Properties

Label 135.3.d.a.134.1
Level $135$
Weight $3$
Character 135.134
Analytic conductor $3.678$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,3,Mod(134,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.134"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,-6,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-11}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 134.1
Root \(0.500000 + 1.65831i\) of defining polynomial
Character \(\chi\) \(=\) 135.134
Dual form 135.3.d.a.134.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -3.00000 q^{4} +(-0.500000 - 4.97494i) q^{5} +9.94987i q^{7} +7.00000 q^{8} +(0.500000 + 4.97494i) q^{10} +9.94987i q^{11} +19.8997i q^{13} -9.94987i q^{14} +5.00000 q^{16} -22.0000 q^{17} -4.00000 q^{19} +(1.50000 + 14.9248i) q^{20} -9.94987i q^{22} +20.0000 q^{23} +(-24.5000 + 4.97494i) q^{25} -19.8997i q^{26} -29.8496i q^{28} +39.7995i q^{29} +29.0000 q^{31} -33.0000 q^{32} +22.0000 q^{34} +(49.5000 - 4.97494i) q^{35} +4.00000 q^{38} +(-3.50000 - 34.8246i) q^{40} -39.7995i q^{41} -19.8997i q^{43} -29.8496i q^{44} -20.0000 q^{46} -58.0000 q^{47} -50.0000 q^{49} +(24.5000 - 4.97494i) q^{50} -59.6992i q^{52} -31.0000 q^{53} +(49.5000 - 4.97494i) q^{55} +69.6491i q^{56} -39.7995i q^{58} -39.7995i q^{59} +44.0000 q^{61} -29.0000 q^{62} +13.0000 q^{64} +(99.0000 - 9.94987i) q^{65} +19.8997i q^{67} +66.0000 q^{68} +(-49.5000 + 4.97494i) q^{70} +59.6992i q^{71} +89.5489i q^{73} +12.0000 q^{76} -99.0000 q^{77} -10.0000 q^{79} +(-2.50000 - 24.8747i) q^{80} +39.7995i q^{82} -19.0000 q^{83} +(11.0000 + 109.449i) q^{85} +19.8997i q^{86} +69.6491i q^{88} +59.6992i q^{89} -198.000 q^{91} -60.0000 q^{92} +58.0000 q^{94} +(2.00000 + 19.8997i) q^{95} +129.348i q^{97} +50.0000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 6 q^{4} - q^{5} + 14 q^{8} + q^{10} + 10 q^{16} - 44 q^{17} - 8 q^{19} + 3 q^{20} + 40 q^{23} - 49 q^{25} + 58 q^{31} - 66 q^{32} + 44 q^{34} + 99 q^{35} + 8 q^{38} - 7 q^{40} - 40 q^{46}+ \cdots + 100 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.500000 −0.250000 0.968246i \(-0.580431\pi\)
−0.250000 + 0.968246i \(0.580431\pi\)
\(3\) 0 0
\(4\) −3.00000 −0.750000
\(5\) −0.500000 4.97494i −0.100000 0.994987i
\(6\) 0 0
\(7\) 9.94987i 1.42141i 0.703490 + 0.710705i \(0.251624\pi\)
−0.703490 + 0.710705i \(0.748376\pi\)
\(8\) 7.00000 0.875000
\(9\) 0 0
\(10\) 0.500000 + 4.97494i 0.0500000 + 0.497494i
\(11\) 9.94987i 0.904534i 0.891883 + 0.452267i \(0.149385\pi\)
−0.891883 + 0.452267i \(0.850615\pi\)
\(12\) 0 0
\(13\) 19.8997i 1.53075i 0.643585 + 0.765375i \(0.277446\pi\)
−0.643585 + 0.765375i \(0.722554\pi\)
\(14\) 9.94987i 0.710705i
\(15\) 0 0
\(16\) 5.00000 0.312500
\(17\) −22.0000 −1.29412 −0.647059 0.762440i \(-0.724001\pi\)
−0.647059 + 0.762440i \(0.724001\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.210526 −0.105263 0.994444i \(-0.533568\pi\)
−0.105263 + 0.994444i \(0.533568\pi\)
\(20\) 1.50000 + 14.9248i 0.0750000 + 0.746241i
\(21\) 0 0
\(22\) 9.94987i 0.452267i
\(23\) 20.0000 0.869565 0.434783 0.900535i \(-0.356825\pi\)
0.434783 + 0.900535i \(0.356825\pi\)
\(24\) 0 0
\(25\) −24.5000 + 4.97494i −0.980000 + 0.198997i
\(26\) 19.8997i 0.765375i
\(27\) 0 0
\(28\) 29.8496i 1.06606i
\(29\) 39.7995i 1.37240i 0.727415 + 0.686198i \(0.240722\pi\)
−0.727415 + 0.686198i \(0.759278\pi\)
\(30\) 0 0
\(31\) 29.0000 0.935484 0.467742 0.883865i \(-0.345068\pi\)
0.467742 + 0.883865i \(0.345068\pi\)
\(32\) −33.0000 −1.03125
\(33\) 0 0
\(34\) 22.0000 0.647059
\(35\) 49.5000 4.97494i 1.41429 0.142141i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 4.00000 0.105263
\(39\) 0 0
\(40\) −3.50000 34.8246i −0.0875000 0.870614i
\(41\) 39.7995i 0.970719i −0.874315 0.485360i \(-0.838689\pi\)
0.874315 0.485360i \(-0.161311\pi\)
\(42\) 0 0
\(43\) 19.8997i 0.462785i −0.972860 0.231392i \(-0.925672\pi\)
0.972860 0.231392i \(-0.0743281\pi\)
\(44\) 29.8496i 0.678401i
\(45\) 0 0
\(46\) −20.0000 −0.434783
\(47\) −58.0000 −1.23404 −0.617021 0.786946i \(-0.711661\pi\)
−0.617021 + 0.786946i \(0.711661\pi\)
\(48\) 0 0
\(49\) −50.0000 −1.02041
\(50\) 24.5000 4.97494i 0.490000 0.0994987i
\(51\) 0 0
\(52\) 59.6992i 1.14806i
\(53\) −31.0000 −0.584906 −0.292453 0.956280i \(-0.594471\pi\)
−0.292453 + 0.956280i \(0.594471\pi\)
\(54\) 0 0
\(55\) 49.5000 4.97494i 0.900000 0.0904534i
\(56\) 69.6491i 1.24373i
\(57\) 0 0
\(58\) 39.7995i 0.686198i
\(59\) 39.7995i 0.674568i −0.941403 0.337284i \(-0.890492\pi\)
0.941403 0.337284i \(-0.109508\pi\)
\(60\) 0 0
\(61\) 44.0000 0.721311 0.360656 0.932699i \(-0.382553\pi\)
0.360656 + 0.932699i \(0.382553\pi\)
\(62\) −29.0000 −0.467742
\(63\) 0 0
\(64\) 13.0000 0.203125
\(65\) 99.0000 9.94987i 1.52308 0.153075i
\(66\) 0 0
\(67\) 19.8997i 0.297011i 0.988912 + 0.148506i \(0.0474463\pi\)
−0.988912 + 0.148506i \(0.952554\pi\)
\(68\) 66.0000 0.970588
\(69\) 0 0
\(70\) −49.5000 + 4.97494i −0.707143 + 0.0710705i
\(71\) 59.6992i 0.840834i 0.907331 + 0.420417i \(0.138116\pi\)
−0.907331 + 0.420417i \(0.861884\pi\)
\(72\) 0 0
\(73\) 89.5489i 1.22670i 0.789812 + 0.613348i \(0.210178\pi\)
−0.789812 + 0.613348i \(0.789822\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 12.0000 0.157895
\(77\) −99.0000 −1.28571
\(78\) 0 0
\(79\) −10.0000 −0.126582 −0.0632911 0.997995i \(-0.520160\pi\)
−0.0632911 + 0.997995i \(0.520160\pi\)
\(80\) −2.50000 24.8747i −0.0312500 0.310934i
\(81\) 0 0
\(82\) 39.7995i 0.485360i
\(83\) −19.0000 −0.228916 −0.114458 0.993428i \(-0.536513\pi\)
−0.114458 + 0.993428i \(0.536513\pi\)
\(84\) 0 0
\(85\) 11.0000 + 109.449i 0.129412 + 1.28763i
\(86\) 19.8997i 0.231392i
\(87\) 0 0
\(88\) 69.6491i 0.791467i
\(89\) 59.6992i 0.670778i 0.942080 + 0.335389i \(0.108868\pi\)
−0.942080 + 0.335389i \(0.891132\pi\)
\(90\) 0 0
\(91\) −198.000 −2.17582
\(92\) −60.0000 −0.652174
\(93\) 0 0
\(94\) 58.0000 0.617021
\(95\) 2.00000 + 19.8997i 0.0210526 + 0.209471i
\(96\) 0 0
\(97\) 129.348i 1.33349i 0.745287 + 0.666744i \(0.232313\pi\)
−0.745287 + 0.666744i \(0.767687\pi\)
\(98\) 50.0000 0.510204
\(99\) 0 0
\(100\) 73.5000 14.9248i 0.735000 0.149248i
\(101\) 169.148i 1.67473i −0.546643 0.837366i \(-0.684095\pi\)
0.546643 0.837366i \(-0.315905\pi\)
\(102\) 0 0
\(103\) 39.7995i 0.386403i −0.981159 0.193201i \(-0.938113\pi\)
0.981159 0.193201i \(-0.0618871\pi\)
\(104\) 139.298i 1.33941i
\(105\) 0 0
\(106\) 31.0000 0.292453
\(107\) 29.0000 0.271028 0.135514 0.990775i \(-0.456731\pi\)
0.135514 + 0.990775i \(0.456731\pi\)
\(108\) 0 0
\(109\) 104.000 0.954128 0.477064 0.878868i \(-0.341701\pi\)
0.477064 + 0.878868i \(0.341701\pi\)
\(110\) −49.5000 + 4.97494i −0.450000 + 0.0452267i
\(111\) 0 0
\(112\) 49.7494i 0.444191i
\(113\) 80.0000 0.707965 0.353982 0.935252i \(-0.384827\pi\)
0.353982 + 0.935252i \(0.384827\pi\)
\(114\) 0 0
\(115\) −10.0000 99.4987i −0.0869565 0.865206i
\(116\) 119.398i 1.02930i
\(117\) 0 0
\(118\) 39.7995i 0.337284i
\(119\) 218.897i 1.83947i
\(120\) 0 0
\(121\) 22.0000 0.181818
\(122\) −44.0000 −0.360656
\(123\) 0 0
\(124\) −87.0000 −0.701613
\(125\) 37.0000 + 119.398i 0.296000 + 0.955188i
\(126\) 0 0
\(127\) 149.248i 1.17518i −0.809158 0.587591i \(-0.800076\pi\)
0.809158 0.587591i \(-0.199924\pi\)
\(128\) 119.000 0.929688
\(129\) 0 0
\(130\) −99.0000 + 9.94987i −0.761538 + 0.0765375i
\(131\) 169.148i 1.29121i 0.763674 + 0.645603i \(0.223394\pi\)
−0.763674 + 0.645603i \(0.776606\pi\)
\(132\) 0 0
\(133\) 39.7995i 0.299244i
\(134\) 19.8997i 0.148506i
\(135\) 0 0
\(136\) −154.000 −1.13235
\(137\) 98.0000 0.715328 0.357664 0.933850i \(-0.383573\pi\)
0.357664 + 0.933850i \(0.383573\pi\)
\(138\) 0 0
\(139\) −64.0000 −0.460432 −0.230216 0.973140i \(-0.573943\pi\)
−0.230216 + 0.973140i \(0.573943\pi\)
\(140\) −148.500 + 14.9248i −1.06071 + 0.106606i
\(141\) 0 0
\(142\) 59.6992i 0.420417i
\(143\) −198.000 −1.38462
\(144\) 0 0
\(145\) 198.000 19.8997i 1.36552 0.137240i
\(146\) 89.5489i 0.613348i
\(147\) 0 0
\(148\) 0 0
\(149\) 9.94987i 0.0667777i −0.999442 0.0333888i \(-0.989370\pi\)
0.999442 0.0333888i \(-0.0106300\pi\)
\(150\) 0 0
\(151\) 257.000 1.70199 0.850993 0.525176i \(-0.176001\pi\)
0.850993 + 0.525176i \(0.176001\pi\)
\(152\) −28.0000 −0.184211
\(153\) 0 0
\(154\) 99.0000 0.642857
\(155\) −14.5000 144.273i −0.0935484 0.930795i
\(156\) 0 0
\(157\) 159.198i 1.01400i −0.861946 0.507000i \(-0.830754\pi\)
0.861946 0.507000i \(-0.169246\pi\)
\(158\) 10.0000 0.0632911
\(159\) 0 0
\(160\) 16.5000 + 164.173i 0.103125 + 1.02608i
\(161\) 198.997i 1.23601i
\(162\) 0 0
\(163\) 298.496i 1.83127i −0.402016 0.915633i \(-0.631690\pi\)
0.402016 0.915633i \(-0.368310\pi\)
\(164\) 119.398i 0.728040i
\(165\) 0 0
\(166\) 19.0000 0.114458
\(167\) 254.000 1.52096 0.760479 0.649362i \(-0.224964\pi\)
0.760479 + 0.649362i \(0.224964\pi\)
\(168\) 0 0
\(169\) −227.000 −1.34320
\(170\) −11.0000 109.449i −0.0647059 0.643815i
\(171\) 0 0
\(172\) 59.6992i 0.347089i
\(173\) −235.000 −1.35838 −0.679191 0.733962i \(-0.737669\pi\)
−0.679191 + 0.733962i \(0.737669\pi\)
\(174\) 0 0
\(175\) −49.5000 243.772i −0.282857 1.39298i
\(176\) 49.7494i 0.282667i
\(177\) 0 0
\(178\) 59.6992i 0.335389i
\(179\) 149.248i 0.833788i 0.908955 + 0.416894i \(0.136881\pi\)
−0.908955 + 0.416894i \(0.863119\pi\)
\(180\) 0 0
\(181\) −292.000 −1.61326 −0.806630 0.591057i \(-0.798711\pi\)
−0.806630 + 0.591057i \(0.798711\pi\)
\(182\) 198.000 1.08791
\(183\) 0 0
\(184\) 140.000 0.760870
\(185\) 0 0
\(186\) 0 0
\(187\) 218.897i 1.17057i
\(188\) 174.000 0.925532
\(189\) 0 0
\(190\) −2.00000 19.8997i −0.0105263 0.104736i
\(191\) 99.4987i 0.520936i 0.965483 + 0.260468i \(0.0838768\pi\)
−0.965483 + 0.260468i \(0.916123\pi\)
\(192\) 0 0
\(193\) 169.148i 0.876414i 0.898874 + 0.438207i \(0.144386\pi\)
−0.898874 + 0.438207i \(0.855614\pi\)
\(194\) 129.348i 0.666744i
\(195\) 0 0
\(196\) 150.000 0.765306
\(197\) 203.000 1.03046 0.515228 0.857053i \(-0.327707\pi\)
0.515228 + 0.857053i \(0.327707\pi\)
\(198\) 0 0
\(199\) 155.000 0.778894 0.389447 0.921049i \(-0.372666\pi\)
0.389447 + 0.921049i \(0.372666\pi\)
\(200\) −171.500 + 34.8246i −0.857500 + 0.174123i
\(201\) 0 0
\(202\) 169.148i 0.837366i
\(203\) −396.000 −1.95074
\(204\) 0 0
\(205\) −198.000 + 19.8997i −0.965854 + 0.0970719i
\(206\) 39.7995i 0.193201i
\(207\) 0 0
\(208\) 99.4987i 0.478359i
\(209\) 39.7995i 0.190428i
\(210\) 0 0
\(211\) 308.000 1.45972 0.729858 0.683599i \(-0.239586\pi\)
0.729858 + 0.683599i \(0.239586\pi\)
\(212\) 93.0000 0.438679
\(213\) 0 0
\(214\) −29.0000 −0.135514
\(215\) −99.0000 + 9.94987i −0.460465 + 0.0462785i
\(216\) 0 0
\(217\) 288.546i 1.32971i
\(218\) −104.000 −0.477064
\(219\) 0 0
\(220\) −148.500 + 14.9248i −0.675000 + 0.0678401i
\(221\) 437.794i 1.98097i
\(222\) 0 0
\(223\) 39.7995i 0.178473i 0.996010 + 0.0892365i \(0.0284427\pi\)
−0.996010 + 0.0892365i \(0.971557\pi\)
\(224\) 328.346i 1.46583i
\(225\) 0 0
\(226\) −80.0000 −0.353982
\(227\) 242.000 1.06608 0.533040 0.846090i \(-0.321050\pi\)
0.533040 + 0.846090i \(0.321050\pi\)
\(228\) 0 0
\(229\) −106.000 −0.462882 −0.231441 0.972849i \(-0.574344\pi\)
−0.231441 + 0.972849i \(0.574344\pi\)
\(230\) 10.0000 + 99.4987i 0.0434783 + 0.432603i
\(231\) 0 0
\(232\) 278.596i 1.20085i
\(233\) −142.000 −0.609442 −0.304721 0.952442i \(-0.598563\pi\)
−0.304721 + 0.952442i \(0.598563\pi\)
\(234\) 0 0
\(235\) 29.0000 + 288.546i 0.123404 + 1.22786i
\(236\) 119.398i 0.505926i
\(237\) 0 0
\(238\) 218.897i 0.919736i
\(239\) 198.997i 0.832625i 0.909221 + 0.416313i \(0.136678\pi\)
−0.909221 + 0.416313i \(0.863322\pi\)
\(240\) 0 0
\(241\) 170.000 0.705394 0.352697 0.935738i \(-0.385265\pi\)
0.352697 + 0.935738i \(0.385265\pi\)
\(242\) −22.0000 −0.0909091
\(243\) 0 0
\(244\) −132.000 −0.540984
\(245\) 25.0000 + 248.747i 0.102041 + 1.01529i
\(246\) 0 0
\(247\) 79.5990i 0.322263i
\(248\) 203.000 0.818548
\(249\) 0 0
\(250\) −37.0000 119.398i −0.148000 0.477594i
\(251\) 358.195i 1.42707i −0.700618 0.713537i \(-0.747092\pi\)
0.700618 0.713537i \(-0.252908\pi\)
\(252\) 0 0
\(253\) 198.997i 0.786551i
\(254\) 149.248i 0.587591i
\(255\) 0 0
\(256\) −171.000 −0.667969
\(257\) 290.000 1.12840 0.564202 0.825637i \(-0.309184\pi\)
0.564202 + 0.825637i \(0.309184\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −297.000 + 29.8496i −1.14231 + 0.114806i
\(261\) 0 0
\(262\) 169.148i 0.645603i
\(263\) 104.000 0.395437 0.197719 0.980259i \(-0.436647\pi\)
0.197719 + 0.980259i \(0.436647\pi\)
\(264\) 0 0
\(265\) 15.5000 + 154.223i 0.0584906 + 0.581974i
\(266\) 39.7995i 0.149622i
\(267\) 0 0
\(268\) 59.6992i 0.222758i
\(269\) 119.398i 0.443861i 0.975063 + 0.221930i \(0.0712357\pi\)
−0.975063 + 0.221930i \(0.928764\pi\)
\(270\) 0 0
\(271\) −121.000 −0.446494 −0.223247 0.974762i \(-0.571666\pi\)
−0.223247 + 0.974762i \(0.571666\pi\)
\(272\) −110.000 −0.404412
\(273\) 0 0
\(274\) −98.0000 −0.357664
\(275\) −49.5000 243.772i −0.180000 0.886443i
\(276\) 0 0
\(277\) 159.198i 0.574722i 0.957822 + 0.287361i \(0.0927779\pi\)
−0.957822 + 0.287361i \(0.907222\pi\)
\(278\) 64.0000 0.230216
\(279\) 0 0
\(280\) 346.500 34.8246i 1.23750 0.124373i
\(281\) 218.897i 0.778994i 0.921028 + 0.389497i \(0.127351\pi\)
−0.921028 + 0.389497i \(0.872649\pi\)
\(282\) 0 0
\(283\) 278.596i 0.984440i −0.870471 0.492220i \(-0.836186\pi\)
0.870471 0.492220i \(-0.163814\pi\)
\(284\) 179.098i 0.630626i
\(285\) 0 0
\(286\) 198.000 0.692308
\(287\) 396.000 1.37979
\(288\) 0 0
\(289\) 195.000 0.674740
\(290\) −198.000 + 19.8997i −0.682759 + 0.0686198i
\(291\) 0 0
\(292\) 268.647i 0.920023i
\(293\) −286.000 −0.976109 −0.488055 0.872813i \(-0.662293\pi\)
−0.488055 + 0.872813i \(0.662293\pi\)
\(294\) 0 0
\(295\) −198.000 + 19.8997i −0.671186 + 0.0674568i
\(296\) 0 0
\(297\) 0 0
\(298\) 9.94987i 0.0333888i
\(299\) 397.995i 1.33109i
\(300\) 0 0
\(301\) 198.000 0.657807
\(302\) −257.000 −0.850993
\(303\) 0 0
\(304\) −20.0000 −0.0657895
\(305\) −22.0000 218.897i −0.0721311 0.717696i
\(306\) 0 0
\(307\) 59.6992i 0.194460i −0.995262 0.0972300i \(-0.969002\pi\)
0.995262 0.0972300i \(-0.0309983\pi\)
\(308\) 297.000 0.964286
\(309\) 0 0
\(310\) 14.5000 + 144.273i 0.0467742 + 0.465397i
\(311\) 198.997i 0.639863i 0.947441 + 0.319932i \(0.103660\pi\)
−0.947441 + 0.319932i \(0.896340\pi\)
\(312\) 0 0
\(313\) 69.6491i 0.222521i 0.993791 + 0.111261i \(0.0354888\pi\)
−0.993791 + 0.111261i \(0.964511\pi\)
\(314\) 159.198i 0.507000i
\(315\) 0 0
\(316\) 30.0000 0.0949367
\(317\) −541.000 −1.70662 −0.853312 0.521400i \(-0.825410\pi\)
−0.853312 + 0.521400i \(0.825410\pi\)
\(318\) 0 0
\(319\) −396.000 −1.24138
\(320\) −6.50000 64.6742i −0.0203125 0.202107i
\(321\) 0 0
\(322\) 198.997i 0.618005i
\(323\) 88.0000 0.272446
\(324\) 0 0
\(325\) −99.0000 487.544i −0.304615 1.50013i
\(326\) 298.496i 0.915633i
\(327\) 0 0
\(328\) 278.596i 0.849380i
\(329\) 577.093i 1.75408i
\(330\) 0 0
\(331\) −274.000 −0.827795 −0.413897 0.910324i \(-0.635833\pi\)
−0.413897 + 0.910324i \(0.635833\pi\)
\(332\) 57.0000 0.171687
\(333\) 0 0
\(334\) −254.000 −0.760479
\(335\) 99.0000 9.94987i 0.295522 0.0297011i
\(336\) 0 0
\(337\) 437.794i 1.29909i 0.760322 + 0.649547i \(0.225041\pi\)
−0.760322 + 0.649547i \(0.774959\pi\)
\(338\) 227.000 0.671598
\(339\) 0 0
\(340\) −33.0000 328.346i −0.0970588 0.965723i
\(341\) 288.546i 0.846177i
\(342\) 0 0
\(343\) 9.94987i 0.0290084i
\(344\) 139.298i 0.404937i
\(345\) 0 0
\(346\) 235.000 0.679191
\(347\) 179.000 0.515850 0.257925 0.966165i \(-0.416961\pi\)
0.257925 + 0.966165i \(0.416961\pi\)
\(348\) 0 0
\(349\) 620.000 1.77650 0.888252 0.459356i \(-0.151920\pi\)
0.888252 + 0.459356i \(0.151920\pi\)
\(350\) 49.5000 + 243.772i 0.141429 + 0.696491i
\(351\) 0 0
\(352\) 328.346i 0.932801i
\(353\) 32.0000 0.0906516 0.0453258 0.998972i \(-0.485567\pi\)
0.0453258 + 0.998972i \(0.485567\pi\)
\(354\) 0 0
\(355\) 297.000 29.8496i 0.836620 0.0840834i
\(356\) 179.098i 0.503084i
\(357\) 0 0
\(358\) 149.248i 0.416894i
\(359\) 537.293i 1.49664i −0.663339 0.748319i \(-0.730861\pi\)
0.663339 0.748319i \(-0.269139\pi\)
\(360\) 0 0
\(361\) −345.000 −0.955679
\(362\) 292.000 0.806630
\(363\) 0 0
\(364\) 594.000 1.63187
\(365\) 445.500 44.7744i 1.22055 0.122670i
\(366\) 0 0
\(367\) 348.246i 0.948898i −0.880283 0.474449i \(-0.842647\pi\)
0.880283 0.474449i \(-0.157353\pi\)
\(368\) 100.000 0.271739
\(369\) 0 0
\(370\) 0 0
\(371\) 308.446i 0.831391i
\(372\) 0 0
\(373\) 338.296i 0.906959i −0.891267 0.453480i \(-0.850183\pi\)
0.891267 0.453480i \(-0.149817\pi\)
\(374\) 218.897i 0.585287i
\(375\) 0 0
\(376\) −406.000 −1.07979
\(377\) −792.000 −2.10080
\(378\) 0 0
\(379\) 248.000 0.654354 0.327177 0.944963i \(-0.393903\pi\)
0.327177 + 0.944963i \(0.393903\pi\)
\(380\) −6.00000 59.6992i −0.0157895 0.157103i
\(381\) 0 0
\(382\) 99.4987i 0.260468i
\(383\) −394.000 −1.02872 −0.514360 0.857574i \(-0.671971\pi\)
−0.514360 + 0.857574i \(0.671971\pi\)
\(384\) 0 0
\(385\) 49.5000 + 492.519i 0.128571 + 1.27927i
\(386\) 169.148i 0.438207i
\(387\) 0 0
\(388\) 388.045i 1.00012i
\(389\) 9.94987i 0.0255781i 0.999918 + 0.0127890i \(0.00407099\pi\)
−0.999918 + 0.0127890i \(0.995929\pi\)
\(390\) 0 0
\(391\) −440.000 −1.12532
\(392\) −350.000 −0.892857
\(393\) 0 0
\(394\) −203.000 −0.515228
\(395\) 5.00000 + 49.7494i 0.0126582 + 0.125948i
\(396\) 0 0
\(397\) 59.6992i 0.150376i −0.997169 0.0751880i \(-0.976044\pi\)
0.997169 0.0751880i \(-0.0239557\pi\)
\(398\) −155.000 −0.389447
\(399\) 0 0
\(400\) −122.500 + 24.8747i −0.306250 + 0.0621867i
\(401\) 198.997i 0.496253i 0.968728 + 0.248127i \(0.0798149\pi\)
−0.968728 + 0.248127i \(0.920185\pi\)
\(402\) 0 0
\(403\) 577.093i 1.43199i
\(404\) 507.444i 1.25605i
\(405\) 0 0
\(406\) 396.000 0.975369
\(407\) 0 0
\(408\) 0 0
\(409\) −331.000 −0.809291 −0.404645 0.914474i \(-0.632605\pi\)
−0.404645 + 0.914474i \(0.632605\pi\)
\(410\) 198.000 19.8997i 0.482927 0.0485360i
\(411\) 0 0
\(412\) 119.398i 0.289802i
\(413\) 396.000 0.958838
\(414\) 0 0
\(415\) 9.50000 + 94.5238i 0.0228916 + 0.227768i
\(416\) 656.692i 1.57859i
\(417\) 0 0
\(418\) 39.7995i 0.0952141i
\(419\) 676.591i 1.61478i 0.590020 + 0.807388i \(0.299120\pi\)
−0.590020 + 0.807388i \(0.700880\pi\)
\(420\) 0 0
\(421\) 8.00000 0.0190024 0.00950119 0.999955i \(-0.496976\pi\)
0.00950119 + 0.999955i \(0.496976\pi\)
\(422\) −308.000 −0.729858
\(423\) 0 0
\(424\) −217.000 −0.511792
\(425\) 539.000 109.449i 1.26824 0.257526i
\(426\) 0 0
\(427\) 437.794i 1.02528i
\(428\) −87.0000 −0.203271
\(429\) 0 0
\(430\) 99.0000 9.94987i 0.230233 0.0231392i
\(431\) 298.496i 0.692567i −0.938130 0.346283i \(-0.887444\pi\)
0.938130 0.346283i \(-0.112556\pi\)
\(432\) 0 0
\(433\) 686.541i 1.58555i 0.609517 + 0.792773i \(0.291363\pi\)
−0.609517 + 0.792773i \(0.708637\pi\)
\(434\) 288.546i 0.664853i
\(435\) 0 0
\(436\) −312.000 −0.715596
\(437\) −80.0000 −0.183066
\(438\) 0 0
\(439\) 215.000 0.489749 0.244875 0.969555i \(-0.421253\pi\)
0.244875 + 0.969555i \(0.421253\pi\)
\(440\) 346.500 34.8246i 0.787500 0.0791467i
\(441\) 0 0
\(442\) 437.794i 0.990485i
\(443\) −190.000 −0.428894 −0.214447 0.976736i \(-0.568795\pi\)
−0.214447 + 0.976736i \(0.568795\pi\)
\(444\) 0 0
\(445\) 297.000 29.8496i 0.667416 0.0670778i
\(446\) 39.7995i 0.0892365i
\(447\) 0 0
\(448\) 129.348i 0.288724i
\(449\) 119.398i 0.265921i 0.991121 + 0.132960i \(0.0424483\pi\)
−0.991121 + 0.132960i \(0.957552\pi\)
\(450\) 0 0
\(451\) 396.000 0.878049
\(452\) −240.000 −0.530973
\(453\) 0 0
\(454\) −242.000 −0.533040
\(455\) 99.0000 + 985.038i 0.217582 + 2.16492i
\(456\) 0 0
\(457\) 129.348i 0.283038i 0.989936 + 0.141519i \(0.0451986\pi\)
−0.989936 + 0.141519i \(0.954801\pi\)
\(458\) 106.000 0.231441
\(459\) 0 0
\(460\) 30.0000 + 298.496i 0.0652174 + 0.648905i
\(461\) 189.048i 0.410082i 0.978753 + 0.205041i \(0.0657327\pi\)
−0.978753 + 0.205041i \(0.934267\pi\)
\(462\) 0 0
\(463\) 825.840i 1.78367i 0.452360 + 0.891835i \(0.350582\pi\)
−0.452360 + 0.891835i \(0.649418\pi\)
\(464\) 198.997i 0.428874i
\(465\) 0 0
\(466\) 142.000 0.304721
\(467\) −193.000 −0.413276 −0.206638 0.978417i \(-0.566252\pi\)
−0.206638 + 0.978417i \(0.566252\pi\)
\(468\) 0 0
\(469\) −198.000 −0.422175
\(470\) −29.0000 288.546i −0.0617021 0.613928i
\(471\) 0 0
\(472\) 278.596i 0.590247i
\(473\) 198.000 0.418605
\(474\) 0 0
\(475\) 98.0000 19.8997i 0.206316 0.0418942i
\(476\) 656.692i 1.37960i
\(477\) 0 0
\(478\) 198.997i 0.416313i
\(479\) 736.291i 1.53714i −0.639765 0.768571i \(-0.720968\pi\)
0.639765 0.768571i \(-0.279032\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −170.000 −0.352697
\(483\) 0 0
\(484\) −66.0000 −0.136364
\(485\) 643.500 64.6742i 1.32680 0.133349i
\(486\) 0 0
\(487\) 477.594i 0.980686i 0.871530 + 0.490343i \(0.163128\pi\)
−0.871530 + 0.490343i \(0.836872\pi\)
\(488\) 308.000 0.631148
\(489\) 0 0
\(490\) −25.0000 248.747i −0.0510204 0.507647i
\(491\) 288.546i 0.587671i 0.955856 + 0.293835i \(0.0949318\pi\)
−0.955856 + 0.293835i \(0.905068\pi\)
\(492\) 0 0
\(493\) 875.589i 1.77604i
\(494\) 79.5990i 0.161132i
\(495\) 0 0
\(496\) 145.000 0.292339
\(497\) −594.000 −1.19517
\(498\) 0 0
\(499\) 290.000 0.581162 0.290581 0.956850i \(-0.406151\pi\)
0.290581 + 0.956850i \(0.406151\pi\)
\(500\) −111.000 358.195i −0.222000 0.716391i
\(501\) 0 0
\(502\) 358.195i 0.713537i
\(503\) −220.000 −0.437376 −0.218688 0.975795i \(-0.570178\pi\)
−0.218688 + 0.975795i \(0.570178\pi\)
\(504\) 0 0
\(505\) −841.500 + 84.5739i −1.66634 + 0.167473i
\(506\) 198.997i 0.393276i
\(507\) 0 0
\(508\) 447.744i 0.881387i
\(509\) 9.94987i 0.0195479i −0.999952 0.00977394i \(-0.996889\pi\)
0.999952 0.00977394i \(-0.00311119\pi\)
\(510\) 0 0
\(511\) −891.000 −1.74364
\(512\) −305.000 −0.595703
\(513\) 0 0
\(514\) −290.000 −0.564202
\(515\) −198.000 + 19.8997i −0.384466 + 0.0386403i
\(516\) 0 0
\(517\) 577.093i 1.11623i
\(518\) 0 0
\(519\) 0 0
\(520\) 693.000 69.6491i 1.33269 0.133941i
\(521\) 298.496i 0.572929i 0.958091 + 0.286465i \(0.0924801\pi\)
−0.958091 + 0.286465i \(0.907520\pi\)
\(522\) 0 0
\(523\) 537.293i 1.02733i −0.857991 0.513665i \(-0.828288\pi\)
0.857991 0.513665i \(-0.171712\pi\)
\(524\) 507.444i 0.968404i
\(525\) 0 0
\(526\) −104.000 −0.197719
\(527\) −638.000 −1.21063
\(528\) 0 0
\(529\) −129.000 −0.243856
\(530\) −15.5000 154.223i −0.0292453 0.290987i
\(531\) 0 0
\(532\) 119.398i 0.224433i
\(533\) 792.000 1.48593
\(534\) 0 0
\(535\) −14.5000 144.273i −0.0271028 0.269669i
\(536\) 139.298i 0.259885i
\(537\) 0 0
\(538\) 119.398i 0.221930i
\(539\) 497.494i 0.922994i
\(540\) 0 0
\(541\) 704.000 1.30129 0.650647 0.759380i \(-0.274498\pi\)
0.650647 + 0.759380i \(0.274498\pi\)
\(542\) 121.000 0.223247
\(543\) 0 0
\(544\) 726.000 1.33456
\(545\) −52.0000 517.393i −0.0954128 0.949346i
\(546\) 0 0
\(547\) 99.4987i 0.181899i 0.995856 + 0.0909495i \(0.0289902\pi\)
−0.995856 + 0.0909495i \(0.971010\pi\)
\(548\) −294.000 −0.536496
\(549\) 0 0
\(550\) 49.5000 + 243.772i 0.0900000 + 0.443222i
\(551\) 159.198i 0.288926i
\(552\) 0 0
\(553\) 99.4987i 0.179925i
\(554\) 159.198i 0.287361i
\(555\) 0 0
\(556\) 192.000 0.345324
\(557\) 101.000 0.181329 0.0906643 0.995882i \(-0.471101\pi\)
0.0906643 + 0.995882i \(0.471101\pi\)
\(558\) 0 0
\(559\) 396.000 0.708408
\(560\) 247.500 24.8747i 0.441964 0.0444191i
\(561\) 0 0
\(562\) 218.897i 0.389497i
\(563\) 935.000 1.66075 0.830373 0.557208i \(-0.188127\pi\)
0.830373 + 0.557208i \(0.188127\pi\)
\(564\) 0 0
\(565\) −40.0000 397.995i −0.0707965 0.704416i
\(566\) 278.596i 0.492220i
\(567\) 0 0
\(568\) 417.895i 0.735730i
\(569\) 756.190i 1.32898i 0.747297 + 0.664491i \(0.231351\pi\)
−0.747297 + 0.664491i \(0.768649\pi\)
\(570\) 0 0
\(571\) 506.000 0.886165 0.443082 0.896481i \(-0.353885\pi\)
0.443082 + 0.896481i \(0.353885\pi\)
\(572\) 594.000 1.03846
\(573\) 0 0
\(574\) −396.000 −0.689895
\(575\) −490.000 + 99.4987i −0.852174 + 0.173041i
\(576\) 0 0
\(577\) 1074.59i 1.86237i −0.364549 0.931184i \(-0.618777\pi\)
0.364549 0.931184i \(-0.381223\pi\)
\(578\) −195.000 −0.337370
\(579\) 0 0
\(580\) −594.000 + 59.6992i −1.02414 + 0.102930i
\(581\) 189.048i 0.325383i
\(582\) 0 0
\(583\) 308.446i 0.529067i
\(584\) 626.842i 1.07336i
\(585\) 0 0
\(586\) 286.000 0.488055
\(587\) 125.000 0.212947 0.106474 0.994316i \(-0.466044\pi\)
0.106474 + 0.994316i \(0.466044\pi\)
\(588\) 0 0
\(589\) −116.000 −0.196944
\(590\) 198.000 19.8997i 0.335593 0.0337284i
\(591\) 0 0
\(592\) 0 0
\(593\) 50.0000 0.0843170 0.0421585 0.999111i \(-0.486577\pi\)
0.0421585 + 0.999111i \(0.486577\pi\)
\(594\) 0 0
\(595\) −1089.00 + 109.449i −1.83025 + 0.183947i
\(596\) 29.8496i 0.0500833i
\(597\) 0 0
\(598\) 397.995i 0.665543i
\(599\) 139.298i 0.232551i 0.993217 + 0.116276i \(0.0370956\pi\)
−0.993217 + 0.116276i \(0.962904\pi\)
\(600\) 0 0
\(601\) 53.0000 0.0881864 0.0440932 0.999027i \(-0.485960\pi\)
0.0440932 + 0.999027i \(0.485960\pi\)
\(602\) −198.000 −0.328904
\(603\) 0 0
\(604\) −771.000 −1.27649
\(605\) −11.0000 109.449i −0.0181818 0.180907i
\(606\) 0 0
\(607\) 397.995i 0.655675i −0.944734 0.327838i \(-0.893680\pi\)
0.944734 0.327838i \(-0.106320\pi\)
\(608\) 132.000 0.217105
\(609\) 0 0
\(610\) 22.0000 + 218.897i 0.0360656 + 0.358848i
\(611\) 1154.19i 1.88901i
\(612\) 0 0
\(613\) 895.489i 1.46083i −0.683004 0.730415i \(-0.739327\pi\)
0.683004 0.730415i \(-0.260673\pi\)
\(614\) 59.6992i 0.0972300i
\(615\) 0 0
\(616\) −693.000 −1.12500
\(617\) −1132.00 −1.83468 −0.917342 0.398100i \(-0.869670\pi\)
−0.917342 + 0.398100i \(0.869670\pi\)
\(618\) 0 0
\(619\) 302.000 0.487884 0.243942 0.969790i \(-0.421559\pi\)
0.243942 + 0.969790i \(0.421559\pi\)
\(620\) 43.5000 + 432.820i 0.0701613 + 0.698096i
\(621\) 0 0
\(622\) 198.997i 0.319932i
\(623\) −594.000 −0.953451
\(624\) 0 0
\(625\) 575.500 243.772i 0.920800 0.390035i
\(626\) 69.6491i 0.111261i
\(627\) 0 0
\(628\) 477.594i 0.760500i
\(629\) 0 0
\(630\) 0 0
\(631\) 1103.00 1.74802 0.874010 0.485909i \(-0.161511\pi\)
0.874010 + 0.485909i \(0.161511\pi\)
\(632\) −70.0000 −0.110759
\(633\) 0 0
\(634\) 541.000 0.853312
\(635\) −742.500 + 74.6241i −1.16929 + 0.117518i
\(636\) 0 0
\(637\) 994.987i 1.56199i
\(638\) 396.000 0.620690
\(639\) 0 0
\(640\) −59.5000 592.018i −0.0929688 0.925027i
\(641\) 397.995i 0.620897i 0.950590 + 0.310448i \(0.100479\pi\)
−0.950590 + 0.310448i \(0.899521\pi\)
\(642\) 0 0
\(643\) 278.596i 0.433276i −0.976252 0.216638i \(-0.930491\pi\)
0.976252 0.216638i \(-0.0695091\pi\)
\(644\) 596.992i 0.927007i
\(645\) 0 0
\(646\) −88.0000 −0.136223
\(647\) 1256.00 1.94127 0.970634 0.240562i \(-0.0773318\pi\)
0.970634 + 0.240562i \(0.0773318\pi\)
\(648\) 0 0
\(649\) 396.000 0.610169
\(650\) 99.0000 + 487.544i 0.152308 + 0.750067i
\(651\) 0 0
\(652\) 895.489i 1.37345i
\(653\) −7.00000 −0.0107198 −0.00535988 0.999986i \(-0.501706\pi\)
−0.00535988 + 0.999986i \(0.501706\pi\)
\(654\) 0 0
\(655\) 841.500 84.5739i 1.28473 0.129121i
\(656\) 198.997i 0.303350i
\(657\) 0 0
\(658\) 577.093i 0.877041i
\(659\) 965.138i 1.46455i 0.681010 + 0.732275i \(0.261541\pi\)
−0.681010 + 0.732275i \(0.738459\pi\)
\(660\) 0 0
\(661\) −640.000 −0.968230 −0.484115 0.875004i \(-0.660858\pi\)
−0.484115 + 0.875004i \(0.660858\pi\)
\(662\) 274.000 0.413897
\(663\) 0 0
\(664\) −133.000 −0.200301
\(665\) −198.000 + 19.8997i −0.297744 + 0.0299244i
\(666\) 0 0
\(667\) 795.990i 1.19339i
\(668\) −762.000 −1.14072
\(669\) 0 0
\(670\) −99.0000 + 9.94987i −0.147761 + 0.0148506i
\(671\) 437.794i 0.652451i
\(672\) 0 0
\(673\) 308.446i 0.458315i 0.973389 + 0.229158i \(0.0735971\pi\)
−0.973389 + 0.229158i \(0.926403\pi\)
\(674\) 437.794i 0.649547i
\(675\) 0 0
\(676\) 681.000 1.00740
\(677\) −22.0000 −0.0324963 −0.0162482 0.999868i \(-0.505172\pi\)
−0.0162482 + 0.999868i \(0.505172\pi\)
\(678\) 0 0
\(679\) −1287.00 −1.89543
\(680\) 77.0000 + 766.140i 0.113235 + 1.12668i
\(681\) 0 0
\(682\) 288.546i 0.423088i
\(683\) −166.000 −0.243045 −0.121523 0.992589i \(-0.538778\pi\)
−0.121523 + 0.992589i \(0.538778\pi\)
\(684\) 0 0
\(685\) −49.0000 487.544i −0.0715328 0.711743i
\(686\) 9.94987i 0.0145042i
\(687\) 0 0
\(688\) 99.4987i 0.144620i
\(689\) 616.892i 0.895344i
\(690\) 0 0
\(691\) −460.000 −0.665702 −0.332851 0.942979i \(-0.608011\pi\)
−0.332851 + 0.942979i \(0.608011\pi\)
\(692\) 705.000 1.01879
\(693\) 0 0
\(694\) −179.000 −0.257925
\(695\) 32.0000 + 318.396i 0.0460432 + 0.458124i
\(696\) 0 0
\(697\) 875.589i 1.25623i
\(698\) −620.000 −0.888252
\(699\) 0 0
\(700\) 148.500 + 731.316i 0.212143 + 1.04474i
\(701\) 268.647i 0.383233i −0.981470 0.191617i \(-0.938627\pi\)
0.981470 0.191617i \(-0.0613730\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 129.348i 0.183733i
\(705\) 0 0
\(706\) −32.0000 −0.0453258
\(707\) 1683.00 2.38048
\(708\) 0 0
\(709\) −544.000 −0.767278 −0.383639 0.923483i \(-0.625329\pi\)
−0.383639 + 0.923483i \(0.625329\pi\)
\(710\) −297.000 + 29.8496i −0.418310 + 0.0420417i
\(711\) 0 0
\(712\) 417.895i 0.586931i
\(713\) 580.000 0.813464
\(714\) 0 0
\(715\) 99.0000 + 985.038i 0.138462 + 1.37767i
\(716\) 447.744i 0.625341i
\(717\) 0 0
\(718\) 537.293i 0.748319i
\(719\) 358.195i 0.498186i −0.968480 0.249093i \(-0.919868\pi\)
0.968480 0.249093i \(-0.0801324\pi\)
\(720\) 0 0
\(721\) 396.000 0.549237
\(722\) 345.000 0.477839
\(723\) 0 0
\(724\) 876.000 1.20994
\(725\) −198.000 975.088i −0.273103 1.34495i
\(726\) 0 0
\(727\) 1383.03i 1.90238i 0.308601 + 0.951192i \(0.400139\pi\)
−0.308601 + 0.951192i \(0.599861\pi\)
\(728\) −1386.00 −1.90385
\(729\) 0 0
\(730\) −445.500 + 44.7744i −0.610274 + 0.0613348i
\(731\) 437.794i 0.598898i
\(732\) 0 0
\(733\) 636.792i 0.868748i −0.900733 0.434374i \(-0.856970\pi\)
0.900733 0.434374i \(-0.143030\pi\)
\(734\) 348.246i 0.474449i
\(735\) 0 0
\(736\) −660.000 −0.896739
\(737\) −198.000 −0.268657
\(738\) 0 0
\(739\) −958.000 −1.29635 −0.648173 0.761493i \(-0.724467\pi\)
−0.648173 + 0.761493i \(0.724467\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 308.446i 0.415696i
\(743\) 602.000 0.810229 0.405114 0.914266i \(-0.367232\pi\)
0.405114 + 0.914266i \(0.367232\pi\)
\(744\) 0 0
\(745\) −49.5000 + 4.97494i −0.0664430 + 0.00667777i
\(746\) 338.296i 0.453480i
\(747\) 0 0
\(748\) 656.692i 0.877930i
\(749\) 288.546i 0.385242i
\(750\) 0 0
\(751\) 533.000 0.709720 0.354860 0.934919i \(-0.384528\pi\)
0.354860 + 0.934919i \(0.384528\pi\)
\(752\) −290.000 −0.385638
\(753\) 0 0
\(754\) 792.000 1.05040
\(755\) −128.500 1278.56i −0.170199 1.69346i
\(756\) 0 0
\(757\) 895.489i 1.18294i −0.806325 0.591472i \(-0.798547\pi\)
0.806325 0.591472i \(-0.201453\pi\)
\(758\) −248.000 −0.327177
\(759\) 0 0
\(760\) 14.0000 + 139.298i 0.0184211 + 0.183287i
\(761\) 994.987i 1.30747i −0.756722 0.653737i \(-0.773200\pi\)
0.756722 0.653737i \(-0.226800\pi\)
\(762\) 0 0
\(763\) 1034.79i 1.35621i
\(764\) 298.496i 0.390702i
\(765\) 0 0
\(766\) 394.000 0.514360
\(767\) 792.000 1.03259
\(768\) 0 0
\(769\) 605.000 0.786736 0.393368 0.919381i \(-0.371310\pi\)
0.393368 + 0.919381i \(0.371310\pi\)
\(770\) −49.5000 492.519i −0.0642857 0.639635i
\(771\) 0 0
\(772\) 507.444i 0.657310i
\(773\) −886.000 −1.14618 −0.573092 0.819491i \(-0.694256\pi\)
−0.573092 + 0.819491i \(0.694256\pi\)
\(774\) 0 0
\(775\) −710.500 + 144.273i −0.916774 + 0.186159i
\(776\) 905.439i 1.16680i
\(777\) 0 0
\(778\) 9.94987i 0.0127890i
\(779\) 159.198i 0.204362i
\(780\) 0 0
\(781\) −594.000 −0.760563
\(782\) 440.000 0.562660
\(783\) 0 0
\(784\) −250.000 −0.318878
\(785\) −792.000 + 79.5990i −1.00892 + 0.101400i
\(786\) 0 0
\(787\) 517.393i 0.657425i −0.944430 0.328712i \(-0.893385\pi\)
0.944430 0.328712i \(-0.106615\pi\)
\(788\) −609.000 −0.772843
\(789\) 0 0
\(790\) −5.00000 49.7494i −0.00632911 0.0629739i
\(791\) 795.990i 1.00631i
\(792\) 0 0
\(793\) 875.589i 1.10415i
\(794\) 59.6992i 0.0751880i
\(795\) 0 0
\(796\) −465.000 −0.584171
\(797\) 335.000 0.420326 0.210163 0.977666i \(-0.432600\pi\)
0.210163 + 0.977666i \(0.432600\pi\)
\(798\) 0 0
\(799\) 1276.00 1.59700
\(800\) 808.500 164.173i 1.01063 0.205216i
\(801\) 0 0
\(802\) 198.997i 0.248127i
\(803\) −891.000 −1.10959
\(804\) 0 0
\(805\) 990.000 99.4987i 1.22981 0.123601i
\(806\) 577.093i 0.715996i
\(807\) 0 0
\(808\) 1184.04i 1.46539i
\(809\) 417.895i 0.516557i 0.966070 + 0.258279i \(0.0831552\pi\)
−0.966070 + 0.258279i \(0.916845\pi\)
\(810\) 0 0
\(811\) −700.000 −0.863132 −0.431566 0.902081i \(-0.642039\pi\)
−0.431566 + 0.902081i \(0.642039\pi\)
\(812\) 1188.00 1.46305
\(813\) 0 0
\(814\) 0 0
\(815\) −1485.00 + 149.248i −1.82209 + 0.183127i
\(816\) 0 0
\(817\) 79.5990i 0.0974284i
\(818\) 331.000 0.404645
\(819\) 0 0
\(820\) 594.000 59.6992i 0.724390 0.0728040i
\(821\) 1114.39i 1.35735i 0.734438 + 0.678676i \(0.237446\pi\)
−0.734438 + 0.678676i \(0.762554\pi\)
\(822\) 0 0
\(823\) 945.238i 1.14853i 0.818670 + 0.574264i \(0.194712\pi\)
−0.818670 + 0.574264i \(0.805288\pi\)
\(824\) 278.596i 0.338103i
\(825\) 0 0
\(826\) −396.000 −0.479419
\(827\) 230.000 0.278114 0.139057 0.990284i \(-0.455593\pi\)
0.139057 + 0.990284i \(0.455593\pi\)
\(828\) 0 0
\(829\) 686.000 0.827503 0.413752 0.910390i \(-0.364218\pi\)
0.413752 + 0.910390i \(0.364218\pi\)
\(830\) −9.50000 94.5238i −0.0114458 0.113884i
\(831\) 0 0
\(832\) 258.697i 0.310934i
\(833\) 1100.00 1.32053
\(834\) 0 0
\(835\) −127.000 1263.63i −0.152096 1.51333i
\(836\) 119.398i 0.142821i
\(837\) 0 0
\(838\) 676.591i 0.807388i
\(839\) 1213.88i 1.44682i −0.690417 0.723412i \(-0.742573\pi\)
0.690417 0.723412i \(-0.257427\pi\)
\(840\) 0 0
\(841\) −743.000 −0.883472
\(842\) −8.00000 −0.00950119
\(843\) 0 0
\(844\) −924.000 −1.09479
\(845\) 113.500 + 1129.31i 0.134320 + 1.33646i
\(846\) 0 0
\(847\) 218.897i 0.258438i
\(848\) −155.000 −0.182783
\(849\) 0 0
\(850\) −539.000 + 109.449i −0.634118 + 0.128763i
\(851\) 0 0
\(852\) 0 0
\(853\) 736.291i 0.863178i −0.902070 0.431589i \(-0.857953\pi\)
0.902070 0.431589i \(-0.142047\pi\)
\(854\) 437.794i 0.512640i
\(855\) 0 0
\(856\) 203.000 0.237150
\(857\) −154.000 −0.179697 −0.0898483 0.995955i \(-0.528638\pi\)
−0.0898483 + 0.995955i \(0.528638\pi\)
\(858\) 0 0
\(859\) −1132.00 −1.31781 −0.658906 0.752226i \(-0.728980\pi\)
−0.658906 + 0.752226i \(0.728980\pi\)
\(860\) 297.000 29.8496i 0.345349 0.0347089i
\(861\) 0 0
\(862\) 298.496i 0.346283i
\(863\) 1040.00 1.20510 0.602549 0.798082i \(-0.294152\pi\)
0.602549 + 0.798082i \(0.294152\pi\)
\(864\) 0 0
\(865\) 117.500 + 1169.11i 0.135838 + 1.35157i
\(866\) 686.541i 0.792773i
\(867\) 0 0
\(868\) 865.639i 0.997280i
\(869\) 99.4987i 0.114498i
\(870\) 0 0
\(871\) −396.000 −0.454650
\(872\) 728.000 0.834862
\(873\) 0 0
\(874\) 80.0000 0.0915332
\(875\) −1188.00 + 368.145i −1.35771 + 0.420738i
\(876\) 0 0
\(877\) 1651.68i 1.88333i −0.336554 0.941664i \(-0.609261\pi\)
0.336554 0.941664i \(-0.390739\pi\)
\(878\) −215.000 −0.244875
\(879\) 0 0
\(880\) 247.500 24.8747i 0.281250 0.0282667i
\(881\) 417.895i 0.474341i −0.971468 0.237171i \(-0.923780\pi\)
0.971468 0.237171i \(-0.0762201\pi\)
\(882\) 0 0
\(883\) 238.797i 0.270438i 0.990816 + 0.135219i \(0.0431738\pi\)
−0.990816 + 0.135219i \(0.956826\pi\)
\(884\) 1313.38i 1.48573i
\(885\) 0 0
\(886\) 190.000 0.214447
\(887\) 614.000 0.692221 0.346110 0.938194i \(-0.387502\pi\)
0.346110 + 0.938194i \(0.387502\pi\)
\(888\) 0 0
\(889\) 1485.00 1.67042
\(890\) −297.000 + 29.8496i −0.333708 + 0.0335389i
\(891\) 0 0
\(892\) 119.398i 0.133855i
\(893\) 232.000 0.259798
\(894\) 0 0
\(895\) 742.500 74.6241i 0.829609 0.0833788i
\(896\) 1184.04i 1.32147i
\(897\) 0 0
\(898\) 119.398i 0.132960i
\(899\) 1154.19i 1.28385i
\(900\) 0 0
\(901\) 682.000 0.756937
\(902\) −396.000 −0.439024
\(903\) 0 0
\(904\) 560.000 0.619469
\(905\) 146.000 + 1452.68i 0.161326 + 1.60517i
\(906\) 0 0
\(907\) 397.995i 0.438804i 0.975635 + 0.219402i \(0.0704106\pi\)
−0.975635 + 0.219402i \(0.929589\pi\)
\(908\) −726.000 −0.799559
\(909\) 0 0
\(910\) −99.0000 985.038i −0.108791 1.08246i
\(911\) 1452.68i 1.59460i −0.603582 0.797301i \(-0.706261\pi\)
0.603582 0.797301i \(-0.293739\pi\)
\(912\) 0 0
\(913\) 189.048i 0.207062i
\(914\) 129.348i 0.141519i
\(915\) 0 0
\(916\) 318.000 0.347162
\(917\) −1683.00 −1.83533
\(918\) 0 0
\(919\) −187.000 −0.203482 −0.101741 0.994811i \(-0.532441\pi\)
−0.101741 + 0.994811i \(0.532441\pi\)
\(920\) −70.0000 696.491i −0.0760870 0.757056i
\(921\) 0 0
\(922\) 189.048i 0.205041i
\(923\) −1188.00 −1.28711
\(924\) 0 0
\(925\) 0 0
\(926\) 825.840i 0.891835i
\(927\) 0 0
\(928\) 1313.38i 1.41528i
\(929\) 676.591i 0.728301i −0.931340 0.364150i \(-0.881359\pi\)
0.931340 0.364150i \(-0.118641\pi\)
\(930\) 0 0
\(931\) 200.000 0.214823
\(932\) 426.000 0.457082
\(933\) 0 0
\(934\) 193.000 0.206638
\(935\) −1089.00 + 109.449i −1.16471 + 0.117057i
\(936\) 0 0
\(937\) 985.038i 1.05127i 0.850711 + 0.525634i \(0.176172\pi\)
−0.850711 + 0.525634i \(0.823828\pi\)
\(938\) 198.000 0.211087
\(939\) 0 0
\(940\) −87.0000 865.639i −0.0925532 0.920893i
\(941\) 308.446i 0.327785i −0.986478 0.163893i \(-0.947595\pi\)
0.986478 0.163893i \(-0.0524051\pi\)
\(942\) 0 0
\(943\) 795.990i 0.844104i
\(944\) 198.997i 0.210802i
\(945\) 0 0
\(946\) −198.000 −0.209302
\(947\) 1385.00 1.46251 0.731257 0.682102i \(-0.238934\pi\)
0.731257 + 0.682102i \(0.238934\pi\)
\(948\) 0 0
\(949\) −1782.00 −1.87777
\(950\) −98.0000 + 19.8997i −0.103158 + 0.0209471i
\(951\) 0 0
\(952\) 1532.28i 1.60954i
\(953\) 1496.00 1.56978 0.784890 0.619635i \(-0.212720\pi\)
0.784890 + 0.619635i \(0.212720\pi\)
\(954\) 0 0
\(955\) 495.000 49.7494i 0.518325 0.0520936i
\(956\) 596.992i 0.624469i
\(957\) 0 0
\(958\) 736.291i 0.768571i
\(959\) 975.088i 1.01678i
\(960\) 0 0
\(961\) −120.000 −0.124870
\(962\) 0 0
\(963\) 0 0
\(964\) −510.000 −0.529046
\(965\) 841.500 84.5739i 0.872021 0.0876414i
\(966\) 0 0
\(967\) 69.6491i 0.0720260i −0.999351 0.0360130i \(-0.988534\pi\)
0.999351 0.0360130i \(-0.0114658\pi\)
\(968\) 154.000 0.159091
\(969\) 0 0
\(970\) −643.500 + 64.6742i −0.663402 + 0.0666744i
\(971\) 746.241i 0.768528i 0.923223 + 0.384264i \(0.125545\pi\)
−0.923223 + 0.384264i \(0.874455\pi\)
\(972\) 0 0
\(973\) 636.792i 0.654462i
\(974\) 477.594i 0.490343i
\(975\) 0 0
\(976\) 220.000 0.225410
\(977\) −1054.00 −1.07881 −0.539406 0.842046i \(-0.681351\pi\)
−0.539406 + 0.842046i \(0.681351\pi\)
\(978\) 0 0
\(979\) −594.000 −0.606742
\(980\) −75.0000 746.241i −0.0765306 0.761470i
\(981\) 0 0
\(982\) 288.546i 0.293835i
\(983\) 1394.00 1.41811 0.709054 0.705154i \(-0.249122\pi\)
0.709054 + 0.705154i \(0.249122\pi\)
\(984\) 0 0
\(985\) −101.500 1009.91i −0.103046 1.02529i
\(986\) 875.589i 0.888021i
\(987\) 0 0
\(988\) 238.797i 0.241697i
\(989\) 397.995i 0.402422i
\(990\) 0 0
\(991\) −265.000 −0.267407 −0.133703 0.991021i \(-0.542687\pi\)
−0.133703 + 0.991021i \(0.542687\pi\)
\(992\) −957.000 −0.964718
\(993\) 0 0
\(994\) 594.000 0.597586
\(995\) −77.5000 771.115i −0.0778894 0.774990i
\(996\) 0 0
\(997\) 457.694i 0.459071i 0.973300 + 0.229536i \(0.0737208\pi\)
−0.973300 + 0.229536i \(0.926279\pi\)
\(998\) −290.000 −0.290581
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.d.a.134.1 2
3.2 odd 2 135.3.d.f.134.2 yes 2
4.3 odd 2 2160.3.c.c.1889.1 2
5.2 odd 4 675.3.c.q.26.1 4
5.3 odd 4 675.3.c.q.26.4 4
5.4 even 2 135.3.d.f.134.1 yes 2
9.2 odd 6 405.3.h.c.134.1 4
9.4 even 3 405.3.h.h.269.1 4
9.5 odd 6 405.3.h.c.269.2 4
9.7 even 3 405.3.h.h.134.2 4
12.11 even 2 2160.3.c.d.1889.2 2
15.2 even 4 675.3.c.q.26.3 4
15.8 even 4 675.3.c.q.26.2 4
15.14 odd 2 inner 135.3.d.a.134.2 yes 2
20.19 odd 2 2160.3.c.d.1889.1 2
45.4 even 6 405.3.h.c.269.1 4
45.14 odd 6 405.3.h.h.269.2 4
45.29 odd 6 405.3.h.h.134.1 4
45.34 even 6 405.3.h.c.134.2 4
60.59 even 2 2160.3.c.c.1889.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.d.a.134.1 2 1.1 even 1 trivial
135.3.d.a.134.2 yes 2 15.14 odd 2 inner
135.3.d.f.134.1 yes 2 5.4 even 2
135.3.d.f.134.2 yes 2 3.2 odd 2
405.3.h.c.134.1 4 9.2 odd 6
405.3.h.c.134.2 4 45.34 even 6
405.3.h.c.269.1 4 45.4 even 6
405.3.h.c.269.2 4 9.5 odd 6
405.3.h.h.134.1 4 45.29 odd 6
405.3.h.h.134.2 4 9.7 even 3
405.3.h.h.269.1 4 9.4 even 3
405.3.h.h.269.2 4 45.14 odd 6
675.3.c.q.26.1 4 5.2 odd 4
675.3.c.q.26.2 4 15.8 even 4
675.3.c.q.26.3 4 15.2 even 4
675.3.c.q.26.4 4 5.3 odd 4
2160.3.c.c.1889.1 2 4.3 odd 2
2160.3.c.c.1889.2 2 60.59 even 2
2160.3.c.d.1889.1 2 20.19 odd 2
2160.3.c.d.1889.2 2 12.11 even 2