Properties

Label 405.3.h.c
Level $405$
Weight $3$
Character orbit 405.h
Analytic conductor $11.035$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(134,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.134"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,0,6,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + (3 \beta_{2} + 3) q^{4} + ( - \beta_{3} - \beta_{2} - 1) q^{5} + (\beta_{2} + 2 \beta_1) q^{7} - 7 q^{8} + (\beta_{3} - \beta_1 + 1) q^{10} + ( - \beta_{2} - 2 \beta_1) q^{11} + ( - 4 \beta_{3} - 2 \beta_{2} - 2) q^{13}+ \cdots - 50 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 6 q^{4} - q^{5} - 28 q^{8} + 2 q^{10} - 10 q^{16} + 88 q^{17} - 16 q^{19} + 3 q^{20} + 40 q^{23} + 49 q^{25} - 58 q^{31} - 66 q^{32} - 44 q^{34} - 198 q^{35} + 8 q^{38} + 7 q^{40} - 80 q^{46}+ \cdots - 200 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 2\nu^{2} + 16\nu - 9 ) / 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 2\nu^{2} - 2\nu - 9 ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -4\nu^{3} + \nu^{2} + 8\nu + 12 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 8\beta_{2} + 8 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{3} + 2\beta _1 + 11 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
134.1
1.68614 0.396143i
−1.18614 + 1.26217i
1.68614 + 0.396143i
−1.18614 1.26217i
−0.500000 0.866025i 0 1.50000 2.59808i −4.55842 2.05446i 0 8.61684 4.97494i −7.00000 0 0.500000 + 4.97494i
134.2 −0.500000 0.866025i 0 1.50000 2.59808i 4.05842 + 2.92048i 0 −8.61684 + 4.97494i −7.00000 0 0.500000 4.97494i
269.1 −0.500000 + 0.866025i 0 1.50000 + 2.59808i −4.55842 + 2.05446i 0 8.61684 + 4.97494i −7.00000 0 0.500000 4.97494i
269.2 −0.500000 + 0.866025i 0 1.50000 + 2.59808i 4.05842 2.92048i 0 −8.61684 4.97494i −7.00000 0 0.500000 + 4.97494i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner
15.d odd 2 1 inner
45.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.3.h.c 4
3.b odd 2 1 405.3.h.h 4
5.b even 2 1 405.3.h.h 4
9.c even 3 1 135.3.d.f yes 2
9.c even 3 1 inner 405.3.h.c 4
9.d odd 6 1 135.3.d.a 2
9.d odd 6 1 405.3.h.h 4
15.d odd 2 1 inner 405.3.h.c 4
36.f odd 6 1 2160.3.c.d 2
36.h even 6 1 2160.3.c.c 2
45.h odd 6 1 135.3.d.f yes 2
45.h odd 6 1 inner 405.3.h.c 4
45.j even 6 1 135.3.d.a 2
45.j even 6 1 405.3.h.h 4
45.k odd 12 2 675.3.c.q 4
45.l even 12 2 675.3.c.q 4
180.n even 6 1 2160.3.c.d 2
180.p odd 6 1 2160.3.c.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.3.d.a 2 9.d odd 6 1
135.3.d.a 2 45.j even 6 1
135.3.d.f yes 2 9.c even 3 1
135.3.d.f yes 2 45.h odd 6 1
405.3.h.c 4 1.a even 1 1 trivial
405.3.h.c 4 9.c even 3 1 inner
405.3.h.c 4 15.d odd 2 1 inner
405.3.h.c 4 45.h odd 6 1 inner
405.3.h.h 4 3.b odd 2 1
405.3.h.h 4 5.b even 2 1
405.3.h.h 4 9.d odd 6 1
405.3.h.h 4 45.j even 6 1
675.3.c.q 4 45.k odd 12 2
675.3.c.q 4 45.l even 12 2
2160.3.c.c 2 36.h even 6 1
2160.3.c.c 2 180.p odd 6 1
2160.3.c.d 2 36.f odd 6 1
2160.3.c.d 2 180.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(405, [\chi])\):

\( T_{2}^{2} + T_{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{4} - 99T_{7}^{2} + 9801 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + T^{3} + \cdots + 625 \) Copy content Toggle raw display
$7$ \( T^{4} - 99T^{2} + 9801 \) Copy content Toggle raw display
$11$ \( T^{4} - 99T^{2} + 9801 \) Copy content Toggle raw display
$13$ \( T^{4} - 396 T^{2} + 156816 \) Copy content Toggle raw display
$17$ \( (T - 22)^{4} \) Copy content Toggle raw display
$19$ \( (T + 4)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 20 T + 400)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 1584 T^{2} + 2509056 \) Copy content Toggle raw display
$31$ \( (T^{2} + 29 T + 841)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} - 1584 T^{2} + 2509056 \) Copy content Toggle raw display
$43$ \( T^{4} - 396 T^{2} + 156816 \) Copy content Toggle raw display
$47$ \( (T^{2} + 58 T + 3364)^{2} \) Copy content Toggle raw display
$53$ \( (T - 31)^{4} \) Copy content Toggle raw display
$59$ \( T^{4} - 1584 T^{2} + 2509056 \) Copy content Toggle raw display
$61$ \( (T^{2} + 44 T + 1936)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 396 T^{2} + 156816 \) Copy content Toggle raw display
$71$ \( (T^{2} + 3564)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 8019)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 10 T + 100)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 19 T + 361)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 3564)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 16731 T^{2} + 279926361 \) Copy content Toggle raw display
show more
show less