Properties

Label 405.3.h.c.134.2
Level $405$
Weight $3$
Character 405.134
Analytic conductor $11.035$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(134,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.134"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,0,6,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 134.2
Root \(-1.18614 + 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 405.134
Dual form 405.3.h.c.269.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(1.50000 - 2.59808i) q^{4} +(4.05842 + 2.92048i) q^{5} +(-8.61684 + 4.97494i) q^{7} -7.00000 q^{8} +(0.500000 - 4.97494i) q^{10} +(8.61684 - 4.97494i) q^{11} +(17.2337 + 9.94987i) q^{13} +(8.61684 + 4.97494i) q^{14} +(-2.50000 - 4.33013i) q^{16} +22.0000 q^{17} -4.00000 q^{19} +(13.6753 - 6.16337i) q^{20} +(-8.61684 - 4.97494i) q^{22} +(10.0000 - 17.3205i) q^{23} +(7.94158 + 23.7051i) q^{25} -19.8997i q^{26} +29.8496i q^{28} +(34.4674 - 19.8997i) q^{29} +(-14.5000 + 25.1147i) q^{31} +(-16.5000 + 28.5788i) q^{32} +(-11.0000 - 19.0526i) q^{34} +(-49.5000 - 4.97494i) q^{35} +(2.00000 + 3.46410i) q^{38} +(-28.4090 - 20.4434i) q^{40} +(34.4674 + 19.8997i) q^{41} +(17.2337 - 9.94987i) q^{43} -29.8496i q^{44} -20.0000 q^{46} +(-29.0000 - 50.2295i) q^{47} +(25.0000 - 43.3013i) q^{49} +(16.5584 - 18.7302i) q^{50} +(51.7011 - 29.8496i) q^{52} +31.0000 q^{53} +(49.5000 + 4.97494i) q^{55} +(60.3179 - 34.8246i) q^{56} +(-34.4674 - 19.8997i) q^{58} +(34.4674 + 19.8997i) q^{59} +(-22.0000 - 38.1051i) q^{61} +29.0000 q^{62} +13.0000 q^{64} +(40.8832 + 90.7115i) q^{65} +(17.2337 + 9.94987i) q^{67} +(33.0000 - 57.1577i) q^{68} +(20.4416 + 45.3557i) q^{70} +59.6992i q^{71} -89.5489i q^{73} +(-6.00000 + 10.3923i) q^{76} +(-49.5000 + 85.7365i) q^{77} +(5.00000 + 8.66025i) q^{79} +(2.50000 - 24.8747i) q^{80} -39.7995i q^{82} +(-9.50000 - 16.4545i) q^{83} +(89.2853 + 64.2506i) q^{85} +(-17.2337 - 9.94987i) q^{86} +(-60.3179 + 34.8246i) q^{88} +59.6992i q^{89} -198.000 q^{91} +(-30.0000 - 51.9615i) q^{92} +(-29.0000 + 50.2295i) q^{94} +(-16.2337 - 11.6819i) q^{95} +(-112.019 + 64.6742i) q^{97} -50.0000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 6 q^{4} - q^{5} - 28 q^{8} + 2 q^{10} - 10 q^{16} + 88 q^{17} - 16 q^{19} + 3 q^{20} + 40 q^{23} + 49 q^{25} - 58 q^{31} - 66 q^{32} - 44 q^{34} - 198 q^{35} + 8 q^{38} + 7 q^{40} - 80 q^{46}+ \cdots - 200 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.250000 0.433013i 0.713525 0.700629i \(-0.247097\pi\)
−0.963525 + 0.267617i \(0.913764\pi\)
\(3\) 0 0
\(4\) 1.50000 2.59808i 0.375000 0.649519i
\(5\) 4.05842 + 2.92048i 0.811684 + 0.584096i
\(6\) 0 0
\(7\) −8.61684 + 4.97494i −1.23098 + 0.710705i −0.967234 0.253887i \(-0.918291\pi\)
−0.263744 + 0.964593i \(0.584957\pi\)
\(8\) −7.00000 −0.875000
\(9\) 0 0
\(10\) 0.500000 4.97494i 0.0500000 0.497494i
\(11\) 8.61684 4.97494i 0.783349 0.452267i −0.0542666 0.998526i \(-0.517282\pi\)
0.837616 + 0.546259i \(0.183949\pi\)
\(12\) 0 0
\(13\) 17.2337 + 9.94987i 1.32567 + 0.765375i 0.984626 0.174673i \(-0.0558869\pi\)
0.341042 + 0.940048i \(0.389220\pi\)
\(14\) 8.61684 + 4.97494i 0.615489 + 0.355353i
\(15\) 0 0
\(16\) −2.50000 4.33013i −0.156250 0.270633i
\(17\) 22.0000 1.29412 0.647059 0.762440i \(-0.275999\pi\)
0.647059 + 0.762440i \(0.275999\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.210526 −0.105263 0.994444i \(-0.533568\pi\)
−0.105263 + 0.994444i \(0.533568\pi\)
\(20\) 13.6753 6.16337i 0.683763 0.308168i
\(21\) 0 0
\(22\) −8.61684 4.97494i −0.391675 0.226134i
\(23\) 10.0000 17.3205i 0.434783 0.753066i −0.562495 0.826801i \(-0.690159\pi\)
0.997278 + 0.0737349i \(0.0234919\pi\)
\(24\) 0 0
\(25\) 7.94158 + 23.7051i 0.317663 + 0.948204i
\(26\) 19.8997i 0.765375i
\(27\) 0 0
\(28\) 29.8496i 1.06606i
\(29\) 34.4674 19.8997i 1.18853 0.686198i 0.230558 0.973059i \(-0.425945\pi\)
0.957972 + 0.286860i \(0.0926116\pi\)
\(30\) 0 0
\(31\) −14.5000 + 25.1147i −0.467742 + 0.810153i −0.999321 0.0368561i \(-0.988266\pi\)
0.531579 + 0.847009i \(0.321599\pi\)
\(32\) −16.5000 + 28.5788i −0.515625 + 0.893089i
\(33\) 0 0
\(34\) −11.0000 19.0526i −0.323529 0.560369i
\(35\) −49.5000 4.97494i −1.41429 0.142141i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 2.00000 + 3.46410i 0.0526316 + 0.0911606i
\(39\) 0 0
\(40\) −28.4090 20.4434i −0.710224 0.511084i
\(41\) 34.4674 + 19.8997i 0.840668 + 0.485360i 0.857491 0.514499i \(-0.172022\pi\)
−0.0168234 + 0.999858i \(0.505355\pi\)
\(42\) 0 0
\(43\) 17.2337 9.94987i 0.400783 0.231392i −0.286039 0.958218i \(-0.592339\pi\)
0.686822 + 0.726826i \(0.259005\pi\)
\(44\) 29.8496i 0.678401i
\(45\) 0 0
\(46\) −20.0000 −0.434783
\(47\) −29.0000 50.2295i −0.617021 1.06871i −0.990026 0.140883i \(-0.955006\pi\)
0.373005 0.927829i \(-0.378327\pi\)
\(48\) 0 0
\(49\) 25.0000 43.3013i 0.510204 0.883699i
\(50\) 16.5584 18.7302i 0.331168 0.374603i
\(51\) 0 0
\(52\) 51.7011 29.8496i 0.994251 0.574031i
\(53\) 31.0000 0.584906 0.292453 0.956280i \(-0.405529\pi\)
0.292453 + 0.956280i \(0.405529\pi\)
\(54\) 0 0
\(55\) 49.5000 + 4.97494i 0.900000 + 0.0904534i
\(56\) 60.3179 34.8246i 1.07711 0.621867i
\(57\) 0 0
\(58\) −34.4674 19.8997i −0.594265 0.343099i
\(59\) 34.4674 + 19.8997i 0.584193 + 0.337284i 0.762798 0.646637i \(-0.223825\pi\)
−0.178605 + 0.983921i \(0.557158\pi\)
\(60\) 0 0
\(61\) −22.0000 38.1051i −0.360656 0.624674i 0.627413 0.778687i \(-0.284114\pi\)
−0.988069 + 0.154012i \(0.950780\pi\)
\(62\) 29.0000 0.467742
\(63\) 0 0
\(64\) 13.0000 0.203125
\(65\) 40.8832 + 90.7115i 0.628972 + 1.39556i
\(66\) 0 0
\(67\) 17.2337 + 9.94987i 0.257219 + 0.148506i 0.623065 0.782170i \(-0.285887\pi\)
−0.365846 + 0.930675i \(0.619220\pi\)
\(68\) 33.0000 57.1577i 0.485294 0.840554i
\(69\) 0 0
\(70\) 20.4416 + 45.3557i 0.292023 + 0.647939i
\(71\) 59.6992i 0.840834i 0.907331 + 0.420417i \(0.138116\pi\)
−0.907331 + 0.420417i \(0.861884\pi\)
\(72\) 0 0
\(73\) 89.5489i 1.22670i −0.789812 0.613348i \(-0.789822\pi\)
0.789812 0.613348i \(-0.210178\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −6.00000 + 10.3923i −0.0789474 + 0.136741i
\(77\) −49.5000 + 85.7365i −0.642857 + 1.11346i
\(78\) 0 0
\(79\) 5.00000 + 8.66025i 0.0632911 + 0.109623i 0.895935 0.444186i \(-0.146507\pi\)
−0.832644 + 0.553809i \(0.813174\pi\)
\(80\) 2.50000 24.8747i 0.0312500 0.310934i
\(81\) 0 0
\(82\) 39.7995i 0.485360i
\(83\) −9.50000 16.4545i −0.114458 0.198247i 0.803105 0.595837i \(-0.203180\pi\)
−0.917563 + 0.397591i \(0.869846\pi\)
\(84\) 0 0
\(85\) 89.2853 + 64.2506i 1.05042 + 0.755889i
\(86\) −17.2337 9.94987i −0.200392 0.115696i
\(87\) 0 0
\(88\) −60.3179 + 34.8246i −0.685431 + 0.395734i
\(89\) 59.6992i 0.670778i 0.942080 + 0.335389i \(0.108868\pi\)
−0.942080 + 0.335389i \(0.891132\pi\)
\(90\) 0 0
\(91\) −198.000 −2.17582
\(92\) −30.0000 51.9615i −0.326087 0.564799i
\(93\) 0 0
\(94\) −29.0000 + 50.2295i −0.308511 + 0.534356i
\(95\) −16.2337 11.6819i −0.170881 0.122968i
\(96\) 0 0
\(97\) −112.019 + 64.6742i −1.15483 + 0.666744i −0.950061 0.312065i \(-0.898979\pi\)
−0.204774 + 0.978809i \(0.565646\pi\)
\(98\) −50.0000 −0.510204
\(99\) 0 0
\(100\) 73.5000 + 14.9248i 0.735000 + 0.149248i
\(101\) −146.486 + 84.5739i −1.45036 + 0.837366i −0.998502 0.0547240i \(-0.982572\pi\)
−0.451858 + 0.892090i \(0.649239\pi\)
\(102\) 0 0
\(103\) −34.4674 19.8997i −0.334635 0.193201i 0.323262 0.946309i \(-0.395220\pi\)
−0.657897 + 0.753108i \(0.728554\pi\)
\(104\) −120.636 69.6491i −1.15996 0.669703i
\(105\) 0 0
\(106\) −15.5000 26.8468i −0.146226 0.253272i
\(107\) −29.0000 −0.271028 −0.135514 0.990775i \(-0.543269\pi\)
−0.135514 + 0.990775i \(0.543269\pi\)
\(108\) 0 0
\(109\) 104.000 0.954128 0.477064 0.878868i \(-0.341701\pi\)
0.477064 + 0.878868i \(0.341701\pi\)
\(110\) −20.4416 45.3557i −0.185833 0.412325i
\(111\) 0 0
\(112\) 43.0842 + 24.8747i 0.384681 + 0.222095i
\(113\) 40.0000 69.2820i 0.353982 0.613115i −0.632961 0.774184i \(-0.718161\pi\)
0.986943 + 0.161068i \(0.0514940\pi\)
\(114\) 0 0
\(115\) 91.1684 41.0891i 0.792769 0.357297i
\(116\) 119.398i 1.02930i
\(117\) 0 0
\(118\) 39.7995i 0.337284i
\(119\) −189.571 + 109.449i −1.59303 + 0.919736i
\(120\) 0 0
\(121\) −11.0000 + 19.0526i −0.0909091 + 0.157459i
\(122\) −22.0000 + 38.1051i −0.180328 + 0.312337i
\(123\) 0 0
\(124\) 43.5000 + 75.3442i 0.350806 + 0.607615i
\(125\) −37.0000 + 119.398i −0.296000 + 0.955188i
\(126\) 0 0
\(127\) 149.248i 1.17518i 0.809158 + 0.587591i \(0.199924\pi\)
−0.809158 + 0.587591i \(0.800076\pi\)
\(128\) 59.5000 + 103.057i 0.464844 + 0.805133i
\(129\) 0 0
\(130\) 58.1168 80.7616i 0.447053 0.621243i
\(131\) −146.486 84.5739i −1.11822 0.645603i −0.177271 0.984162i \(-0.556727\pi\)
−0.940945 + 0.338559i \(0.890060\pi\)
\(132\) 0 0
\(133\) 34.4674 19.8997i 0.259153 0.149622i
\(134\) 19.8997i 0.148506i
\(135\) 0 0
\(136\) −154.000 −1.13235
\(137\) 49.0000 + 84.8705i 0.357664 + 0.619493i 0.987570 0.157179i \(-0.0502399\pi\)
−0.629906 + 0.776671i \(0.716907\pi\)
\(138\) 0 0
\(139\) 32.0000 55.4256i 0.230216 0.398746i −0.727656 0.685943i \(-0.759390\pi\)
0.957872 + 0.287197i \(0.0927235\pi\)
\(140\) −87.1753 + 121.142i −0.622680 + 0.865303i
\(141\) 0 0
\(142\) 51.7011 29.8496i 0.364092 0.210209i
\(143\) 198.000 1.38462
\(144\) 0 0
\(145\) 198.000 + 19.8997i 1.36552 + 0.137240i
\(146\) −77.5516 + 44.7744i −0.531175 + 0.306674i
\(147\) 0 0
\(148\) 0 0
\(149\) 8.61684 + 4.97494i 0.0578312 + 0.0333888i 0.528637 0.848848i \(-0.322703\pi\)
−0.470806 + 0.882237i \(0.656037\pi\)
\(150\) 0 0
\(151\) −128.500 222.569i −0.850993 1.47396i −0.880313 0.474394i \(-0.842667\pi\)
0.0293194 0.999570i \(-0.490666\pi\)
\(152\) 28.0000 0.184211
\(153\) 0 0
\(154\) 99.0000 0.642857
\(155\) −132.194 + 59.5792i −0.852866 + 0.384382i
\(156\) 0 0
\(157\) −137.870 79.5990i −0.878150 0.507000i −0.00810182 0.999967i \(-0.502579\pi\)
−0.870048 + 0.492967i \(0.835912\pi\)
\(158\) 5.00000 8.66025i 0.0316456 0.0548117i
\(159\) 0 0
\(160\) −150.428 + 67.7970i −0.940175 + 0.423732i
\(161\) 198.997i 1.23601i
\(162\) 0 0
\(163\) 298.496i 1.83127i 0.402016 + 0.915633i \(0.368310\pi\)
−0.402016 + 0.915633i \(0.631690\pi\)
\(164\) 103.402 59.6992i 0.630501 0.364020i
\(165\) 0 0
\(166\) −9.50000 + 16.4545i −0.0572289 + 0.0991234i
\(167\) 127.000 219.970i 0.760479 1.31719i −0.182125 0.983275i \(-0.558298\pi\)
0.942604 0.333913i \(-0.108369\pi\)
\(168\) 0 0
\(169\) 113.500 + 196.588i 0.671598 + 1.16324i
\(170\) 11.0000 109.449i 0.0647059 0.643815i
\(171\) 0 0
\(172\) 59.6992i 0.347089i
\(173\) −117.500 203.516i −0.679191 1.17639i −0.975225 0.221216i \(-0.928998\pi\)
0.296034 0.955177i \(-0.404336\pi\)
\(174\) 0 0
\(175\) −186.363 164.754i −1.06493 0.941453i
\(176\) −43.0842 24.8747i −0.244797 0.141333i
\(177\) 0 0
\(178\) 51.7011 29.8496i 0.290455 0.167695i
\(179\) 149.248i 0.833788i 0.908955 + 0.416894i \(0.136881\pi\)
−0.908955 + 0.416894i \(0.863119\pi\)
\(180\) 0 0
\(181\) −292.000 −1.61326 −0.806630 0.591057i \(-0.798711\pi\)
−0.806630 + 0.591057i \(0.798711\pi\)
\(182\) 99.0000 + 171.473i 0.543956 + 0.942160i
\(183\) 0 0
\(184\) −70.0000 + 121.244i −0.380435 + 0.658932i
\(185\) 0 0
\(186\) 0 0
\(187\) 189.571 109.449i 1.01375 0.585287i
\(188\) −174.000 −0.925532
\(189\) 0 0
\(190\) −2.00000 + 19.8997i −0.0105263 + 0.104736i
\(191\) 86.1684 49.7494i 0.451144 0.260468i −0.257169 0.966366i \(-0.582790\pi\)
0.708313 + 0.705898i \(0.249457\pi\)
\(192\) 0 0
\(193\) 146.486 + 84.5739i 0.758997 + 0.438207i 0.828935 0.559344i \(-0.188947\pi\)
−0.0699388 + 0.997551i \(0.522280\pi\)
\(194\) 112.019 + 64.6742i 0.577417 + 0.333372i
\(195\) 0 0
\(196\) −75.0000 129.904i −0.382653 0.662775i
\(197\) −203.000 −1.03046 −0.515228 0.857053i \(-0.672293\pi\)
−0.515228 + 0.857053i \(0.672293\pi\)
\(198\) 0 0
\(199\) 155.000 0.778894 0.389447 0.921049i \(-0.372666\pi\)
0.389447 + 0.921049i \(0.372666\pi\)
\(200\) −55.5910 165.936i −0.277955 0.829678i
\(201\) 0 0
\(202\) 146.486 + 84.5739i 0.725180 + 0.418683i
\(203\) −198.000 + 342.946i −0.975369 + 1.68939i
\(204\) 0 0
\(205\) 81.7663 + 181.423i 0.398860 + 0.884990i
\(206\) 39.7995i 0.193201i
\(207\) 0 0
\(208\) 99.4987i 0.478359i
\(209\) −34.4674 + 19.8997i −0.164916 + 0.0952141i
\(210\) 0 0
\(211\) −154.000 + 266.736i −0.729858 + 1.26415i 0.227085 + 0.973875i \(0.427080\pi\)
−0.956943 + 0.290276i \(0.906253\pi\)
\(212\) 46.5000 80.5404i 0.219340 0.379907i
\(213\) 0 0
\(214\) 14.5000 + 25.1147i 0.0677570 + 0.117359i
\(215\) 99.0000 + 9.94987i 0.460465 + 0.0462785i
\(216\) 0 0
\(217\) 288.546i 1.32971i
\(218\) −52.0000 90.0666i −0.238532 0.413150i
\(219\) 0 0
\(220\) 87.1753 121.142i 0.396251 0.550647i
\(221\) 379.141 + 218.897i 1.71557 + 0.990485i
\(222\) 0 0
\(223\) −34.4674 + 19.8997i −0.154562 + 0.0892365i −0.575286 0.817952i \(-0.695109\pi\)
0.420724 + 0.907189i \(0.361776\pi\)
\(224\) 328.346i 1.46583i
\(225\) 0 0
\(226\) −80.0000 −0.353982
\(227\) 121.000 + 209.578i 0.533040 + 0.923252i 0.999255 + 0.0385807i \(0.0122837\pi\)
−0.466216 + 0.884671i \(0.654383\pi\)
\(228\) 0 0
\(229\) 53.0000 91.7987i 0.231441 0.400868i −0.726791 0.686858i \(-0.758989\pi\)
0.958232 + 0.285991i \(0.0923226\pi\)
\(230\) −81.1684 58.4096i −0.352906 0.253955i
\(231\) 0 0
\(232\) −241.272 + 139.298i −1.03996 + 0.600423i
\(233\) 142.000 0.609442 0.304721 0.952442i \(-0.401437\pi\)
0.304721 + 0.952442i \(0.401437\pi\)
\(234\) 0 0
\(235\) 29.0000 288.546i 0.123404 1.22786i
\(236\) 103.402 59.6992i 0.438145 0.252963i
\(237\) 0 0
\(238\) 189.571 + 109.449i 0.796515 + 0.459868i
\(239\) −172.337 99.4987i −0.721075 0.416313i 0.0940733 0.995565i \(-0.470011\pi\)
−0.815148 + 0.579253i \(0.803345\pi\)
\(240\) 0 0
\(241\) −85.0000 147.224i −0.352697 0.610889i 0.634024 0.773313i \(-0.281402\pi\)
−0.986721 + 0.162424i \(0.948069\pi\)
\(242\) 22.0000 0.0909091
\(243\) 0 0
\(244\) −132.000 −0.540984
\(245\) 227.921 102.723i 0.930290 0.419277i
\(246\) 0 0
\(247\) −68.9348 39.7995i −0.279088 0.161132i
\(248\) 101.500 175.803i 0.409274 0.708884i
\(249\) 0 0
\(250\) 121.902 27.6563i 0.487609 0.110625i
\(251\) 358.195i 1.42707i −0.700618 0.713537i \(-0.747092\pi\)
0.700618 0.713537i \(-0.252908\pi\)
\(252\) 0 0
\(253\) 198.997i 0.786551i
\(254\) 129.253 74.6241i 0.508869 0.293796i
\(255\) 0 0
\(256\) 85.5000 148.090i 0.333984 0.578478i
\(257\) 145.000 251.147i 0.564202 0.977227i −0.432921 0.901432i \(-0.642517\pi\)
0.997123 0.0757953i \(-0.0241495\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 297.000 + 29.8496i 1.14231 + 0.114806i
\(261\) 0 0
\(262\) 169.148i 0.645603i
\(263\) 52.0000 + 90.0666i 0.197719 + 0.342459i 0.947788 0.318900i \(-0.103313\pi\)
−0.750070 + 0.661359i \(0.769980\pi\)
\(264\) 0 0
\(265\) 125.811 + 90.5349i 0.474759 + 0.341641i
\(266\) −34.4674 19.8997i −0.129577 0.0748111i
\(267\) 0 0
\(268\) 51.7011 29.8496i 0.192914 0.111379i
\(269\) 119.398i 0.443861i 0.975063 + 0.221930i \(0.0712357\pi\)
−0.975063 + 0.221930i \(0.928764\pi\)
\(270\) 0 0
\(271\) −121.000 −0.446494 −0.223247 0.974762i \(-0.571666\pi\)
−0.223247 + 0.974762i \(0.571666\pi\)
\(272\) −55.0000 95.2628i −0.202206 0.350231i
\(273\) 0 0
\(274\) 49.0000 84.8705i 0.178832 0.309746i
\(275\) 186.363 + 164.754i 0.677682 + 0.599106i
\(276\) 0 0
\(277\) −137.870 + 79.5990i −0.497724 + 0.287361i −0.727773 0.685818i \(-0.759445\pi\)
0.230049 + 0.973179i \(0.426111\pi\)
\(278\) −64.0000 −0.230216
\(279\) 0 0
\(280\) 346.500 + 34.8246i 1.23750 + 0.124373i
\(281\) 189.571 109.449i 0.674628 0.389497i −0.123200 0.992382i \(-0.539316\pi\)
0.797828 + 0.602885i \(0.205982\pi\)
\(282\) 0 0
\(283\) −241.272 139.298i −0.852550 0.492220i 0.00896047 0.999960i \(-0.497148\pi\)
−0.861510 + 0.507740i \(0.830481\pi\)
\(284\) 155.103 + 89.5489i 0.546138 + 0.315313i
\(285\) 0 0
\(286\) −99.0000 171.473i −0.346154 0.599556i
\(287\) −396.000 −1.37979
\(288\) 0 0
\(289\) 195.000 0.674740
\(290\) −81.7663 181.423i −0.281953 0.625596i
\(291\) 0 0
\(292\) −232.655 134.323i −0.796763 0.460011i
\(293\) −143.000 + 247.683i −0.488055 + 0.845335i −0.999906 0.0137389i \(-0.995627\pi\)
0.511851 + 0.859074i \(0.328960\pi\)
\(294\) 0 0
\(295\) 81.7663 + 181.423i 0.277174 + 0.614993i
\(296\) 0 0
\(297\) 0 0
\(298\) 9.94987i 0.0333888i
\(299\) 344.674 198.997i 1.15276 0.665543i
\(300\) 0 0
\(301\) −99.0000 + 171.473i −0.328904 + 0.569678i
\(302\) −128.500 + 222.569i −0.425497 + 0.736982i
\(303\) 0 0
\(304\) 10.0000 + 17.3205i 0.0328947 + 0.0569754i
\(305\) 22.0000 218.897i 0.0721311 0.717696i
\(306\) 0 0
\(307\) 59.6992i 0.194460i 0.995262 + 0.0972300i \(0.0309983\pi\)
−0.995262 + 0.0972300i \(0.969002\pi\)
\(308\) 148.500 + 257.210i 0.482143 + 0.835096i
\(309\) 0 0
\(310\) 117.694 + 84.6940i 0.379659 + 0.273206i
\(311\) −172.337 99.4987i −0.554138 0.319932i 0.196651 0.980473i \(-0.436993\pi\)
−0.750789 + 0.660542i \(0.770327\pi\)
\(312\) 0 0
\(313\) −60.3179 + 34.8246i −0.192709 + 0.111261i −0.593250 0.805018i \(-0.702155\pi\)
0.400541 + 0.916279i \(0.368822\pi\)
\(314\) 159.198i 0.507000i
\(315\) 0 0
\(316\) 30.0000 0.0949367
\(317\) −270.500 468.520i −0.853312 1.47798i −0.878202 0.478290i \(-0.841257\pi\)
0.0248896 0.999690i \(-0.492077\pi\)
\(318\) 0 0
\(319\) 198.000 342.946i 0.620690 1.07507i
\(320\) 52.7595 + 37.9663i 0.164873 + 0.118645i
\(321\) 0 0
\(322\) 172.337 99.4987i 0.535208 0.309002i
\(323\) −88.0000 −0.272446
\(324\) 0 0
\(325\) −99.0000 + 487.544i −0.304615 + 1.50013i
\(326\) 258.505 149.248i 0.792961 0.457816i
\(327\) 0 0
\(328\) −241.272 139.298i −0.735584 0.424690i
\(329\) 499.777 + 288.546i 1.51908 + 0.877041i
\(330\) 0 0
\(331\) 137.000 + 237.291i 0.413897 + 0.716891i 0.995312 0.0967162i \(-0.0308339\pi\)
−0.581415 + 0.813607i \(0.697501\pi\)
\(332\) −57.0000 −0.171687
\(333\) 0 0
\(334\) −254.000 −0.760479
\(335\) 40.8832 + 90.7115i 0.122039 + 0.270780i
\(336\) 0 0
\(337\) 379.141 + 218.897i 1.12505 + 0.649547i 0.942685 0.333685i \(-0.108292\pi\)
0.182363 + 0.983231i \(0.441625\pi\)
\(338\) 113.500 196.588i 0.335799 0.581621i
\(339\) 0 0
\(340\) 300.856 135.594i 0.884870 0.398806i
\(341\) 288.546i 0.846177i
\(342\) 0 0
\(343\) 9.94987i 0.0290084i
\(344\) −120.636 + 69.6491i −0.350686 + 0.202468i
\(345\) 0 0
\(346\) −117.500 + 203.516i −0.339595 + 0.588196i
\(347\) 89.5000 155.019i 0.257925 0.446739i −0.707761 0.706452i \(-0.750295\pi\)
0.965686 + 0.259713i \(0.0836279\pi\)
\(348\) 0 0
\(349\) −310.000 536.936i −0.888252 1.53850i −0.841940 0.539571i \(-0.818587\pi\)
−0.0463119 0.998927i \(-0.514747\pi\)
\(350\) −49.5000 + 243.772i −0.141429 + 0.696491i
\(351\) 0 0
\(352\) 328.346i 0.932801i
\(353\) 16.0000 + 27.7128i 0.0453258 + 0.0785066i 0.887798 0.460233i \(-0.152234\pi\)
−0.842472 + 0.538739i \(0.818901\pi\)
\(354\) 0 0
\(355\) −174.351 + 242.285i −0.491128 + 0.682492i
\(356\) 155.103 + 89.5489i 0.435683 + 0.251542i
\(357\) 0 0
\(358\) 129.253 74.6241i 0.361041 0.208447i
\(359\) 537.293i 1.49664i −0.663339 0.748319i \(-0.730861\pi\)
0.663339 0.748319i \(-0.269139\pi\)
\(360\) 0 0
\(361\) −345.000 −0.955679
\(362\) 146.000 + 252.879i 0.403315 + 0.698562i
\(363\) 0 0
\(364\) −297.000 + 514.419i −0.815934 + 1.41324i
\(365\) 261.526 363.427i 0.716509 0.995691i
\(366\) 0 0
\(367\) 301.590 174.123i 0.821770 0.474449i −0.0292566 0.999572i \(-0.509314\pi\)
0.851026 + 0.525123i \(0.175981\pi\)
\(368\) −100.000 −0.271739
\(369\) 0 0
\(370\) 0 0
\(371\) −267.122 + 154.223i −0.720006 + 0.415696i
\(372\) 0 0
\(373\) −292.973 169.148i −0.785450 0.453480i 0.0529086 0.998599i \(-0.483151\pi\)
−0.838358 + 0.545120i \(0.816484\pi\)
\(374\) −189.571 109.449i −0.506873 0.292643i
\(375\) 0 0
\(376\) 203.000 + 351.606i 0.539894 + 0.935123i
\(377\) 792.000 2.10080
\(378\) 0 0
\(379\) 248.000 0.654354 0.327177 0.944963i \(-0.393903\pi\)
0.327177 + 0.944963i \(0.393903\pi\)
\(380\) −54.7011 + 24.6535i −0.143950 + 0.0648776i
\(381\) 0 0
\(382\) −86.1684 49.7494i −0.225572 0.130234i
\(383\) −197.000 + 341.214i −0.514360 + 0.890898i 0.485501 + 0.874236i \(0.338637\pi\)
−0.999861 + 0.0166620i \(0.994696\pi\)
\(384\) 0 0
\(385\) −451.284 + 203.391i −1.17217 + 0.528289i
\(386\) 169.148i 0.438207i
\(387\) 0 0
\(388\) 388.045i 1.00012i
\(389\) 8.61684 4.97494i 0.0221513 0.0127890i −0.488883 0.872349i \(-0.662596\pi\)
0.511035 + 0.859560i \(0.329262\pi\)
\(390\) 0 0
\(391\) 220.000 381.051i 0.562660 0.974555i
\(392\) −175.000 + 303.109i −0.446429 + 0.773237i
\(393\) 0 0
\(394\) 101.500 + 175.803i 0.257614 + 0.446201i
\(395\) −5.00000 + 49.7494i −0.0126582 + 0.125948i
\(396\) 0 0
\(397\) 59.6992i 0.150376i 0.997169 + 0.0751880i \(0.0239557\pi\)
−0.997169 + 0.0751880i \(0.976044\pi\)
\(398\) −77.5000 134.234i −0.194724 0.337271i
\(399\) 0 0
\(400\) 82.7921 93.6508i 0.206980 0.234127i
\(401\) −172.337 99.4987i −0.429768 0.248127i 0.269480 0.963006i \(-0.413148\pi\)
−0.699248 + 0.714879i \(0.746482\pi\)
\(402\) 0 0
\(403\) −499.777 + 288.546i −1.24014 + 0.715996i
\(404\) 507.444i 1.25605i
\(405\) 0 0
\(406\) 396.000 0.975369
\(407\) 0 0
\(408\) 0 0
\(409\) 165.500 286.654i 0.404645 0.700867i −0.589635 0.807670i \(-0.700728\pi\)
0.994280 + 0.106804i \(0.0340616\pi\)
\(410\) 116.234 161.523i 0.283497 0.393959i
\(411\) 0 0
\(412\) −103.402 + 59.6992i −0.250976 + 0.144901i
\(413\) −396.000 −0.958838
\(414\) 0 0
\(415\) 9.50000 94.5238i 0.0228916 0.227768i
\(416\) −568.712 + 328.346i −1.36710 + 0.789293i
\(417\) 0 0
\(418\) 34.4674 + 19.8997i 0.0824578 + 0.0476071i
\(419\) −585.945 338.296i −1.39844 0.807388i −0.404209 0.914667i \(-0.632453\pi\)
−0.994229 + 0.107278i \(0.965786\pi\)
\(420\) 0 0
\(421\) −4.00000 6.92820i −0.00950119 0.0164565i 0.861236 0.508206i \(-0.169691\pi\)
−0.870737 + 0.491749i \(0.836358\pi\)
\(422\) 308.000 0.729858
\(423\) 0 0
\(424\) −217.000 −0.511792
\(425\) 174.715 + 521.512i 0.411093 + 1.22709i
\(426\) 0 0
\(427\) 379.141 + 218.897i 0.887918 + 0.512640i
\(428\) −43.5000 + 75.3442i −0.101636 + 0.176038i
\(429\) 0 0
\(430\) −40.8832 90.7115i −0.0950771 0.210957i
\(431\) 298.496i 0.692567i −0.938130 0.346283i \(-0.887444\pi\)
0.938130 0.346283i \(-0.112556\pi\)
\(432\) 0 0
\(433\) 686.541i 1.58555i −0.609517 0.792773i \(-0.708637\pi\)
0.609517 0.792773i \(-0.291363\pi\)
\(434\) −249.888 + 144.273i −0.575780 + 0.332427i
\(435\) 0 0
\(436\) 156.000 270.200i 0.357798 0.619725i
\(437\) −40.0000 + 69.2820i −0.0915332 + 0.158540i
\(438\) 0 0
\(439\) −107.500 186.195i −0.244875 0.424135i 0.717222 0.696845i \(-0.245413\pi\)
−0.962096 + 0.272710i \(0.912080\pi\)
\(440\) −346.500 34.8246i −0.787500 0.0791467i
\(441\) 0 0
\(442\) 437.794i 0.990485i
\(443\) −95.0000 164.545i −0.214447 0.371433i 0.738654 0.674084i \(-0.235462\pi\)
−0.953101 + 0.302651i \(0.902128\pi\)
\(444\) 0 0
\(445\) −174.351 + 242.285i −0.391799 + 0.544460i
\(446\) 34.4674 + 19.8997i 0.0772811 + 0.0446183i
\(447\) 0 0
\(448\) −112.019 + 64.6742i −0.250042 + 0.144362i
\(449\) 119.398i 0.265921i 0.991121 + 0.132960i \(0.0424483\pi\)
−0.991121 + 0.132960i \(0.957552\pi\)
\(450\) 0 0
\(451\) 396.000 0.878049
\(452\) −120.000 207.846i −0.265487 0.459836i
\(453\) 0 0
\(454\) 121.000 209.578i 0.266520 0.461626i
\(455\) −803.568 578.255i −1.76608 1.27089i
\(456\) 0 0
\(457\) −112.019 + 64.6742i −0.245118 + 0.141519i −0.617527 0.786550i \(-0.711865\pi\)
0.372409 + 0.928069i \(0.378532\pi\)
\(458\) −106.000 −0.231441
\(459\) 0 0
\(460\) 30.0000 298.496i 0.0652174 0.648905i
\(461\) 163.720 94.5238i 0.355141 0.205041i −0.311806 0.950146i \(-0.600934\pi\)
0.666947 + 0.745105i \(0.267601\pi\)
\(462\) 0 0
\(463\) 715.198 + 412.920i 1.54470 + 0.891835i 0.998532 + 0.0541624i \(0.0172489\pi\)
0.546172 + 0.837673i \(0.316084\pi\)
\(464\) −172.337 99.4987i −0.371416 0.214437i
\(465\) 0 0
\(466\) −71.0000 122.976i −0.152361 0.263896i
\(467\) 193.000 0.413276 0.206638 0.978417i \(-0.433748\pi\)
0.206638 + 0.978417i \(0.433748\pi\)
\(468\) 0 0
\(469\) −198.000 −0.422175
\(470\) −264.388 + 119.158i −0.562529 + 0.253529i
\(471\) 0 0
\(472\) −241.272 139.298i −0.511169 0.295123i
\(473\) 99.0000 171.473i 0.209302 0.362522i
\(474\) 0 0
\(475\) −31.7663 94.8204i −0.0668764 0.199622i
\(476\) 656.692i 1.37960i
\(477\) 0 0
\(478\) 198.997i 0.416313i
\(479\) −637.646 + 368.145i −1.33120 + 0.768571i −0.985484 0.169767i \(-0.945698\pi\)
−0.345719 + 0.938338i \(0.612365\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −85.0000 + 147.224i −0.176349 + 0.305445i
\(483\) 0 0
\(484\) 33.0000 + 57.1577i 0.0681818 + 0.118094i
\(485\) −643.500 64.6742i −1.32680 0.133349i
\(486\) 0 0
\(487\) 477.594i 0.980686i −0.871530 0.490343i \(-0.836872\pi\)
0.871530 0.490343i \(-0.163128\pi\)
\(488\) 154.000 + 266.736i 0.315574 + 0.546590i
\(489\) 0 0
\(490\) −202.921 146.024i −0.414125 0.298008i
\(491\) −249.888 144.273i −0.508938 0.293835i 0.223459 0.974713i \(-0.428265\pi\)
−0.732397 + 0.680878i \(0.761598\pi\)
\(492\) 0 0
\(493\) 758.282 437.794i 1.53810 0.888021i
\(494\) 79.5990i 0.161132i
\(495\) 0 0
\(496\) 145.000 0.292339
\(497\) −297.000 514.419i −0.597586 1.03505i
\(498\) 0 0
\(499\) −145.000 + 251.147i −0.290581 + 0.503301i −0.973947 0.226775i \(-0.927182\pi\)
0.683366 + 0.730076i \(0.260515\pi\)
\(500\) 254.706 + 275.227i 0.509413 + 0.550453i
\(501\) 0 0
\(502\) −310.206 + 179.098i −0.617941 + 0.356768i
\(503\) 220.000 0.437376 0.218688 0.975795i \(-0.429822\pi\)
0.218688 + 0.975795i \(0.429822\pi\)
\(504\) 0 0
\(505\) −841.500 84.5739i −1.66634 0.167473i
\(506\) −172.337 + 99.4987i −0.340587 + 0.196638i
\(507\) 0 0
\(508\) 387.758 + 223.872i 0.763303 + 0.440693i
\(509\) 8.61684 + 4.97494i 0.0169290 + 0.00977394i 0.508441 0.861097i \(-0.330222\pi\)
−0.491512 + 0.870871i \(0.663555\pi\)
\(510\) 0 0
\(511\) 445.500 + 771.629i 0.871820 + 1.51004i
\(512\) 305.000 0.595703
\(513\) 0 0
\(514\) −290.000 −0.564202
\(515\) −81.7663 181.423i −0.158770 0.352277i
\(516\) 0 0
\(517\) −499.777 288.546i −0.966687 0.558117i
\(518\) 0 0
\(519\) 0 0
\(520\) −286.182 634.980i −0.550350 1.22112i
\(521\) 298.496i 0.572929i 0.958091 + 0.286465i \(0.0924801\pi\)
−0.958091 + 0.286465i \(0.907520\pi\)
\(522\) 0 0
\(523\) 537.293i 1.02733i 0.857991 + 0.513665i \(0.171712\pi\)
−0.857991 + 0.513665i \(0.828288\pi\)
\(524\) −439.459 + 253.722i −0.838662 + 0.484202i
\(525\) 0 0
\(526\) 52.0000 90.0666i 0.0988593 0.171229i
\(527\) −319.000 + 552.524i −0.605313 + 1.04843i
\(528\) 0 0
\(529\) 64.5000 + 111.717i 0.121928 + 0.211186i
\(530\) 15.5000 154.223i 0.0292453 0.290987i
\(531\) 0 0
\(532\) 119.398i 0.224433i
\(533\) 396.000 + 685.892i 0.742964 + 1.28685i
\(534\) 0 0
\(535\) −117.694 84.6940i −0.219989 0.158306i
\(536\) −120.636 69.6491i −0.225067 0.129942i
\(537\) 0 0
\(538\) 103.402 59.6992i 0.192197 0.110965i
\(539\) 497.494i 0.922994i
\(540\) 0 0
\(541\) 704.000 1.30129 0.650647 0.759380i \(-0.274498\pi\)
0.650647 + 0.759380i \(0.274498\pi\)
\(542\) 60.5000 + 104.789i 0.111624 + 0.193338i
\(543\) 0 0
\(544\) −363.000 + 628.734i −0.667279 + 1.15576i
\(545\) 422.076 + 303.730i 0.774451 + 0.557303i
\(546\) 0 0
\(547\) −86.1684 + 49.7494i −0.157529 + 0.0909495i −0.576692 0.816961i \(-0.695657\pi\)
0.419163 + 0.907911i \(0.362324\pi\)
\(548\) 294.000 0.536496
\(549\) 0 0
\(550\) 49.5000 243.772i 0.0900000 0.443222i
\(551\) −137.870 + 79.5990i −0.250217 + 0.144463i
\(552\) 0 0
\(553\) −86.1684 49.7494i −0.155820 0.0899627i
\(554\) 137.870 + 79.5990i 0.248862 + 0.143680i
\(555\) 0 0
\(556\) −96.0000 166.277i −0.172662 0.299059i
\(557\) −101.000 −0.181329 −0.0906643 0.995882i \(-0.528899\pi\)
−0.0906643 + 0.995882i \(0.528899\pi\)
\(558\) 0 0
\(559\) 396.000 0.708408
\(560\) 102.208 + 226.779i 0.182514 + 0.404962i
\(561\) 0 0
\(562\) −189.571 109.449i −0.337314 0.194748i
\(563\) 467.500 809.734i 0.830373 1.43825i −0.0673697 0.997728i \(-0.521461\pi\)
0.897743 0.440520i \(-0.145206\pi\)
\(564\) 0 0
\(565\) 364.674 164.356i 0.645440 0.290896i
\(566\) 278.596i 0.492220i
\(567\) 0 0
\(568\) 417.895i 0.735730i
\(569\) 654.880 378.095i 1.15093 0.664491i 0.201818 0.979423i \(-0.435315\pi\)
0.949114 + 0.314932i \(0.101982\pi\)
\(570\) 0 0
\(571\) −253.000 + 438.209i −0.443082 + 0.767441i −0.997916 0.0645199i \(-0.979448\pi\)
0.554834 + 0.831961i \(0.312782\pi\)
\(572\) 297.000 514.419i 0.519231 0.899334i
\(573\) 0 0
\(574\) 198.000 + 342.946i 0.344948 + 0.597467i
\(575\) 490.000 + 99.4987i 0.852174 + 0.173041i
\(576\) 0 0
\(577\) 1074.59i 1.86237i 0.364549 + 0.931184i \(0.381223\pi\)
−0.364549 + 0.931184i \(0.618777\pi\)
\(578\) −97.5000 168.875i −0.168685 0.292171i
\(579\) 0 0
\(580\) 348.701 484.569i 0.601209 0.835465i
\(581\) 163.720 + 94.5238i 0.281790 + 0.162692i
\(582\) 0 0
\(583\) 267.122 154.223i 0.458186 0.264534i
\(584\) 626.842i 1.07336i
\(585\) 0 0
\(586\) 286.000 0.488055
\(587\) 62.5000 + 108.253i 0.106474 + 0.184418i 0.914339 0.404949i \(-0.132711\pi\)
−0.807866 + 0.589367i \(0.799377\pi\)
\(588\) 0 0
\(589\) 58.0000 100.459i 0.0984720 0.170558i
\(590\) 116.234 161.523i 0.197006 0.273768i
\(591\) 0 0
\(592\) 0 0
\(593\) −50.0000 −0.0843170 −0.0421585 0.999111i \(-0.513423\pi\)
−0.0421585 + 0.999111i \(0.513423\pi\)
\(594\) 0 0
\(595\) −1089.00 109.449i −1.83025 0.183947i
\(596\) 25.8505 14.9248i 0.0433734 0.0250416i
\(597\) 0 0
\(598\) −344.674 198.997i −0.576378 0.332772i
\(599\) −120.636 69.6491i −0.201395 0.116276i 0.395911 0.918289i \(-0.370429\pi\)
−0.597306 + 0.802013i \(0.703762\pi\)
\(600\) 0 0
\(601\) −26.5000 45.8993i −0.0440932 0.0763716i 0.843137 0.537700i \(-0.180707\pi\)
−0.887230 + 0.461328i \(0.847373\pi\)
\(602\) 198.000 0.328904
\(603\) 0 0
\(604\) −771.000 −1.27649
\(605\) −100.285 + 45.1980i −0.165761 + 0.0747075i
\(606\) 0 0
\(607\) −344.674 198.997i −0.567832 0.327838i 0.188451 0.982083i \(-0.439653\pi\)
−0.756283 + 0.654245i \(0.772987\pi\)
\(608\) 66.0000 114.315i 0.108553 0.188019i
\(609\) 0 0
\(610\) −200.571 + 90.3961i −0.328804 + 0.148190i
\(611\) 1154.19i 1.88901i
\(612\) 0 0
\(613\) 895.489i 1.46083i 0.683004 + 0.730415i \(0.260673\pi\)
−0.683004 + 0.730415i \(0.739327\pi\)
\(614\) 51.7011 29.8496i 0.0842037 0.0486150i
\(615\) 0 0
\(616\) 346.500 600.156i 0.562500 0.974279i
\(617\) −566.000 + 980.341i −0.917342 + 1.58888i −0.113906 + 0.993492i \(0.536336\pi\)
−0.803436 + 0.595391i \(0.796997\pi\)
\(618\) 0 0
\(619\) −151.000 261.540i −0.243942 0.422520i 0.717892 0.696155i \(-0.245107\pi\)
−0.961834 + 0.273635i \(0.911774\pi\)
\(620\) −43.5000 + 432.820i −0.0701613 + 0.698096i
\(621\) 0 0
\(622\) 198.997i 0.319932i
\(623\) −297.000 514.419i −0.476726 0.825713i
\(624\) 0 0
\(625\) −498.863 + 376.512i −0.798180 + 0.602419i
\(626\) 60.3179 + 34.8246i 0.0963545 + 0.0556303i
\(627\) 0 0
\(628\) −413.609 + 238.797i −0.658612 + 0.380250i
\(629\) 0 0
\(630\) 0 0
\(631\) 1103.00 1.74802 0.874010 0.485909i \(-0.161511\pi\)
0.874010 + 0.485909i \(0.161511\pi\)
\(632\) −35.0000 60.6218i −0.0553797 0.0959205i
\(633\) 0 0
\(634\) −270.500 + 468.520i −0.426656 + 0.738990i
\(635\) −435.876 + 605.712i −0.686419 + 0.953877i
\(636\) 0 0
\(637\) 861.684 497.494i 1.35272 0.780995i
\(638\) −396.000 −0.620690
\(639\) 0 0
\(640\) −59.5000 + 592.018i −0.0929688 + 0.925027i
\(641\) 344.674 198.997i 0.537713 0.310448i −0.206439 0.978460i \(-0.566187\pi\)
0.744151 + 0.668011i \(0.232854\pi\)
\(642\) 0 0
\(643\) −241.272 139.298i −0.375228 0.216638i 0.300512 0.953778i \(-0.402842\pi\)
−0.675740 + 0.737140i \(0.736176\pi\)
\(644\) 517.011 + 298.496i 0.802812 + 0.463503i
\(645\) 0 0
\(646\) 44.0000 + 76.2102i 0.0681115 + 0.117973i
\(647\) −1256.00 −1.94127 −0.970634 0.240562i \(-0.922668\pi\)
−0.970634 + 0.240562i \(0.922668\pi\)
\(648\) 0 0
\(649\) 396.000 0.610169
\(650\) 471.725 158.035i 0.725731 0.243131i
\(651\) 0 0
\(652\) 775.516 + 447.744i 1.18944 + 0.686724i
\(653\) −3.50000 + 6.06218i −0.00535988 + 0.00928358i −0.868693 0.495351i \(-0.835039\pi\)
0.863333 + 0.504635i \(0.168373\pi\)
\(654\) 0 0
\(655\) −347.507 771.047i −0.530545 1.17717i
\(656\) 198.997i 0.303350i
\(657\) 0 0
\(658\) 577.093i 0.877041i
\(659\) 835.834 482.569i 1.26834 0.732275i 0.293664 0.955909i \(-0.405125\pi\)
0.974673 + 0.223634i \(0.0717921\pi\)
\(660\) 0 0
\(661\) 320.000 554.256i 0.484115 0.838512i −0.515719 0.856758i \(-0.672475\pi\)
0.999834 + 0.0182463i \(0.00580831\pi\)
\(662\) 137.000 237.291i 0.206949 0.358446i
\(663\) 0 0
\(664\) 66.5000 + 115.181i 0.100151 + 0.173466i
\(665\) 198.000 + 19.8997i 0.297744 + 0.0299244i
\(666\) 0 0
\(667\) 795.990i 1.19339i
\(668\) −381.000 659.911i −0.570359 0.987891i
\(669\) 0 0
\(670\) 58.1168 80.7616i 0.0867416 0.120540i
\(671\) −379.141 218.897i −0.565039 0.326225i
\(672\) 0 0
\(673\) −267.122 + 154.223i −0.396913 + 0.229158i −0.685151 0.728401i \(-0.740264\pi\)
0.288238 + 0.957559i \(0.406930\pi\)
\(674\) 437.794i 0.649547i
\(675\) 0 0
\(676\) 681.000 1.00740
\(677\) −11.0000 19.0526i −0.0162482 0.0281426i 0.857787 0.514005i \(-0.171839\pi\)
−0.874035 + 0.485863i \(0.838506\pi\)
\(678\) 0 0
\(679\) 643.500 1114.57i 0.947717 1.64149i
\(680\) −624.997 449.754i −0.919113 0.661403i
\(681\) 0 0
\(682\) 249.888 144.273i 0.366405 0.211544i
\(683\) 166.000 0.243045 0.121523 0.992589i \(-0.461222\pi\)
0.121523 + 0.992589i \(0.461222\pi\)
\(684\) 0 0
\(685\) −49.0000 + 487.544i −0.0715328 + 0.711743i
\(686\) 8.61684 4.97494i 0.0125610 0.00725210i
\(687\) 0 0
\(688\) −86.1684 49.7494i −0.125245 0.0723101i
\(689\) 534.244 + 308.446i 0.775391 + 0.447672i
\(690\) 0 0
\(691\) 230.000 + 398.372i 0.332851 + 0.576515i 0.983070 0.183232i \(-0.0586561\pi\)
−0.650219 + 0.759747i \(0.725323\pi\)
\(692\) −705.000 −1.01879
\(693\) 0 0
\(694\) −179.000 −0.257925
\(695\) 291.739 131.485i 0.419768 0.189187i
\(696\) 0 0
\(697\) 758.282 + 437.794i 1.08792 + 0.628113i
\(698\) −310.000 + 536.936i −0.444126 + 0.769249i
\(699\) 0 0
\(700\) −707.588 + 237.053i −1.01084 + 0.338647i
\(701\) 268.647i 0.383233i −0.981470 0.191617i \(-0.938627\pi\)
0.981470 0.191617i \(-0.0613730\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 112.019 64.6742i 0.159118 0.0918667i
\(705\) 0 0
\(706\) 16.0000 27.7128i 0.0226629 0.0392533i
\(707\) 841.500 1457.52i 1.19024 2.06156i
\(708\) 0 0
\(709\) 272.000 + 471.118i 0.383639 + 0.664482i 0.991579 0.129501i \(-0.0413374\pi\)
−0.607940 + 0.793983i \(0.708004\pi\)
\(710\) 297.000 + 29.8496i 0.418310 + 0.0420417i
\(711\) 0 0
\(712\) 417.895i 0.586931i
\(713\) 290.000 + 502.295i 0.406732 + 0.704481i
\(714\) 0 0
\(715\) 803.568 + 578.255i 1.12387 + 0.808749i
\(716\) 387.758 + 223.872i 0.541561 + 0.312671i
\(717\) 0 0
\(718\) −465.310 + 268.647i −0.648063 + 0.374160i
\(719\) 358.195i 0.498186i −0.968480 0.249093i \(-0.919868\pi\)
0.968480 0.249093i \(-0.0801324\pi\)
\(720\) 0 0
\(721\) 396.000 0.549237
\(722\) 172.500 + 298.779i 0.238920 + 0.413821i
\(723\) 0 0
\(724\) −438.000 + 758.638i −0.604972 + 1.04784i
\(725\) 745.451 + 659.017i 1.02821 + 0.908989i
\(726\) 0 0
\(727\) −1197.74 + 691.516i −1.64751 + 0.951192i −0.669456 + 0.742852i \(0.733473\pi\)
−0.978057 + 0.208339i \(0.933194\pi\)
\(728\) 1386.00 1.90385
\(729\) 0 0
\(730\) −445.500 44.7744i −0.610274 0.0613348i
\(731\) 379.141 218.897i 0.518661 0.299449i
\(732\) 0 0
\(733\) −551.478 318.396i −0.752357 0.434374i 0.0741876 0.997244i \(-0.476364\pi\)
−0.826545 + 0.562871i \(0.809697\pi\)
\(734\) −301.590 174.123i −0.410885 0.237225i
\(735\) 0 0
\(736\) 330.000 + 571.577i 0.448370 + 0.776599i
\(737\) 198.000 0.268657
\(738\) 0 0
\(739\) −958.000 −1.29635 −0.648173 0.761493i \(-0.724467\pi\)
−0.648173 + 0.761493i \(0.724467\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 267.122 + 154.223i 0.360003 + 0.207848i
\(743\) 301.000 521.347i 0.405114 0.701679i −0.589220 0.807972i \(-0.700565\pi\)
0.994335 + 0.106294i \(0.0338984\pi\)
\(744\) 0 0
\(745\) 20.4416 + 45.3557i 0.0274384 + 0.0608802i
\(746\) 338.296i 0.453480i
\(747\) 0 0
\(748\) 656.692i 0.877930i
\(749\) 249.888 144.273i 0.333629 0.192621i
\(750\) 0 0
\(751\) −266.500 + 461.592i −0.354860 + 0.614636i −0.987094 0.160142i \(-0.948805\pi\)
0.632234 + 0.774778i \(0.282138\pi\)
\(752\) −145.000 + 251.147i −0.192819 + 0.333973i
\(753\) 0 0
\(754\) −396.000 685.892i −0.525199 0.909671i
\(755\) 128.500 1278.56i 0.170199 1.69346i
\(756\) 0 0
\(757\) 895.489i 1.18294i 0.806325 + 0.591472i \(0.201453\pi\)
−0.806325 + 0.591472i \(0.798547\pi\)
\(758\) −124.000 214.774i −0.163588 0.283343i
\(759\) 0 0
\(760\) 113.636 + 81.7735i 0.149521 + 0.107597i
\(761\) 861.684 + 497.494i 1.13231 + 0.653737i 0.944514 0.328472i \(-0.106534\pi\)
0.187792 + 0.982209i \(0.439867\pi\)
\(762\) 0 0
\(763\) −896.152 + 517.393i −1.17451 + 0.678104i
\(764\) 298.496i 0.390702i
\(765\) 0 0
\(766\) 394.000 0.514360
\(767\) 396.000 + 685.892i 0.516297 + 0.894253i
\(768\) 0 0
\(769\) −302.500 + 523.945i −0.393368 + 0.681333i −0.992891 0.119024i \(-0.962023\pi\)
0.599523 + 0.800357i \(0.295357\pi\)
\(770\) 401.784 + 289.128i 0.521797 + 0.375490i
\(771\) 0 0
\(772\) 439.459 253.722i 0.569247 0.328655i
\(773\) 886.000 1.14618 0.573092 0.819491i \(-0.305744\pi\)
0.573092 + 0.819491i \(0.305744\pi\)
\(774\) 0 0
\(775\) −710.500 144.273i −0.916774 0.186159i
\(776\) 784.133 452.719i 1.01048 0.583401i
\(777\) 0 0
\(778\) −8.61684 4.97494i −0.0110756 0.00639452i
\(779\) −137.870 79.5990i −0.176983 0.102181i
\(780\) 0 0
\(781\) 297.000 + 514.419i 0.380282 + 0.658667i
\(782\) −440.000 −0.562660
\(783\) 0 0
\(784\) −250.000 −0.318878
\(785\) −327.065 725.692i −0.416644 0.924448i
\(786\) 0 0
\(787\) −448.076 258.697i −0.569347 0.328712i 0.187542 0.982257i \(-0.439948\pi\)
−0.756888 + 0.653544i \(0.773281\pi\)
\(788\) −304.500 + 527.409i −0.386421 + 0.669301i
\(789\) 0 0
\(790\) 45.5842 20.5446i 0.0577015 0.0260058i
\(791\) 795.990i 1.00631i
\(792\) 0 0
\(793\) 875.589i 1.10415i
\(794\) 51.7011 29.8496i 0.0651147 0.0375940i
\(795\) 0 0
\(796\) 232.500 402.702i 0.292085 0.505907i
\(797\) 167.500 290.119i 0.210163 0.364013i −0.741602 0.670840i \(-0.765934\pi\)
0.951765 + 0.306827i \(0.0992672\pi\)
\(798\) 0 0
\(799\) −638.000 1105.05i −0.798498 1.38304i
\(800\) −808.500 164.173i −1.01063 0.205216i
\(801\) 0 0
\(802\) 198.997i 0.248127i
\(803\) −445.500 771.629i −0.554795 0.960932i
\(804\) 0 0
\(805\) −581.168 + 807.616i −0.721948 + 1.00325i
\(806\) 499.777 + 288.546i 0.620071 + 0.357998i
\(807\) 0 0
\(808\) 1025.40 592.018i 1.26906 0.732695i
\(809\) 417.895i 0.516557i 0.966070 + 0.258279i \(0.0831552\pi\)
−0.966070 + 0.258279i \(0.916845\pi\)
\(810\) 0 0
\(811\) −700.000 −0.863132 −0.431566 0.902081i \(-0.642039\pi\)
−0.431566 + 0.902081i \(0.642039\pi\)
\(812\) 594.000 + 1028.84i 0.731527 + 1.26704i
\(813\) 0 0
\(814\) 0 0
\(815\) −871.753 + 1211.42i −1.06964 + 1.48641i
\(816\) 0 0
\(817\) −68.9348 + 39.7995i −0.0843755 + 0.0487142i
\(818\) −331.000 −0.404645
\(819\) 0 0
\(820\) 594.000 + 59.6992i 0.724390 + 0.0728040i
\(821\) 965.087 557.193i 1.17550 0.678676i 0.220532 0.975380i \(-0.429221\pi\)
0.954970 + 0.296704i \(0.0958874\pi\)
\(822\) 0 0
\(823\) 818.600 + 472.619i 0.994654 + 0.574264i 0.906662 0.421857i \(-0.138622\pi\)
0.0879918 + 0.996121i \(0.471955\pi\)
\(824\) 241.272 + 139.298i 0.292805 + 0.169051i
\(825\) 0 0
\(826\) 198.000 + 342.946i 0.239709 + 0.415189i
\(827\) −230.000 −0.278114 −0.139057 0.990284i \(-0.544407\pi\)
−0.139057 + 0.990284i \(0.544407\pi\)
\(828\) 0 0
\(829\) 686.000 0.827503 0.413752 0.910390i \(-0.364218\pi\)
0.413752 + 0.910390i \(0.364218\pi\)
\(830\) −86.6100 + 39.0347i −0.104349 + 0.0470297i
\(831\) 0 0
\(832\) 224.038 + 129.348i 0.269276 + 0.155467i
\(833\) 550.000 952.628i 0.660264 1.14361i
\(834\) 0 0
\(835\) 1157.84 521.832i 1.38663 0.624948i
\(836\) 119.398i 0.142821i
\(837\) 0 0
\(838\) 676.591i 0.807388i
\(839\) −1051.25 + 606.942i −1.25299 + 0.723412i −0.971701 0.236213i \(-0.924094\pi\)
−0.281284 + 0.959624i \(0.590760\pi\)
\(840\) 0 0
\(841\) 371.500 643.457i 0.441736 0.765109i
\(842\) −4.00000 + 6.92820i −0.00475059 + 0.00822827i
\(843\) 0 0
\(844\) 462.000 + 800.207i 0.547393 + 0.948113i
\(845\) −113.500 + 1129.31i −0.134320 + 1.33646i
\(846\) 0 0
\(847\) 218.897i 0.258438i
\(848\) −77.5000 134.234i −0.0913915 0.158295i
\(849\) 0 0
\(850\) 364.285 412.063i 0.428571 0.484780i
\(851\) 0 0
\(852\) 0 0
\(853\) 637.646 368.145i 0.747534 0.431589i −0.0772682 0.997010i \(-0.524620\pi\)
0.824802 + 0.565421i \(0.191286\pi\)
\(854\) 437.794i 0.512640i
\(855\) 0 0
\(856\) 203.000 0.237150
\(857\) −77.0000 133.368i −0.0898483 0.155622i 0.817599 0.575789i \(-0.195305\pi\)
−0.907447 + 0.420167i \(0.861972\pi\)
\(858\) 0 0
\(859\) 566.000 980.341i 0.658906 1.14126i −0.321994 0.946742i \(-0.604353\pi\)
0.980899 0.194516i \(-0.0623137\pi\)
\(860\) 174.351 242.285i 0.202733 0.281726i
\(861\) 0 0
\(862\) −258.505 + 149.248i −0.299890 + 0.173142i
\(863\) −1040.00 −1.20510 −0.602549 0.798082i \(-0.705848\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(864\) 0 0
\(865\) 117.500 1169.11i 0.135838 1.35157i
\(866\) −594.562 + 343.271i −0.686561 + 0.396386i
\(867\) 0 0
\(868\) −749.665 432.820i −0.863670 0.498640i
\(869\) 86.1684 + 49.7494i 0.0991582 + 0.0572490i
\(870\) 0 0
\(871\) 198.000 + 342.946i 0.227325 + 0.393738i
\(872\) −728.000 −0.834862
\(873\) 0 0
\(874\) 80.0000 0.0915332
\(875\) −275.177 1212.91i −0.314488 1.38618i
\(876\) 0 0
\(877\) −1430.40 825.840i −1.63101 0.941664i −0.983782 0.179368i \(-0.942595\pi\)
−0.647228 0.762296i \(-0.724072\pi\)
\(878\) −107.500 + 186.195i −0.122437 + 0.212068i
\(879\) 0 0
\(880\) −102.208 226.779i −0.116145 0.257703i
\(881\) 417.895i 0.474341i −0.971468 0.237171i \(-0.923780\pi\)
0.971468 0.237171i \(-0.0762201\pi\)
\(882\) 0 0
\(883\) 238.797i 0.270438i −0.990816 0.135219i \(-0.956826\pi\)
0.990816 0.135219i \(-0.0431738\pi\)
\(884\) 1137.42 656.692i 1.28668 0.742864i
\(885\) 0 0
\(886\) −95.0000 + 164.545i −0.107223 + 0.185717i
\(887\) 307.000 531.740i 0.346110 0.599481i −0.639444 0.768837i \(-0.720836\pi\)
0.985555 + 0.169356i \(0.0541689\pi\)
\(888\) 0 0
\(889\) −742.500 1286.05i −0.835208 1.44662i
\(890\) 297.000 + 29.8496i 0.333708 + 0.0335389i
\(891\) 0 0
\(892\) 119.398i 0.133855i
\(893\) 116.000 + 200.918i 0.129899 + 0.224992i
\(894\) 0 0
\(895\) −435.876 + 605.712i −0.487013 + 0.676773i
\(896\) −1025.40 592.018i −1.14442 0.660734i
\(897\) 0 0
\(898\) 103.402 59.6992i 0.115147 0.0664802i
\(899\) 1154.19i 1.28385i
\(900\) 0 0
\(901\) 682.000 0.756937
\(902\) −198.000 342.946i −0.219512 0.380206i
\(903\) 0 0
\(904\) −280.000 + 484.974i −0.309735 + 0.536476i
\(905\) −1185.06 852.781i −1.30946 0.942299i
\(906\) 0 0
\(907\) −344.674 + 198.997i −0.380015 + 0.219402i −0.677825 0.735223i \(-0.737077\pi\)
0.297810 + 0.954625i \(0.403744\pi\)
\(908\) 726.000 0.799559
\(909\) 0 0
\(910\) −99.0000 + 985.038i −0.108791 + 1.08246i
\(911\) −1258.06 + 726.341i −1.38097 + 0.797301i −0.992274 0.124067i \(-0.960406\pi\)
−0.388691 + 0.921368i \(0.627073\pi\)
\(912\) 0 0
\(913\) −163.720 94.5238i −0.179321 0.103531i
\(914\) 112.019 + 64.6742i 0.122559 + 0.0707595i
\(915\) 0 0
\(916\) −159.000 275.396i −0.173581 0.300651i
\(917\) 1683.00 1.83533
\(918\) 0 0
\(919\) −187.000 −0.203482 −0.101741 0.994811i \(-0.532441\pi\)
−0.101741 + 0.994811i \(0.532441\pi\)
\(920\) −638.179 + 287.624i −0.693673 + 0.312635i
\(921\) 0 0
\(922\) −163.720 94.5238i −0.177571 0.102520i
\(923\) −594.000 + 1028.84i −0.643554 + 1.11467i
\(924\) 0 0
\(925\) 0 0
\(926\) 825.840i 0.891835i
\(927\) 0 0
\(928\) 1313.38i 1.41528i
\(929\) −585.945 + 338.296i −0.630727 + 0.364150i −0.781034 0.624489i \(-0.785307\pi\)
0.150307 + 0.988639i \(0.451974\pi\)
\(930\) 0 0
\(931\) −100.000 + 173.205i −0.107411 + 0.186042i
\(932\) 213.000 368.927i 0.228541 0.395844i
\(933\) 0 0
\(934\) −96.5000 167.143i −0.103319 0.178954i
\(935\) 1089.00 + 109.449i 1.16471 + 0.117057i
\(936\) 0 0
\(937\) 985.038i 1.05127i −0.850711 0.525634i \(-0.823828\pi\)
0.850711 0.525634i \(-0.176172\pi\)
\(938\) 99.0000 + 171.473i 0.105544 + 0.182807i
\(939\) 0 0
\(940\) −706.165 508.164i −0.751240 0.540600i
\(941\) 267.122 + 154.223i 0.283871 + 0.163893i 0.635174 0.772369i \(-0.280928\pi\)
−0.351304 + 0.936262i \(0.614262\pi\)
\(942\) 0 0
\(943\) 689.348 397.995i 0.731015 0.422052i
\(944\) 198.997i 0.210802i
\(945\) 0 0
\(946\) −198.000 −0.209302
\(947\) 692.500 + 1199.45i 0.731257 + 1.26657i 0.956346 + 0.292236i \(0.0943991\pi\)
−0.225090 + 0.974338i \(0.572268\pi\)
\(948\) 0 0
\(949\) 891.000 1543.26i 0.938883 1.62619i
\(950\) −66.2337 + 74.9206i −0.0697197 + 0.0788638i
\(951\) 0 0
\(952\) 1326.99 766.140i 1.39390 0.804769i
\(953\) −1496.00 −1.56978 −0.784890 0.619635i \(-0.787280\pi\)
−0.784890 + 0.619635i \(0.787280\pi\)
\(954\) 0 0
\(955\) 495.000 + 49.7494i 0.518325 + 0.0520936i
\(956\) −517.011 + 298.496i −0.540806 + 0.312235i
\(957\) 0 0
\(958\) 637.646 + 368.145i 0.665602 + 0.384285i
\(959\) −844.451 487.544i −0.880553 0.508388i
\(960\) 0 0
\(961\) 60.0000 + 103.923i 0.0624350 + 0.108141i
\(962\) 0 0
\(963\) 0 0
\(964\) −510.000 −0.529046
\(965\) 347.507 + 771.047i 0.360111 + 0.799013i
\(966\) 0 0
\(967\) −60.3179 34.8246i −0.0623763 0.0360130i 0.468487 0.883470i \(-0.344799\pi\)
−0.530864 + 0.847457i \(0.678132\pi\)
\(968\) 77.0000 133.368i 0.0795455 0.137777i
\(969\) 0 0
\(970\) 265.741 + 589.624i 0.273959 + 0.607860i
\(971\) 746.241i 0.768528i 0.923223 + 0.384264i \(0.125545\pi\)
−0.923223 + 0.384264i \(0.874455\pi\)
\(972\) 0 0
\(973\) 636.792i 0.654462i
\(974\) −413.609 + 238.797i −0.424649 + 0.245171i
\(975\) 0 0
\(976\) −110.000 + 190.526i −0.112705 + 0.195211i
\(977\) −527.000 + 912.791i −0.539406 + 0.934279i 0.459530 + 0.888162i \(0.348018\pi\)
−0.998936 + 0.0461168i \(0.985315\pi\)
\(978\) 0 0
\(979\) 297.000 + 514.419i 0.303371 + 0.525454i
\(980\) 75.0000 746.241i 0.0765306 0.761470i
\(981\) 0 0
\(982\) 288.546i 0.293835i
\(983\) 697.000 + 1207.24i 0.709054 + 1.22812i 0.965208 + 0.261482i \(0.0842111\pi\)
−0.256155 + 0.966636i \(0.582456\pi\)
\(984\) 0 0
\(985\) −823.860 592.858i −0.836406 0.601886i
\(986\) −758.282 437.794i −0.769049 0.444011i
\(987\) 0 0
\(988\) −206.804 + 119.398i −0.209316 + 0.120849i
\(989\) 397.995i 0.402422i
\(990\) 0 0
\(991\) −265.000 −0.267407 −0.133703 0.991021i \(-0.542687\pi\)
−0.133703 + 0.991021i \(0.542687\pi\)
\(992\) −478.500 828.786i −0.482359 0.835470i
\(993\) 0 0
\(994\) −297.000 + 514.419i −0.298793 + 0.517524i
\(995\) 629.055 + 452.675i 0.632216 + 0.454949i
\(996\) 0 0
\(997\) −396.375 + 228.847i −0.397568 + 0.229536i −0.685434 0.728135i \(-0.740387\pi\)
0.287866 + 0.957671i \(0.407054\pi\)
\(998\) 290.000 0.290581
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.h.c.134.2 4
3.2 odd 2 405.3.h.h.134.1 4
5.4 even 2 405.3.h.h.134.2 4
9.2 odd 6 405.3.h.h.269.2 4
9.4 even 3 135.3.d.f.134.1 yes 2
9.5 odd 6 135.3.d.a.134.2 yes 2
9.7 even 3 inner 405.3.h.c.269.1 4
15.14 odd 2 inner 405.3.h.c.134.1 4
36.23 even 6 2160.3.c.c.1889.2 2
36.31 odd 6 2160.3.c.d.1889.1 2
45.4 even 6 135.3.d.a.134.1 2
45.13 odd 12 675.3.c.q.26.1 4
45.14 odd 6 135.3.d.f.134.2 yes 2
45.22 odd 12 675.3.c.q.26.4 4
45.23 even 12 675.3.c.q.26.3 4
45.29 odd 6 inner 405.3.h.c.269.2 4
45.32 even 12 675.3.c.q.26.2 4
45.34 even 6 405.3.h.h.269.1 4
180.59 even 6 2160.3.c.d.1889.2 2
180.139 odd 6 2160.3.c.c.1889.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.d.a.134.1 2 45.4 even 6
135.3.d.a.134.2 yes 2 9.5 odd 6
135.3.d.f.134.1 yes 2 9.4 even 3
135.3.d.f.134.2 yes 2 45.14 odd 6
405.3.h.c.134.1 4 15.14 odd 2 inner
405.3.h.c.134.2 4 1.1 even 1 trivial
405.3.h.c.269.1 4 9.7 even 3 inner
405.3.h.c.269.2 4 45.29 odd 6 inner
405.3.h.h.134.1 4 3.2 odd 2
405.3.h.h.134.2 4 5.4 even 2
405.3.h.h.269.1 4 45.34 even 6
405.3.h.h.269.2 4 9.2 odd 6
675.3.c.q.26.1 4 45.13 odd 12
675.3.c.q.26.2 4 45.32 even 12
675.3.c.q.26.3 4 45.23 even 12
675.3.c.q.26.4 4 45.22 odd 12
2160.3.c.c.1889.1 2 180.139 odd 6
2160.3.c.c.1889.2 2 36.23 even 6
2160.3.c.d.1889.1 2 36.31 odd 6
2160.3.c.d.1889.2 2 180.59 even 6