Properties

Label 135.3.d
Level $135$
Weight $3$
Character orbit 135.d
Rep. character $\chi_{135}(134,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $7$
Sturm bound $54$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(54\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(135, [\chi])\).

Total New Old
Modular forms 42 16 26
Cusp forms 30 16 14
Eisenstein series 12 0 12

Trace form

\( 16 q + 30 q^{4} + O(q^{10}) \) \( 16 q + 30 q^{4} - 4 q^{10} + 110 q^{16} - 40 q^{19} - 50 q^{25} - 52 q^{31} - 218 q^{34} - 122 q^{40} - 98 q^{46} + 208 q^{49} + 126 q^{55} + 584 q^{61} + 4 q^{64} - 450 q^{70} - 894 q^{76} - 388 q^{79} + 632 q^{85} - 180 q^{91} + 616 q^{94} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(135, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
135.3.d.a 135.d 15.d $2$ $3.678$ \(\Q(\sqrt{-11}) \) None 135.3.d.a \(-2\) \(0\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-3q^{4}-\beta q^{5}+(-1+2\beta )q^{7}+\cdots\)
135.3.d.b 135.d 15.d $2$ $3.678$ \(\Q(\sqrt{-1}) \) None 135.3.d.b \(-2\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-3 q^{4}+(\beta+4)q^{5}-2\beta q^{7}+\cdots\)
135.3.d.c 135.d 15.d $2$ $3.678$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-15}) \) 135.3.d.c \(-1\) \(0\) \(10\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(-1-\beta )q^{2}+(8+\beta )q^{4}+5q^{5}+(-15+\cdots)q^{8}+\cdots\)
135.3.d.d 135.d 15.d $2$ $3.678$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-15}) \) 135.3.d.c \(1\) \(0\) \(-10\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(1+\beta )q^{2}+(8+\beta )q^{4}-5q^{5}+(15+\cdots)q^{8}+\cdots\)
135.3.d.e 135.d 15.d $2$ $3.678$ \(\Q(\sqrt{-1}) \) None 135.3.d.b \(2\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-3 q^{4}+(\beta-4)q^{5}+2\beta q^{7}+\cdots\)
135.3.d.f 135.d 15.d $2$ $3.678$ \(\Q(\sqrt{-11}) \) None 135.3.d.a \(2\) \(0\) \(1\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-3q^{4}+(1-\beta )q^{5}+(1-2\beta )q^{7}+\cdots\)
135.3.d.g 135.d 15.d $4$ $3.678$ \(\Q(i, \sqrt{10})\) None 135.3.d.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}+6q^{4}-\beta _{2}q^{5}+\beta _{1}q^{7}-2\beta _{3}q^{8}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(135, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(135, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)