\) −14.5000 25.1147i −0.467742 0.810153i 0.531579 0.847009i \(-0.321599\pi\)
−0.999321 + 0.0368561i \(0.988266\pi\)
\(32\) −16.5000 28.5788i −0.515625 0.893089i
\(33\) 0 0
\(34\) −11.0000 + 19.0526i −0.323529 + 0.560369i
\(35\) −49.5000 4.97494i −1.41429 0.142141i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 2.00000 3.46410i 0.0526316 0.0911606i
\(39\) 0 0
\(40\) 31.9090 14.3812i 0.797724 0.359530i
\(41\) −34.4674 + 19.8997i −0.840668 + 0.485360i −0.857491 0.514499i \(-0.827978\pi\)
0.0168234 + 0.999858i \(0.494645\pi\)
\(42\) 0 0
\(43\) −17.2337 9.94987i −0.400783 0.231392i 0.286039 0.958218i \(-0.407661\pi\)
−0.686822 + 0.726826i \(0.740995\pi\)
\(44\) 29.8496i 0.678401i
\(45\) 0 0
\(46\) −20.0000 −0.434783
\(47\) −29.0000 + 50.2295i −0.617021 + 1.06871i 0.373005 + 0.927829i \(0.378327\pi\)
−0.990026 + 0.140883i \(0.955006\pi\)
\(48\) 0 0
\(49\) 25.0000 + 43.3013i 0.510204 + 0.883699i
\(50\) 7.94158 + 23.7051i 0.158832 + 0.474102i
\(51\) 0 0
\(52\) −51.7011 29.8496i −0.994251 0.574031i
\(53\) 31.0000 0.584906 0.292453 0.956280i \(-0.405529\pi\)
0.292453 + 0.956280i \(0.405529\pi\)
\(54\) 0 0
\(55\) 49.5000 + 4.97494i 0.900000 + 0.0904534i
\(56\) −60.3179 34.8246i −1.07711 0.621867i
\(57\) 0 0
\(58\) 34.4674 19.8997i 0.594265 0.343099i
\(59\) −34.4674 + 19.8997i −0.584193 + 0.337284i −0.762798 0.646637i \(-0.776175\pi\)
0.178605 + 0.983921i \(0.442842\pi\)
\(60\) 0 0
\(61\) −22.0000 + 38.1051i −0.360656 + 0.624674i −0.988069 0.154012i \(-0.950780\pi\)
0.627413 + 0.778687i \(0.284114\pi\)
\(62\) 29.0000 0.467742
\(63\) 0 0
\(64\) 13.0000 0.203125
\(65\) 58.1168 80.7616i 0.894105 1.24249i
\(66\) 0 0
\(67\) −17.2337 + 9.94987i −0.257219 + 0.148506i −0.623065 0.782170i \(-0.714113\pi\)
0.365846 + 0.930675i \(0.380780\pi\)
\(68\) 33.0000 + 57.1577i 0.485294 + 0.840554i
\(69\) 0 0
\(70\) 29.0584 40.3808i 0.415120 0.576868i
\(71\) 59.6992i 0.840834i 0.907331 + 0.420417i \(0.138116\pi\)
−0.907331 + 0.420417i \(0.861884\pi\)
\(72\) 0 0
\(73\) 89.5489i 1.22670i −0.789812 0.613348i \(-0.789822\pi\)
0.789812 0.613348i \(-0.210178\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −6.00000 10.3923i −0.0789474 0.136741i
\(77\) −49.5000 85.7365i −0.642857 1.11346i
\(78\) 0 0
\(79\) 5.00000 8.66025i 0.0632911 0.109623i −0.832644 0.553809i \(-0.813174\pi\)
0.895935 + 0.444186i \(0.146507\pi\)
\(80\) 2.50000 24.8747i 0.0312500 0.310934i
\(81\) 0 0
\(82\) 39.7995i 0.485360i
\(83\) −9.50000 + 16.4545i −0.114458 + 0.198247i −0.917563 0.397591i \(-0.869846\pi\)
0.803105 + 0.595837i \(0.203180\pi\)
\(84\) 0 0
\(85\) −100.285 + 45.1980i −1.17983 + 0.531742i
\(86\) 17.2337 9.94987i 0.200392 0.115696i
\(87\) 0 0
\(88\) 60.3179 + 34.8246i 0.685431 + 0.395734i
\(89\) 59.6992i 0.670778i 0.942080 + 0.335389i \(0.108868\pi\)
−0.942080 + 0.335389i \(0.891132\pi\)
\(90\) 0 0
\(91\) −198.000 −2.17582
\(92\) −30.0000 + 51.9615i −0.326087 + 0.564799i
\(93\) 0 0
\(94\) −29.0000 50.2295i −0.308511 0.534356i
\(95\) 18.2337 8.21782i 0.191934 0.0865034i
\(96\) 0 0
\(97\) 112.019 + 64.6742i 1.15483 + 0.666744i 0.950061 0.312065i \(-0.101021\pi\)
0.204774 + 0.978809i \(0.434354\pi\)
\(98\) −50.0000 −0.510204
\(99\) 0 0
\(100\) 73.5000 + 14.9248i 0.735000 + 0.149248i
\(101\) 146.486 + 84.5739i 1.45036 + 0.837366i 0.998502 0.0547240i \(-0.0174279\pi\)
0.451858 + 0.892090i \(0.350761\pi\)
\(102\) 0 0
\(103\) 34.4674 19.8997i 0.334635 0.193201i −0.323262 0.946309i \(-0.604780\pi\)
0.657897 + 0.753108i \(0.271446\pi\)
\(104\) 120.636 69.6491i 1.15996 0.669703i
\(105\) 0 0
\(106\) −15.5000 + 26.8468i −0.146226 + 0.253272i
\(107\) −29.0000 −0.271028 −0.135514 0.990775i \(-0.543269\pi\)
−0.135514 + 0.990775i \(0.543269\pi\)
\(108\) 0 0
\(109\) 104.000 0.954128 0.477064 0.878868i \(-0.341701\pi\)
0.477064 + 0.878868i \(0.341701\pi\)
\(110\) −29.0584 + 40.3808i −0.264167 + 0.367098i
\(111\) 0 0
\(112\) −43.0842 + 24.8747i −0.384681 + 0.222095i
\(113\) 40.0000 + 69.2820i 0.353982 + 0.613115i 0.986943 0.161068i \(-0.0514940\pi\)
−0.632961 + 0.774184i \(0.718161\pi\)
\(114\) 0 0
\(115\) −81.1684 58.4096i −0.705813 0.507910i
\(116\) 119.398i 1.02930i
\(117\) 0 0
\(118\) 39.7995i 0.337284i
\(119\) 189.571 + 109.449i 1.59303 + 0.919736i
\(120\) 0 0
\(121\) −11.0000 19.0526i −0.0909091 0.157459i
\(122\) −22.0000 38.1051i −0.180328 0.312337i
\(123\) 0 0
\(124\) 43.5000 75.3442i 0.350806 0.607615i
\(125\) −37.0000 + 119.398i −0.296000 + 0.955188i
\(126\) 0 0
\(127\) 149.248i 1.17518i 0.809158 + 0.587591i \(0.199924\pi\)
−0.809158 + 0.587591i \(0.800076\pi\)
\(128\) 59.5000 103.057i 0.464844 0.805133i
\(129\) 0 0
\(130\) 40.8832 + 90.7115i 0.314486 + 0.697780i
\(131\) 146.486 84.5739i 1.11822 0.645603i 0.177271 0.984162i \(-0.443273\pi\)
0.940945 + 0.338559i \(0.109940\pi\)
\(132\) 0 0
\(133\) −34.4674 19.8997i −0.259153 0.149622i
\(134\) 19.8997i 0.148506i
\(135\) 0 0
\(136\) −154.000 −1.13235
\(137\) 49.0000 84.8705i 0.357664 0.619493i −0.629906 0.776671i \(-0.716907\pi\)
0.987570 + 0.157179i \(0.0502399\pi\)
\(138\) 0 0
\(139\) 32.0000 + 55.4256i 0.230216 + 0.398746i 0.957872 0.287197i \(-0.0927235\pi\)
−0.727656 + 0.685943i \(0.759390\pi\)
\(140\) −61.3247 136.067i −0.438034 0.971908i
\(141\) 0 0
\(142\) −51.7011 29.8496i −0.364092 0.210209i
\(143\) 198.000 1.38462
\(144\) 0 0
\(145\) 198.000 + 19.8997i 1.36552 + 0.137240i
\(146\) 77.5516 + 44.7744i 0.531175 + 0.306674i
\(147\) 0 0
\(148\) 0 0
\(149\) −8.61684 + 4.97494i −0.0578312 + 0.0333888i −0.528637 0.848848i \(-0.677297\pi\)
0.470806 + 0.882237i \(0.343963\pi\)
\(150\) 0 0
\(151\) −128.500 + 222.569i −0.850993 + 1.47396i 0.0293194 + 0.999570i \(0.490666\pi\)
−0.880313 + 0.474394i \(0.842667\pi\)
\(152\) 28.0000 0.184211
\(153\) 0 0
\(154\) 99.0000 0.642857
\(155\) 117.694 + 84.6940i 0.759318 + 0.546413i
\(156\) 0 0
\(157\) 137.870 79.5990i 0.878150 0.507000i 0.00810182 0.999967i \(-0.497421\pi\)
0.870048 + 0.492967i \(0.164088\pi\)
\(158\) 5.00000 + 8.66025i 0.0316456 + 0.0548117i
\(159\) 0 0
\(160\) 133.928 + 96.3759i 0.837050 + 0.602349i
\(161\) 198.997i 1.23601i
\(162\) 0 0
\(163\) 298.496i 1.83127i 0.402016 + 0.915633i \(0.368310\pi\)
−0.402016 + 0.915633i \(0.631690\pi\)
\(164\) −103.402 59.6992i −0.630501 0.364020i
\(165\) 0 0
\(166\) −9.50000 16.4545i −0.0572289 0.0991234i
\(167\) 127.000 + 219.970i 0.760479 + 1.31719i 0.942604 + 0.333913i \(0.108369\pi\)
−0.182125 + 0.983275i \(0.558298\pi\)
\(168\) 0 0
\(169\) 113.500 196.588i 0.671598 1.16324i
\(170\) 11.0000 109.449i 0.0647059 0.643815i
\(171\) 0 0
\(172\) 59.6992i 0.347089i
\(173\) −117.500 + 203.516i −0.679191 + 1.17639i 0.296034 + 0.955177i \(0.404336\pi\)
−0.975225 + 0.221216i \(0.928998\pi\)
\(174\) 0 0
\(175\) 235.863 79.0177i 1.34779 0.451530i
\(176\) 43.0842 24.8747i 0.244797 0.141333i
\(177\) 0 0
\(178\) −51.7011 29.8496i −0.290455 0.167695i
\(179\) 149.248i 0.833788i 0.908955 + 0.416894i \(0.136881\pi\)
−0.908955 + 0.416894i \(0.863119\pi\)
\(180\) 0 0
\(181\) −292.000 −1.61326 −0.806630 0.591057i \(-0.798711\pi\)
−0.806630 + 0.591057i \(0.798711\pi\)
\(182\) 99.0000 171.473i 0.543956 0.942160i
\(183\) 0 0
\(184\) −70.0000 121.244i −0.380435 0.658932i
\(185\) 0 0
\(186\) 0 0
\(187\) −189.571 109.449i −1.01375 0.585287i
\(188\) −174.000 −0.925532
\(189\) 0 0
\(190\) −2.00000 + 19.8997i −0.0105263 + 0.104736i
\(191\) −86.1684 49.7494i −0.451144 0.260468i 0.257169 0.966366i \(-0.417210\pi\)
−0.708313 + 0.705898i \(0.750543\pi\)
\(192\) 0 0
\(193\) −146.486 + 84.5739i −0.758997 + 0.438207i −0.828935 0.559344i \(-0.811053\pi\)
0.0699388 + 0.997551i \(0.477720\pi\)
\(194\) −112.019 + 64.6742i −0.577417 + 0.333372i
\(195\) 0 0
\(196\) −75.0000 + 129.904i −0.382653 + 0.662775i
\(197\) −203.000 −1.03046 −0.515228 0.857053i \(-0.672293\pi\)
−0.515228 + 0.857053i \(0.672293\pi\)
\(198\) 0 0
\(199\) 155.000 0.778894 0.389447 0.921049i \(-0.372666\pi\)
0.389447 + 0.921049i \(0.372666\pi\)
\(200\) −115.909 + 131.111i −0.579545 + 0.655555i
\(201\) 0 0
\(202\) −146.486 + 84.5739i −0.725180 + 0.418683i
\(203\) −198.000 342.946i −0.975369 1.68939i
\(204\) 0 0
\(205\) 116.234 161.523i 0.566994 0.787918i
\(206\) 39.7995i 0.193201i
\(207\) 0 0
\(208\) 99.4987i 0.478359i
\(209\) 34.4674 + 19.8997i 0.164916 + 0.0952141i
\(210\) 0 0
\(211\) −154.000 266.736i −0.729858 1.26415i −0.956943 0.290276i \(-0.906253\pi\)
0.227085 0.973875i \(-0.427080\pi\)
\(212\) 46.5000 + 80.5404i 0.219340 + 0.379907i
\(213\) 0 0
\(214\) 14.5000 25.1147i 0.0677570 0.117359i
\(215\) 99.0000 + 9.94987i 0.460465 + 0.0462785i
\(216\) 0 0
\(217\) 288.546i 1.32971i
\(218\) −52.0000 + 90.0666i −0.238532 + 0.413150i
\(219\) 0 0
\(220\) 61.3247 + 136.067i 0.278749 + 0.618487i
\(221\) −379.141 + 218.897i −1.71557 + 0.990485i
\(222\) 0 0
\(223\) 34.4674 + 19.8997i 0.154562 + 0.0892365i 0.575286 0.817952i \(-0.304891\pi\)
−0.420724 + 0.907189i \(0.638224\pi\)
\(224\) 328.346i 1.46583i
\(225\) 0 0
\(226\) −80.0000 −0.353982
\(227\) 121.000 209.578i 0.533040 0.923252i −0.466216 0.884671i \(-0.654383\pi\)
0.999255 0.0385807i \(-0.0122837\pi\)
\(228\) 0 0
\(229\) 53.0000 + 91.7987i 0.231441 + 0.400868i 0.958232 0.285991i \(-0.0923226\pi\)
−0.726791 + 0.686858i \(0.758989\pi\)
\(230\) 91.1684 41.0891i 0.396385 0.178648i
\(231\) 0 0
\(232\) 241.272 + 139.298i 1.03996 + 0.600423i
\(233\) 142.000 0.609442 0.304721 0.952442i \(-0.401437\pi\)
0.304721 + 0.952442i \(0.401437\pi\)
\(234\) 0 0
\(235\) 29.0000 288.546i 0.123404 1.22786i
\(236\) −103.402 59.6992i −0.438145 0.252963i
\(237\) 0 0
\(238\) −189.571 + 109.449i −0.796515 + 0.459868i
\(239\) 172.337 99.4987i 0.721075 0.416313i −0.0940733 0.995565i \(-0.529989\pi\)
0.815148 + 0.579253i \(0.196655\pi\)
\(240\) 0 0
\(241\) −85.0000 + 147.224i −0.352697 + 0.610889i −0.986721 0.162424i \(-0.948069\pi\)
0.634024 + 0.773313i \(0.281402\pi\)
\(242\) 22.0000 0.0909091
\(243\) 0 0
\(244\) −132.000 −0.540984
\(245\) −202.921 146.024i −0.828249 0.596017i
\(246\) 0 0
\(247\) 68.9348 39.7995i 0.279088 0.161132i
\(248\) 101.500 + 175.803i 0.409274 + 0.708884i
\(249\) 0 0
\(250\) −84.9021 91.7422i −0.339609 0.366969i
\(251\) 358.195i 1.42707i −0.700618 0.713537i \(-0.747092\pi\)
0.700618 0.713537i \(-0.252908\pi\)
\(252\) 0 0
\(253\) 198.997i 0.786551i
\(254\) −129.253 74.6241i −0.508869 0.293796i
\(255\) 0 0
\(256\) 85.5000 + 148.090i 0.333984 + 0.578478i
\(257\) 145.000 + 251.147i 0.564202 + 0.977227i 0.997123 + 0.0757953i \(0.0241495\pi\)
−0.432921 + 0.901432i \(0.642517\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 297.000 + 29.8496i 1.14231 + 0.114806i
\(261\) 0 0
\(262\) 169.148i 0.645603i
\(263\) 52.0000 90.0666i 0.197719 0.342459i −0.750070 0.661359i \(-0.769980\pi\)
0.947788 + 0.318900i \(0.103313\pi\)
\(264\) 0 0
\(265\) −141.311 + 63.6881i −0.533249 + 0.240333i
\(266\) 34.4674 19.8997i 0.129577 0.0748111i
\(267\) 0 0
\(268\) −51.7011 29.8496i −0.192914 0.111379i
\(269\) 119.398i 0.443861i 0.975063 + 0.221930i \(0.0712357\pi\)
−0.975063 + 0.221930i \(0.928764\pi\)
\(270\) 0 0
\(271\) −121.000 −0.446494 −0.223247 0.974762i \(-0.571666\pi\)
−0.223247 + 0.974762i \(0.571666\pi\)
\(272\) −55.0000 + 95.2628i −0.202206 + 0.350231i
\(273\) 0 0
\(274\) 49.0000 + 84.8705i 0.178832 + 0.309746i
\(275\) −235.863 + 79.0177i −0.857682 + 0.287337i
\(276\) 0 0
\(277\) 137.870 + 79.5990i 0.497724 + 0.287361i 0.727773 0.685818i \(-0.240555\pi\)
−0.230049 + 0.973179i \(0.573889\pi\)
\(278\) −64.0000 −0.230216
\(279\) 0 0
\(280\) 346.500 + 34.8246i 1.23750 + 0.124373i
\(281\) −189.571 109.449i −0.674628 0.389497i 0.123200 0.992382i \(-0.460684\pi\)
−0.797828 + 0.602885i \(0.794018\pi\)
\(282\) 0 0
\(283\) 241.272 139.298i 0.852550 0.492220i −0.00896047 0.999960i \(-0.502852\pi\)
0.861510 + 0.507740i \(0.169519\pi\)
\(284\) −155.103 + 89.5489i −0.546138 + 0.315313i
\(285\) 0 0
\(286\) −99.0000 + 171.473i −0.346154 + 0.599556i
\(287\) −396.000 −1.37979
\(288\) 0 0
\(289\) 195.000 0.674740
\(290\) −116.234 + 161.523i −0.400806 + 0.556976i
\(291\) 0 0
\(292\) 232.655 134.323i 0.796763 0.460011i
\(293\) −143.000 247.683i −0.488055 0.845335i 0.511851 0.859074i \(-0.328960\pi\)
−0.999906 + 0.0137389i \(0.995627\pi\)
\(294\) 0 0
\(295\) 116.234 161.523i 0.394013 0.547536i
\(296\) 0 0
\(297\) 0 0
\(298\) 9.94987i 0.0333888i
\(299\) −344.674 198.997i −1.15276 0.665543i
\(300\) 0 0
\(301\) −99.0000 171.473i −0.328904 0.569678i
\(302\) −128.500 222.569i −0.425497 0.736982i
\(303\) 0 0
\(304\) 10.0000 17.3205i 0.0328947 0.0569754i
\(305\) 22.0000 218.897i 0.0721311 0.717696i
\(306\) 0 0
\(307\) 59.6992i 0.194460i 0.995262 + 0.0972300i \(0.0309983\pi\)
−0.995262 + 0.0972300i \(0.969002\pi\)
\(308\) 148.500 257.210i 0.482143 0.835096i
\(309\) 0 0
\(310\) −132.194 + 59.5792i −0.426433 + 0.192191i
\(311\) 172.337 99.4987i 0.554138 0.319932i −0.196651 0.980473i \(-0.563007\pi\)
0.750789 + 0.660542i \(0.229673\pi\)
\(312\) 0 0
\(313\) 60.3179 + 34.8246i 0.192709 + 0.111261i 0.593250 0.805018i \(-0.297845\pi\)
−0.400541 + 0.916279i \(0.631178\pi\)
\(314\) 159.198i 0.507000i
\(315\) 0 0
\(316\) 30.0000 0.0949367
\(317\) −270.500 + 468.520i −0.853312 + 1.47798i 0.0248896 + 0.999690i \(0.492077\pi\)
−0.878202 + 0.478290i \(0.841257\pi\)
\(318\) 0 0
\(319\) 198.000 + 342.946i 0.620690 + 1.07507i
\(320\) −59.2595 + 26.7079i −0.185186 + 0.0834623i
\(321\) 0 0
\(322\) −172.337 99.4987i −0.535208 0.309002i
\(323\) −88.0000 −0.272446
\(324\) 0 0
\(325\) −99.0000 + 487.544i −0.304615 + 1.50013i
\(326\) −258.505 149.248i −0.792961 0.457816i
\(327\) 0 0
\(328\) 241.272 139.298i 0.735584 0.424690i
\(329\) −499.777 + 288.546i −1.51908 + 0.877041i
\(330\) 0 0
\(331\) 137.000 237.291i 0.413897 0.716891i −0.581415 0.813607i \(-0.697501\pi\)
0.995312 + 0.0967162i \(0.0308339\pi\)
\(332\) −57.0000 −0.171687
\(333\) 0 0
\(334\) −254.000 −0.760479
\(335\) 58.1168 80.7616i 0.173483 0.241079i
\(336\) 0 0
\(337\) −379.141 + 218.897i −1.12505 + 0.649547i −0.942685 0.333685i \(-0.891708\pi\)
−0.182363 + 0.983231i \(0.558375\pi\)
\(338\) 113.500 + 196.588i 0.335799 + 0.581621i
\(339\) 0 0
\(340\) −267.856 192.752i −0.787811 0.566917i
\(341\) 288.546i 0.846177i
\(342\) 0 0
\(343\) 9.94987i 0.0290084i
\(344\) 120.636 + 69.6491i 0.350686 + 0.202468i
\(345\) 0 0
\(346\) −117.500 203.516i −0.339595 0.588196i
\(347\) 89.5000 + 155.019i 0.257925 + 0.446739i 0.965686 0.259713i \(-0.0836279\pi\)
−0.707761 + 0.706452i \(0.750295\pi\)
\(348\) 0 0
\(349\) −310.000 + 536.936i −0.888252 + 1.53850i −0.0463119 + 0.998927i \(0.514747\pi\)
−0.841940 + 0.539571i \(0.818587\pi\)
\(350\) −49.5000 + 243.772i −0.141429 + 0.696491i
\(351\) 0 0
\(352\) 328.346i 0.932801i
\(353\) 16.0000 27.7128i 0.0453258 0.0785066i −0.842472 0.538739i \(-0.818901\pi\)
0.887798 + 0.460233i \(0.152234\pi\)
\(354\) 0 0
\(355\) −122.649 272.134i −0.345491 0.766576i
\(356\) −155.103 + 89.5489i −0.435683 + 0.251542i
\(357\) 0 0
\(358\) −129.253 74.6241i −0.361041 0.208447i
\(359\) 537.293i 1.49664i −0.663339 0.748319i \(-0.730861\pi\)
0.663339 0.748319i \(-0.269139\pi\)
\(360\) 0 0
\(361\) −345.000 −0.955679
\(362\) 146.000 252.879i 0.403315 0.698562i
\(363\) 0 0
\(364\) −297.000 514.419i −0.815934 1.41324i
\(365\) 183.974 + 408.202i 0.504039 + 1.11836i
\(366\) 0 0
\(367\) −301.590 174.123i −0.821770 0.474449i 0.0292566 0.999572i \(-0.490686\pi\)
−0.851026 + 0.525123i \(0.824019\pi\)
\(368\) −100.000 −0.271739
\(369\) 0 0
\(370\) 0 0
\(371\) 267.122 + 154.223i 0.720006 + 0.415696i
\(372\) 0 0
\(373\) 292.973 169.148i 0.785450 0.453480i −0.0529086 0.998599i \(-0.516849\pi\)
0.838358 + 0.545120i \(0.183516\pi\)
\(374\) 189.571 109.449i 0.506873 0.292643i
\(375\) 0 0
\(376\) 203.000 351.606i 0.539894 0.935123i
\(377\) 792.000 2.10080
\(378\) 0 0
\(379\) 248.000 0.654354 0.327177 0.944963i \(-0.393903\pi\)
0.327177 + 0.944963i \(0.393903\pi\)
\(380\) 48.7011 + 35.0458i 0.128161 + 0.0922257i
\(381\) 0 0
\(382\) 86.1684 49.7494i 0.225572 0.130234i
\(383\) −197.000 341.214i −0.514360 0.890898i −0.999861 0.0166620i \(-0.994696\pi\)
0.485501 0.874236i \(-0.338637\pi\)
\(384\) 0 0
\(385\) 401.784 + 289.128i 1.04359 + 0.750981i
\(386\) 169.148i 0.438207i
\(387\) 0 0
\(388\) 388.045i 1.00012i
\(389\) −8.61684 4.97494i −0.0221513 0.0127890i 0.488883 0.872349i \(-0.337404\pi\)
−0.511035 + 0.859560i \(0.670738\pi\)
\(390\) 0 0
\(391\) 220.000 + 381.051i 0.562660 + 0.974555i
\(392\) −175.000 303.109i −0.446429 0.773237i
\(393\) 0 0
\(394\) 101.500 175.803i 0.257614 0.446201i
\(395\) −5.00000 + 49.7494i −0.0126582 + 0.125948i
\(396\) 0 0
\(397\) 59.6992i 0.150376i 0.997169 + 0.0751880i \(0.0239557\pi\)
−0.997169 + 0.0751880i \(0.976044\pi\)
\(398\) −77.5000 + 134.234i −0.194724 + 0.337271i
\(399\) 0 0
\(400\) 39.7079 + 118.525i 0.0992697 + 0.296314i
\(401\) 172.337 99.4987i 0.429768 0.248127i −0.269480 0.963006i \(-0.586852\pi\)
0.699248 + 0.714879i \(0.253518\pi\)
\(402\) 0 0
\(403\) 499.777 + 288.546i 1.24014 + 0.715996i
\(404\) 507.444i 1.25605i
\(405\) 0 0
\(406\) 396.000 0.975369
\(407\) 0 0
\(408\) 0 0
\(409\) 165.500 + 286.654i 0.404645 + 0.700867i 0.994280 0.106804i \(-0.0340616\pi\)
−0.589635 + 0.807670i \(0.700728\pi\)
\(410\) 81.7663 + 181.423i 0.199430 + 0.442495i
\(411\) 0 0
\(412\) 103.402 + 59.6992i 0.250976 + 0.144901i
\(413\) −396.000 −0.958838
\(414\) 0 0
\(415\) 9.50000 94.5238i 0.0228916 0.227768i
\(416\) 568.712 + 328.346i 1.36710 + 0.789293i
\(417\) 0 0
\(418\) −34.4674 + 19.8997i −0.0824578 + 0.0476071i
\(419\) 585.945 338.296i 1.39844 0.807388i 0.404209 0.914667i \(-0.367547\pi\)
0.994229 + 0.107278i \(0.0342136\pi\)
\(420\) 0 0
\(421\) −4.00000 + 6.92820i −0.00950119 + 0.0164565i −0.870737 0.491749i \(-0.836358\pi\)
0.861236 + 0.508206i \(0.169691\pi\)
\(422\) 308.000 0.729858
\(423\) 0 0
\(424\) −217.000 −0.511792
\(425\) 364.285 412.063i 0.857142 0.969561i
\(426\) 0 0
\(427\) −379.141 + 218.897i −0.887918 + 0.512640i
\(428\) −43.5000 75.3442i −0.101636 0.176038i
\(429\) 0 0
\(430\) −58.1168 + 80.7616i −0.135155 + 0.187818i
\(431\) 298.496i 0.692567i −0.938130 0.346283i \(-0.887444\pi\)
0.938130 0.346283i \(-0.112556\pi\)
\(432\) 0 0
\(433\) 686.541i 1.58555i −0.609517 0.792773i \(-0.708637\pi\)
0.609517 0.792773i \(-0.291363\pi\)
\(434\) 249.888 + 144.273i 0.575780 + 0.332427i
\(435\) 0 0
\(436\) 156.000 + 270.200i 0.357798 + 0.619725i
\(437\) −40.0000 69.2820i −0.0915332 0.158540i
\(438\) 0 0
\(439\) −107.500 + 186.195i −0.244875 + 0.424135i −0.962096 0.272710i \(-0.912080\pi\)
0.717222 + 0.696845i \(0.245413\pi\)
\(440\) −346.500 34.8246i −0.787500 0.0791467i
\(441\) 0 0
\(442\) 437.794i 0.990485i
\(443\) −95.0000 + 164.545i −0.214447 + 0.371433i −0.953101 0.302651i \(-0.902128\pi\)
0.738654 + 0.674084i \(0.235462\pi\)
\(444\) 0 0
\(445\) −122.649 272.134i −0.275617 0.611538i
\(446\) −34.4674 + 19.8997i −0.0772811 + 0.0446183i
\(447\) 0 0
\(448\) 112.019 + 64.6742i 0.250042 + 0.144362i
\(449\) 119.398i 0.265921i 0.991121 + 0.132960i \(0.0424483\pi\)
−0.991121 + 0.132960i \(0.957552\pi\)
\(450\) 0 0
\(451\) 396.000 0.878049
\(452\) −120.000 + 207.846i −0.265487 + 0.459836i
\(453\) 0 0
\(454\) 121.000 + 209.578i 0.266520 + 0.461626i
\(455\) 902.568 406.782i 1.98366 0.894027i
\(456\) 0 0
\(457\) 112.019 + 64.6742i 0.245118 + 0.141519i 0.617527 0.786550i \(-0.288135\pi\)
−0.372409 + 0.928069i \(0.621468\pi\)
\(458\) −106.000 −0.231441
\(459\) 0 0
\(460\) 30.0000 298.496i 0.0652174 0.648905i
\(461\) −163.720 94.5238i −0.355141 0.205041i 0.311806 0.950146i \(-0.399066\pi\)
−0.666947 + 0.745105i \(0.732399\pi\)
\(462\) 0 0
\(463\) −715.198 + 412.920i −1.54470 + 0.891835i −0.546172 + 0.837673i \(0.683916\pi\)
−0.998532 + 0.0541624i \(0.982751\pi\)
\(464\) 172.337 99.4987i 0.371416 0.214437i
\(465\) 0 0
\(466\) −71.0000 + 122.976i −0.152361 + 0.263896i
\(467\) 193.000 0.413276 0.206638 0.978417i \(-0.433748\pi\)
0.206638 + 0.978417i \(0.433748\pi\)
\(468\) 0 0
\(469\) −198.000 −0.422175
\(470\) 235.388 + 169.388i 0.500827 + 0.360400i
\(471\) 0 0
\(472\) 241.272 139.298i 0.511169 0.295123i
\(473\) 99.0000 + 171.473i 0.209302 + 0.362522i
\(474\) 0 0
\(475\) −66.2337 + 74.9206i −0.139439 + 0.157728i
\(476\) 656.692i 1.37960i
\(477\) 0 0
\(478\) 198.997i 0.416313i
\(479\) 637.646 + 368.145i 1.33120 + 0.768571i 0.985484 0.169767i \(-0.0543016\pi\)
0.345719 + 0.938338i \(0.387635\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −85.0000 147.224i −0.176349 0.305445i
\(483\) 0 0
\(484\) 33.0000 57.1577i 0.0681818 0.118094i
\(485\) −643.500 64.6742i −1.32680 0.133349i
\(486\) 0 0
\(487\) 477.594i 0.980686i −0.871530 0.490343i \(-0.836872\pi\)
0.871530 0.490343i \(-0.163128\pi\)
\(488\) 154.000 266.736i 0.315574 0.546590i
\(489\) 0 0
\(490\) 227.921 102.723i 0.465145 0.209638i
\(491\) 249.888 144.273i 0.508938 0.293835i −0.223459 0.974713i \(-0.571735\pi\)
0.732397 + 0.680878i \(0.238402\pi\)
\(492\) 0 0
\(493\) −758.282 437.794i −1.53810 0.888021i
\(494\) 79.5990i 0.161132i
\(495\) 0 0
\(496\) 145.000 0.292339
\(497\) −297.000 + 514.419i −0.597586 + 1.03505i
\(498\) 0 0
\(499\) −145.000 251.147i −0.290581 0.503301i 0.683366 0.730076i \(-0.260515\pi\)
−0.973947 + 0.226775i \(0.927182\pi\)
\(500\) −365.706 + 82.9689i −0.731413 + 0.165938i
\(501\) 0 0
\(502\) 310.206 + 179.098i 0.617941 + 0.356768i
\(503\) 220.000 0.437376 0.218688 0.975795i \(-0.429822\pi\)
0.218688 + 0.975795i \(0.429822\pi\)
\(504\) 0 0
\(505\) −841.500 84.5739i −1.66634 0.167473i
\(506\) 172.337 + 99.4987i 0.340587 + 0.196638i
\(507\) 0 0
\(508\) −387.758 + 223.872i −0.763303 + 0.440693i
\(509\) −8.61684 + 4.97494i −0.0169290 + 0.00977394i −0.508441 0.861097i \(-0.669778\pi\)
0.491512 + 0.870871i \(0.336445\pi\)
\(510\) 0 0
\(511\) 445.500 771.629i 0.871820 1.51004i
\(512\) 305.000 0.595703
\(513\) 0 0
\(514\) −290.000 −0.564202
\(515\) −116.234 + 161.523i −0.225696 + 0.313637i
\(516\) 0 0
\(517\) 499.777 288.546i 0.966687 0.558117i
\(518\) 0 0
\(519\) 0 0
\(520\) −406.818 + 565.331i −0.782342 + 1.08718i
\(521\) 298.496i 0.572929i 0.958091 + 0.286465i \(0.0924801\pi\)
−0.958091 + 0.286465i \(0.907520\pi\)
\(522\) 0 0
\(523\) 537.293i 1.02733i 0.857991 + 0.513665i \(0.171712\pi\)
−0.857991 + 0.513665i \(0.828288\pi\)
\(524\) 439.459 + 253.722i 0.838662 + 0.484202i
\(525\) 0 0
\(526\) 52.0000 + 90.0666i 0.0988593 + 0.171229i
\(527\) −319.000 552.524i −0.605313 1.04843i
\(528\) 0 0
\(529\) 64.5000 111.717i 0.121928 0.211186i
\(530\) 15.5000 154.223i 0.0292453 0.290987i
\(531\) 0 0
\(532\) 119.398i 0.224433i
\(533\) 396.000 685.892i 0.742964 1.28685i
\(534\) 0 0
\(535\) 132.194 59.5792i 0.247092 0.111363i
\(536\) 120.636 69.6491i 0.225067 0.129942i
\(537\) 0 0
\(538\) −103.402 59.6992i −0.192197 0.110965i
\(539\) 497.494i 0.922994i
\(540\) 0 0
\(541\) 704.000 1.30129 0.650647 0.759380i \(-0.274498\pi\)
0.650647 + 0.759380i \(0.274498\pi\)
\(542\) 60.5000 104.789i 0.111624 0.193338i
\(543\) 0 0
\(544\) −363.000 628.734i −0.667279 1.15576i
\(545\) −474.076 + 213.663i −0.869864 + 0.392043i
\(546\) 0 0
\(547\) 86.1684 + 49.7494i 0.157529 + 0.0909495i 0.576692 0.816961i \(-0.304343\pi\)
−0.419163 + 0.907911i \(0.637676\pi\)
\(548\) 294.000 0.536496
\(549\) 0 0
\(550\) 49.5000 243.772i 0.0900000 0.443222i
\(551\) 137.870 + 79.5990i 0.250217 + 0.144463i
\(552\) 0 0
\(553\) 86.1684 49.7494i 0.155820 0.0899627i
\(554\) −137.870 + 79.5990i −0.248862 + 0.143680i
\(555\) 0 0
\(556\) −96.0000 + 166.277i −0.172662 + 0.299059i
\(557\) −101.000 −0.181329 −0.0906643 0.995882i \(-0.528899\pi\)
−0.0906643 + 0.995882i \(0.528899\pi\)
\(558\) 0 0
\(559\) 396.000 0.708408
\(560\) 145.292 201.904i 0.259450 0.360543i
\(561\) 0 0
\(562\) 189.571 109.449i 0.337314 0.194748i
\(563\) 467.500 + 809.734i 0.830373 + 1.43825i 0.897743 + 0.440520i \(0.145206\pi\)
−0.0673697 + 0.997728i \(0.521461\pi\)
\(564\) 0 0
\(565\) −324.674 233.639i −0.574644 0.413519i
\(566\) 278.596i 0.492220i
\(567\) 0 0
\(568\) 417.895i 0.735730i
\(569\) −654.880 378.095i −1.15093 0.664491i −0.201818 0.979423i \(-0.564685\pi\)
−0.949114 + 0.314932i \(0.898018\pi\)
\(570\) 0 0
\(571\) −253.000 438.209i −0.443082 0.767441i 0.554834 0.831961i \(-0.312782\pi\)
−0.997916 + 0.0645199i \(0.979448\pi\)
\(572\) 297.000 + 514.419i 0.519231 + 0.899334i
\(573\) 0 0
\(574\) 198.000 342.946i 0.344948 0.597467i
\(575\) 490.000 + 99.4987i 0.852174 + 0.173041i
\(576\) 0 0
\(577\) 1074.59i 1.86237i 0.364549 + 0.931184i \(0.381223\pi\)
−0.364549 + 0.931184i \(0.618777\pi\)
\(578\) −97.5000 + 168.875i −0.168685 + 0.292171i
\(579\) 0 0
\(580\) 245.299 + 544.269i 0.422929 + 0.938394i
\(581\) −163.720 + 94.5238i −0.281790 + 0.162692i
\(582\) 0 0
\(583\) −267.122 154.223i −0.458186 0.264534i
\(584\) 626.842i 1.07336i
\(585\) 0 0
\(586\) 286.000 0.488055
\(587\) 62.5000 108.253i 0.106474 0.184418i −0.807866 0.589367i \(-0.799377\pi\)
0.914339 + 0.404949i \(0.132711\pi\)
\(588\) 0 0
\(589\) 58.0000 + 100.459i 0.0984720 + 0.170558i
\(590\) 81.7663 + 181.423i 0.138587 + 0.307496i
\(591\) 0 0
\(592\) 0 0
\(593\) −50.0000 −0.0843170 −0.0421585 0.999111i \(-0.513423\pi\)
−0.0421585 + 0.999111i \(0.513423\pi\)
\(594\) 0 0
\(595\) −1089.00 109.449i −1.83025 0.183947i
\(596\) −25.8505 14.9248i −0.0433734 0.0250416i
\(597\) 0 0
\(598\) 344.674 198.997i 0.576378 0.332772i
\(599\) 120.636 69.6491i 0.201395 0.116276i −0.395911 0.918289i \(-0.629571\pi\)
0.597306 + 0.802013i \(0.296238\pi\)
\(600\) 0 0
\(601\) −26.5000 + 45.8993i −0.0440932 + 0.0763716i −0.887230 0.461328i \(-0.847373\pi\)
0.843137 + 0.537700i \(0.180707\pi\)
\(602\) 198.000 0.328904
\(603\) 0 0
\(604\) −771.000 −1.27649
\(605\) 89.2853 + 64.2506i 0.147579 + 0.106199i
\(606\) 0 0
\(607\) 344.674 198.997i 0.567832 0.327838i −0.188451 0.982083i \(-0.560347\pi\)
0.756283 + 0.654245i \(0.227013\pi\)
\(608\) 66.0000 + 114.315i 0.108553 + 0.188019i
\(609\) 0 0
\(610\) 178.571 + 128.501i 0.292739 + 0.210658i
\(611\) 1154.19i 1.88901i
\(612\) 0 0
\(613\) 895.489i 1.46083i 0.683004 + 0.730415i \(0.260673\pi\)
−0.683004 + 0.730415i \(0.739327\pi\)
\(614\) −51.7011 29.8496i −0.0842037 0.0486150i
\(615\) 0 0
\(616\) 346.500 + 600.156i 0.562500 + 0.974279i
\(617\) −566.000 980.341i −0.917342 1.58888i −0.803436 0.595391i \(-0.796997\pi\)
−0.113906 0.993492i \(-0.536336\pi\)
\(618\) 0 0
\(619\) −151.000 + 261.540i −0.243942 + 0.422520i −0.961834 0.273635i \(-0.911774\pi\)
0.717892 + 0.696155i \(0.245107\pi\)
\(620\) −43.5000 + 432.820i −0.0701613 + 0.698096i
\(621\) 0 0
\(622\) 198.997i 0.319932i
\(623\) −297.000 + 514.419i −0.476726 + 0.825713i
\(624\) 0 0
\(625\) −76.6373 620.284i −0.122620 0.992454i
\(626\) −60.3179 + 34.8246i −0.0963545 + 0.0556303i
\(627\) 0 0
\(628\) 413.609 + 238.797i 0.658612 + 0.380250i
\(629\) 0 0
\(630\) 0 0
\(631\) 1103.00 1.74802 0.874010 0.485909i \(-0.161511\pi\)
0.874010 + 0.485909i \(0.161511\pi\)
\(632\) −35.0000 + 60.6218i −0.0553797 + 0.0959205i
\(633\) 0 0
\(634\) −270.500 468.520i −0.426656 0.738990i
\(635\) −306.624 680.336i −0.482872 1.07140i
\(636\) 0 0
\(637\) −861.684 497.494i −1.35272 0.780995i
\(638\) −396.000 −0.620690
\(639\) 0 0
\(640\) −59.5000 + 592.018i −0.0929688 + 0.925027i
\(641\) −344.674 198.997i −0.537713 0.310448i 0.206439 0.978460i \(-0.433813\pi\)
−0.744151 + 0.668011i \(0.767146\pi\)
\(642\) 0 0
\(643\) 241.272 139.298i 0.375228 0.216638i −0.300512 0.953778i \(-0.597158\pi\)
0.675740 + 0.737140i \(0.263824\pi\)
\(644\) −517.011 + 298.496i −0.802812 + 0.463503i
\(645\) 0 0
\(646\) 44.0000 76.2102i 0.0681115 0.117973i
\(647\) −1256.00 −1.94127 −0.970634 0.240562i \(-0.922668\pi\)
−0.970634 + 0.240562i \(0.922668\pi\)
\(648\) 0 0
\(649\) 396.000 0.610169
\(650\) −372.725 329.508i −0.573424 0.506936i
\(651\) 0 0
\(652\) −775.516 + 447.744i −1.18944 + 0.686724i
\(653\) −3.50000 6.06218i −0.00535988 0.00928358i 0.863333 0.504635i \(-0.168373\pi\)
−0.868693 + 0.495351i \(0.835039\pi\)
\(654\) 0 0
\(655\) −493.993 + 686.473i −0.754188 + 1.04805i
\(656\) 198.997i 0.303350i
\(657\) 0 0
\(658\) 577.093i 0.877041i
\(659\) −835.834 482.569i −1.26834 0.732275i −0.293664 0.955909i \(-0.594875\pi\)
−0.974673 + 0.223634i \(0.928208\pi\)
\(660\) 0 0
\(661\) 320.000 + 554.256i 0.484115 + 0.838512i 0.999834 0.0182463i \(-0.00580831\pi\)
−0.515719 + 0.856758i \(0.672475\pi\)
\(662\) 137.000 + 237.291i 0.206949 + 0.358446i
\(663\) 0 0
\(664\) 66.5000 115.181i 0.100151 0.173466i
\(665\) 198.000 + 19.8997i 0.297744 + 0.0299244i
\(666\) 0 0
\(667\) 795.990i 1.19339i
\(668\) −381.000 + 659.911i −0.570359 + 0.987891i
\(669\) 0 0
\(670\) 40.8832 + 90.7115i 0.0610196 + 0.135390i
\(671\) 379.141 218.897i 0.565039 0.326225i
\(672\) 0 0
\(673\) 267.122 + 154.223i 0.396913 + 0.229158i 0.685151 0.728401i \(-0.259736\pi\)
−0.288238 + 0.957559i \(0.593070\pi\)
\(674\) 437.794i 0.649547i
\(675\) 0 0
\(676\) 681.000 1.00740
\(677\) −11.0000 + 19.0526i −0.0162482 + 0.0281426i −0.874035 0.485863i \(-0.838506\pi\)
0.857787 + 0.514005i \(0.171839\pi\)
\(678\) 0 0
\(679\) 643.500 + 1114.57i 0.947717 + 1.64149i
\(680\) 701.997 316.386i 1.03235 0.465274i
\(681\) 0 0
\(682\) −249.888 144.273i −0.366405 0.211544i
\(683\) 166.000 0.243045 0.121523 0.992589i \(-0.461222\pi\)
0.121523 + 0.992589i \(0.461222\pi\)
\(684\) 0 0
\(685\) −49.0000 + 487.544i −0.0715328 + 0.711743i
\(686\) −8.61684 4.97494i −0.0125610 0.00725210i
\(687\) 0 0
\(688\) 86.1684 49.7494i 0.125245 0.0723101i
\(689\) −534.244 + 308.446i −0.775391 + 0.447672i
\(690\) 0 0
\(691\) 230.000 398.372i 0.332851 0.576515i −0.650219 0.759747i \(-0.725323\pi\)
0.983070 + 0.183232i \(0.0586561\pi\)
\(692\) −705.000 −1.01879
\(693\) 0 0
\(694\) −179.000 −0.257925
\(695\) −259.739 186.911i −0.373725 0.268936i
\(696\) 0 0
\(697\) −758.282 + 437.794i −1.08792 + 0.628113i
\(698\) −310.000 536.936i −0.444126 0.769249i
\(699\) 0 0
\(700\) 559.088 + 494.263i 0.798697 + 0.706090i
\(701\) 268.647i 0.383233i −0.981470 0.191617i \(-0.938627\pi\)
0.981470 0.191617i \(-0.0613730\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −112.019 64.6742i −0.159118 0.0918667i
\(705\) 0 0
\(706\) 16.0000 + 27.7128i 0.0226629 + 0.0392533i
\(707\) 841.500 + 1457.52i 1.19024 + 2.06156i
\(708\) 0 0
\(709\) 272.000 471.118i 0.383639 0.664482i −0.607940 0.793983i \(-0.708004\pi\)
0.991579 + 0.129501i \(0.0413374\pi\)
\(710\) 297.000 + 29.8496i 0.418310 + 0.0420417i
\(711\) 0 0
\(712\) 417.895i 0.586931i
\(713\) 290.000 502.295i 0.406732 0.704481i
\(714\) 0 0
\(715\) −902.568 + 406.782i −1.26233 + 0.568926i
\(716\) −387.758 + 223.872i −0.541561 + 0.312671i
\(717\) 0 0
\(718\) 465.310 + 268.647i 0.648063 + 0.374160i
\(719\) 358.195i 0.498186i −0.968480 0.249093i \(-0.919868\pi\)
0.968480 0.249093i \(-0.0801324\pi\)
\(720\) 0 0
\(721\) 396.000 0.549237
\(722\) 172.500 298.779i 0.238920 0.413821i
\(723\) 0 0
\(724\) −438.000 758.638i −0.604972 1.04784i
\(725\) −943.451 + 316.071i −1.30131 + 0.435960i
\(726\) 0 0
\(727\) 1197.74 + 691.516i 1.64751 + 0.951192i 0.978057 + 0.208339i \(0.0668059\pi\)
0.669456 + 0.742852i \(0.266527\pi\)
\(728\) 1386.00 1.90385
\(729\) 0 0
\(730\) −445.500 44.7744i −0.610274 0.0613348i
\(731\) −379.141 218.897i −0.518661 0.299449i
\(732\) 0 0
\(733\) 551.478 318.396i 0.752357 0.434374i −0.0741876 0.997244i \(-0.523636\pi\)
0.826545 + 0.562871i \(0.190303\pi\)
\(734\) 301.590 174.123i 0.410885 0.237225i
\(735\) 0 0
\(736\) 330.000 571.577i 0.448370 0.776599i
\(737\) 198.000 0.268657
\(738\) 0 0
\(739\) −958.000 −1.29635 −0.648173 0.761493i \(-0.724467\pi\)
−0.648173 + 0.761493i \(0.724467\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −267.122 + 154.223i −0.360003 + 0.207848i
\(743\) 301.000 + 521.347i 0.405114 + 0.701679i 0.994335 0.106294i \(-0.0338984\pi\)
−0.589220 + 0.807972i \(0.700565\pi\)
\(744\) 0 0
\(745\) 29.0584 40.3808i 0.0390046 0.0542024i
\(746\) 338.296i 0.453480i
\(747\) 0 0
\(748\) 656.692i 0.877930i
\(749\) −249.888 144.273i −0.333629 0.192621i
\(750\) 0 0
\(751\) −266.500 461.592i −0.354860 0.614636i 0.632234 0.774778i \(-0.282138\pi\)
−0.987094 + 0.160142i \(0.948805\pi\)
\(752\) −145.000 251.147i −0.192819 0.333973i
\(753\) 0 0
\(754\) −396.000 + 685.892i −0.525199 + 0.909671i
\(755\) 128.500 1278.56i 0.170199 1.69346i
\(756\) 0 0
\(757\) 895.489i 1.18294i 0.806325 + 0.591472i \(0.201453\pi\)
−0.806325 + 0.591472i \(0.798547\pi\)
\(758\) −124.000 + 214.774i −0.163588 + 0.283343i
\(759\) 0 0
\(760\) −127.636 + 57.5248i −0.167942 + 0.0756905i
\(761\) −861.684 + 497.494i −1.13231 + 0.653737i −0.944514 0.328472i \(-0.893466\pi\)
−0.187792 + 0.982209i \(0.560133\pi\)
\(762\) 0 0
\(763\) 896.152 + 517.393i 1.17451 + 0.678104i
\(764\) 298.496i 0.390702i
\(765\) 0 0
\(766\) 394.000 0.514360
\(767\) 396.000 685.892i 0.516297 0.894253i
\(768\) 0 0
\(769\) −302.500 523.945i −0.393368 0.681333i 0.599523 0.800357i \(-0.295357\pi\)
−0.992891 + 0.119024i \(0.962023\pi\)
\(770\) −451.284 + 203.391i −0.586083 + 0.264144i
\(771\) 0 0
\(772\) −439.459 253.722i −0.569247 0.328655i
\(773\) 886.000 1.14618 0.573092 0.819491i \(-0.305744\pi\)
0.573092 + 0.819491i \(0.305744\pi\)
\(774\) 0 0
\(775\) −710.500 144.273i −0.916774 0.186159i
\(776\) −784.133 452.719i −1.01048 0.583401i
\(777\) 0 0
\(778\) 8.61684 4.97494i 0.0110756 0.00639452i
\(779\) 137.870 79.5990i 0.176983 0.102181i
\(780\) 0 0
\(781\) 297.000 514.419i 0.380282 0.658667i
\(782\) −440.000 −0.562660
\(783\) 0 0
\(784\) −250.000 −0.318878
\(785\) −464.935 + 646.093i −0.592274 + 0.823048i
\(786\) 0 0
\(787\) 448.076 258.697i 0.569347 0.328712i −0.187542 0.982257i \(-0.560052\pi\)
0.756888 + 0.653544i \(0.226719\pi\)
\(788\) −304.500 527.409i −0.386421 0.669301i
\(789\) 0 0
\(790\) −40.5842 29.2048i −0.0513724 0.0369681i
\(791\) 795.990i 1.00631i
\(792\) 0 0
\(793\) 875.589i 1.10415i
\(794\) −51.7011 29.8496i −0.0651147 0.0375940i
\(795\) 0 0
\(796\) 232.500 + 402.702i 0.292085 + 0.505907i
\(797\) 167.500 + 290.119i 0.210163 + 0.364013i 0.951765 0.306827i \(-0.0992672\pi\)
−0.741602 + 0.670840i \(0.765934\pi\)
\(798\) 0 0
\(799\) −638.000 + 1105.05i −0.798498 + 1.38304i
\(800\) −808.500 164.173i −1.01063 0.205216i
\(801\) 0 0
\(802\) 198.997i 0.248127i
\(803\) −445.500 + 771.629i −0.554795 + 0.960932i
\(804\) 0 0
\(805\) −408.832 907.115i −0.507865 1.12685i
\(806\) −499.777 + 288.546i −0.620071 + 0.357998i
\(807\) 0 0
\(808\) −1025.40 592.018i −1.26906 0.732695i
\(809\) 417.895i 0.516557i 0.966070 + 0.258279i \(0.0831552\pi\)
−0.966070 + 0.258279i \(0.916845\pi\)
\(810\) 0 0
\(811\) −700.000 −0.863132 −0.431566 0.902081i \(-0.642039\pi\)
−0.431566 + 0.902081i \(0.642039\pi\)
\(812\) 594.000 1028.84i 0.731527 1.26704i
\(813\) 0 0
\(814\) 0 0
\(815\) −613.247 1360.67i −0.752451 1.66954i
\(816\) 0 0
\(817\) 68.9348 + 39.7995i 0.0843755 + 0.0487142i
\(818\) −331.000 −0.404645
\(819\) 0 0
\(820\) 594.000 + 59.6992i 0.724390 + 0.0728040i
\(821\) −965.087 557.193i −1.17550 0.678676i −0.220532 0.975380i \(-0.570779\pi\)
−0.954970 + 0.296704i \(0.904113\pi\)
\(822\) 0 0
\(823\) −818.600 + 472.619i −0.994654 + 0.574264i −0.906662 0.421857i \(-0.861378\pi\)
−0.0879918 + 0.996121i \(0.528045\pi\)
\(824\) −241.272 + 139.298i −0.292805 + 0.169051i
\(825\) 0 0
\(826\) 198.000 342.946i 0.239709 0.415189i
\(827\) −230.000 −0.278114 −0.139057 0.990284i \(-0.544407\pi\)
−0.139057 + 0.990284i \(0.544407\pi\)
\(828\) 0 0
\(829\) 686.000 0.827503 0.413752 0.910390i \(-0.364218\pi\)
0.413752 + 0.910390i \(0.364218\pi\)
\(830\) 77.1100 + 55.4891i 0.0929036 + 0.0668544i
\(831\) 0 0
\(832\) −224.038 + 129.348i −0.269276 + 0.155467i
\(833\) 550.000 + 952.628i 0.660264 + 1.14361i
\(834\) 0 0
\(835\) −1030.84 741.802i −1.23454 0.888386i
\(836\) 119.398i 0.142821i
\(837\) 0 0
\(838\) 676.591i 0.807388i
\(839\) 1051.25 + 606.942i 1.25299 + 0.723412i 0.971701 0.236213i \(-0.0759063\pi\)
0.281284 + 0.959624i \(0.409240\pi\)
\(840\) 0 0
\(841\) 371.500 + 643.457i 0.441736 + 0.765109i
\(842\) −4.00000 6.92820i −0.00475059 0.00822827i
\(843\) 0 0
\(844\) 462.000 800.207i 0.547393 0.948113i
\(845\) −113.500 + 1129.31i −0.134320 + 1.33646i
\(846\) 0 0
\(847\) 218.897i 0.258438i
\(848\) −77.5000 + 134.234i −0.0913915 + 0.158295i
\(849\) 0 0
\(850\) 174.715 + 521.512i 0.205547 + 0.613544i
\(851\) 0 0
\(852\) 0 0
\(853\) −637.646 368.145i −0.747534 0.431589i 0.0772682 0.997010i \(-0.475380\pi\)
−0.824802 + 0.565421i \(0.808714\pi\)
\(854\) 437.794i 0.512640i
\(855\) 0 0
\(856\) 203.000 0.237150
\(857\) −77.0000 + 133.368i −0.0898483 + 0.155622i −0.907447 0.420167i \(-0.861972\pi\)
0.817599 + 0.575789i \(0.195305\pi\)
\(858\) 0 0
\(859\) 566.000 + 980.341i 0.658906 + 1.14126i 0.980899 + 0.194516i \(0.0623137\pi\)
−0.321994 + 0.946742i \(0.604353\pi\)
\(860\) 122.649 + 272.134i 0.142616 + 0.316435i
\(861\) 0 0
\(862\) 258.505 + 149.248i 0.299890 + 0.173142i
\(863\) −1040.00 −1.20510 −0.602549 0.798082i \(-0.705848\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(864\) 0 0
\(865\) 117.500 1169.11i 0.135838 1.35157i
\(866\) 594.562 + 343.271i 0.686561 + 0.396386i
\(867\) 0 0
\(868\) 749.665 432.820i 0.863670 0.498640i
\(869\) −86.1684 + 49.7494i −0.0991582 + 0.0572490i
\(870\) 0 0
\(871\) 198.000 342.946i 0.227325 0.393738i
\(872\) −728.000 −0.834862
\(873\) 0 0
\(874\) 80.0000 0.0915332
\(875\) −912.823 + 844.766i −1.04323 + 0.965446i
\(876\) 0 0
\(877\) 1430.40 825.840i 1.63101 0.941664i 0.647228 0.762296i \(-0.275928\pi\)
0.983782 0.179368i \(-0.0574053\pi\)
\(878\) −107.500 186.195i −0.122437 0.212068i
\(879\) 0 0
\(880\) −145.292 + 201.904i −0.165105 + 0.229436i
\(881\) 417.895i 0.474341i −0.971468 0.237171i \(-0.923780\pi\)
0.971468 0.237171i \(-0.0762201\pi\)
\(882\) 0 0
\(883\) 238.797i 0.270438i −0.990816 0.135219i \(-0.956826\pi\)
0.990816 0.135219i \(-0.0431738\pi\)
\(884\) −1137.42 656.692i −1.28668 0.742864i
\(885\) 0 0
\(886\) −95.0000 164.545i −0.107223 0.185717i
\(887\) 307.000 + 531.740i 0.346110 + 0.599481i 0.985555 0.169356i \(-0.0541689\pi\)
−0.639444 + 0.768837i \(0.720836\pi\)
\(888\) 0 0
\(889\) −742.500 + 1286.05i −0.835208 + 1.44662i
\(890\) 297.000 + 29.8496i 0.333708 + 0.0335389i
\(891\) 0 0
\(892\) 119.398i 0.133855i
\(893\) 116.000 200.918i 0.129899 0.224992i
\(894\) 0 0
\(895\) −306.624 680.336i −0.342596 0.760152i
\(896\) 1025.40 592.018i 1.14442 0.660734i
\(897\) 0 0
\(898\) −103.402 59.6992i −0.115147 0.0664802i
\(899\) 1154.19i 1.28385i
\(900\) 0 0
\(901\) 682.000 0.756937
\(902\) −198.000 + 342.946i −0.219512 + 0.380206i
\(903\) 0 0
\(904\) −280.000 484.974i −0.309735 0.536476i
\(905\) 1331.06 599.901i 1.47078 0.662874i
\(906\) 0 0
\(907\) 344.674 + 198.997i 0.380015 + 0.219402i 0.677825 0.735223i \(-0.262923\pi\)
−0.297810 + 0.954625i \(0.596256\pi\)
\(908\) 726.000 0.799559
\(909\) 0 0
\(910\) −99.0000 + 985.038i −0.108791 + 1.08246i
\(911\) 1258.06 + 726.341i 1.38097 + 0.797301i 0.992274 0.124067i \(-0.0395939\pi\)
0.388691 + 0.921368i \(0.372927\pi\)
\(912\) 0 0
\(913\) 163.720 94.5238i 0.179321 0.103531i
\(914\) −112.019 + 64.6742i −0.122559 + 0.0707595i
\(915\) 0 0
\(916\) −159.000 + 275.396i −0.173581 + 0.300651i
\(917\) 1683.00 1.83533
\(918\) 0 0
\(919\) −187.000 −0.203482 −0.101741 0.994811i \(-0.532441\pi\)
−0.101741 + 0.994811i \(0.532441\pi\)
\(920\) 568.179 + 408.867i 0.617586 + 0.444421i
\(921\) 0 0
\(922\) 163.720 94.5238i 0.177571 0.102520i
\(923\) −594.000 1028.84i −0.643554 1.11467i
\(924\) 0 0
\(925\) 0 0
\(926\) 825.840i 0.891835i
\(927\) 0 0
\(928\) 1313.38i 1.41528i
\(929\) 585.945 + 338.296i 0.630727 + 0.364150i 0.781034 0.624489i \(-0.214693\pi\)
−0.150307 + 0.988639i \(0.548026\pi\)
\(930\) 0 0
\(931\) −100.000 173.205i −0.107411 0.186042i
\(932\) 213.000 + 368.927i 0.228541 + 0.395844i
\(933\) 0 0
\(934\) −96.5000 + 167.143i −0.103319 + 0.178954i
\(935\) 1089.00 + 109.449i 1.16471 + 0.117057i
\(936\) 0 0
\(937\) 985.038i 1.05127i −0.850711 0.525634i \(-0.823828\pi\)
0.850711 0.525634i \(-0.176172\pi\)
\(938\) 99.0000 171.473i 0.105544 0.182807i
\(939\) 0 0
\(940\) 793.165 357.475i 0.843793 0.380293i
\(941\) −267.122 + 154.223i −0.283871 + 0.163893i −0.635174 0.772369i \(-0.719072\pi\)
0.351304 + 0.936262i \(0.385738\pi\)
\(942\) 0 0
\(943\) −689.348 397.995i −0.731015 0.422052i
\(944\) 198.997i 0.210802i
\(945\) 0 0
\(946\) −198.000 −0.209302
\(947\) 692.500 1199.45i 0.731257 1.26657i −0.225090 0.974338i \(-0.572268\pi\)
0.956346 0.292236i \(-0.0943991\pi\)
\(948\) 0 0
\(949\) 891.000 + 1543.26i 0.938883 + 1.62619i
\(950\) −31.7663 94.8204i −0.0334382 0.0998109i
\(951\) 0 0
\(952\) −1326.99 766.140i −1.39390 0.804769i
\(953\) −1496.00 −1.56978 −0.784890 0.619635i \(-0.787280\pi\)
−0.784890 + 0.619635i \(0.787280\pi\)
\(954\) 0 0
\(955\) 495.000 + 49.7494i 0.518325 + 0.0520936i
\(956\) 517.011 + 298.496i 0.540806 + 0.312235i
\(957\) 0 0
\(958\) −637.646 + 368.145i −0.665602 + 0.384285i
\(959\) 844.451 487.544i 0.880553 0.508388i
\(960\) 0 0
\(961\) 60.0000 103.923i 0.0624350 0.108141i
\(962\) 0 0
\(963\) 0 0
\(964\) −510.000 −0.529046
\(965\) 493.993 686.473i 0.511910 0.711371i
\(966\) 0 0
\(967\) 60.3179 34.8246i 0.0623763 0.0360130i −0.468487 0.883470i \(-0.655201\pi\)
0.530864 + 0.847457i \(0.321868\pi\)
\(968\) 77.0000 + 133.368i 0.0795455 + 0.137777i
\(969\) 0 0
\(970\) 377.759 524.950i 0.389443 0.541186i
\(971\) 746.241i 0.768528i 0.923223 + 0.384264i \(0.125545\pi\)
−0.923223 + 0.384264i \(0.874455\pi\)
\(972\) 0 0
\(973\) 636.792i 0.654462i
\(974\) 413.609 + 238.797i 0.424649 + 0.245171i
\(975\) 0 0
\(976\) −110.000 190.526i −0.112705 0.195211i
\(977\) −527.000 912.791i −0.539406 0.934279i −0.998936 0.0461168i \(-0.985315\pi\)
0.459530 0.888162i \(-0.348018\pi\)
\(978\) 0 0
\(979\) 297.000 514.419i 0.303371 0.525454i
\(980\) 75.0000 746.241i 0.0765306 0.761470i
\(981\) 0 0
\(982\) 288.546i 0.293835i
\(983\) 697.000 1207.24i 0.709054 1.22812i −0.256155 0.966636i \(-0.582456\pi\)
0.965208 0.261482i \(-0.0842111\pi\)
\(984\) 0 0
\(985\) 925.360 417.055i 0.939451 0.423406i
\(986\) 758.282 437.794i 0.769049 0.444011i
\(987\) 0 0
\(988\) 206.804 + 119.398i 0.209316 + 0.120849i
\(989\) 397.995i 0.402422i
\(990\) 0 0
\(991\) −265.000 −0.267407 −0.133703 0.991021i \(-0.542687\pi\)
−0.133703 + 0.991021i \(0.542687\pi\)
\(992\) −478.500 + 828.786i −0.482359 + 0.835470i
\(993\) 0 0
\(994\) −297.000 514.419i −0.298793 0.517524i
\(995\) −706.555 + 318.441i −0.710106 + 0.320041i
\(996\) 0 0
\(997\) 396.375 + 228.847i 0.397568 + 0.229536i 0.685434 0.728135i \(-0.259613\pi\)
−0.287866 + 0.957671i \(0.592946\pi\)
\(998\) 290.000 0.290581
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.h.c.269.1 4
3.2 odd 2 405.3.h.h.269.2 4
5.4 even 2 405.3.h.h.269.1 4
9.2 odd 6 135.3.d.a.134.2 yes 2
9.4 even 3 inner 405.3.h.c.134.2 4
9.5 odd 6 405.3.h.h.134.1 4
9.7 even 3 135.3.d.f.134.1 yes 2
15.14 odd 2 inner 405.3.h.c.269.2 4
36.7 odd 6 2160.3.c.d.1889.1 2
36.11 even 6 2160.3.c.c.1889.2 2
45.2 even 12 675.3.c.q.26.2 4
45.4 even 6 405.3.h.h.134.2 4
45.7 odd 12 675.3.c.q.26.4 4
45.14 odd 6 inner 405.3.h.c.134.1 4
45.29 odd 6 135.3.d.f.134.2 yes 2
45.34 even 6 135.3.d.a.134.1 2
45.38 even 12 675.3.c.q.26.3 4
45.43 odd 12 675.3.c.q.26.1 4
180.79 odd 6 2160.3.c.c.1889.1 2
180.119 even 6 2160.3.c.d.1889.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.d.a.134.1 2 45.34 even 6
135.3.d.a.134.2 yes 2 9.2 odd 6
135.3.d.f.134.1 yes 2 9.7 even 3
135.3.d.f.134.2 yes 2 45.29 odd 6
405.3.h.c.134.1 4 45.14 odd 6 inner
405.3.h.c.134.2 4 9.4 even 3 inner
405.3.h.c.269.1 4 1.1 even 1 trivial
405.3.h.c.269.2 4 15.14 odd 2 inner
405.3.h.h.134.1 4 9.5 odd 6
405.3.h.h.134.2 4 45.4 even 6
405.3.h.h.269.1 4 5.4 even 2
405.3.h.h.269.2 4 3.2 odd 2
675.3.c.q.26.1 4 45.43 odd 12
675.3.c.q.26.2 4 45.2 even 12
675.3.c.q.26.3 4 45.38 even 12
675.3.c.q.26.4 4 45.7 odd 12
2160.3.c.c.1889.1 2 180.79 odd 6
2160.3.c.c.1889.2 2 36.11 even 6
2160.3.c.d.1889.1 2 36.7 odd 6
2160.3.c.d.1889.2 2 180.119 even 6