Properties

Label 405.3.g.h.163.4
Level $405$
Weight $3$
Character 405.163
Analytic conductor $11.035$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(82,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 2 x^{18} + 8 x^{17} + 245 x^{16} - 440 x^{15} + 422 x^{14} + 1724 x^{13} + \cdots + 11449 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 163.4
Root \(-1.18732 - 1.18732i\) of defining polynomial
Character \(\chi\) \(=\) 405.163
Dual form 405.3.g.h.82.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.18732 + 1.18732i) q^{2} +1.18052i q^{4} +(-2.02288 - 4.57252i) q^{5} +(-1.94050 + 1.94050i) q^{7} +(-6.15096 - 6.15096i) q^{8} +(7.83089 + 3.02725i) q^{10} +14.5360 q^{11} +(-4.15569 - 4.15569i) q^{13} -4.60801i q^{14} +9.88429 q^{16} +(5.66128 - 5.66128i) q^{17} +30.5333i q^{19} +(5.39796 - 2.38806i) q^{20} +(-17.2589 + 17.2589i) q^{22} +(15.9961 + 15.9961i) q^{23} +(-16.8159 + 18.4994i) q^{25} +9.86831 q^{26} +(-2.29080 - 2.29080i) q^{28} -1.74629i q^{29} +51.0538 q^{31} +(12.8680 - 12.8680i) q^{32} +13.4436i q^{34} +(12.7984 + 4.94758i) q^{35} +(2.78899 - 2.78899i) q^{37} +(-36.2529 - 36.2529i) q^{38} +(-15.6827 + 40.5681i) q^{40} -33.1234 q^{41} +(28.0046 + 28.0046i) q^{43} +17.1600i q^{44} -37.9852 q^{46} +(-30.1248 + 30.1248i) q^{47} +41.4689i q^{49} +(-1.99882 - 41.9306i) q^{50} +(4.90588 - 4.90588i) q^{52} +(-4.77052 - 4.77052i) q^{53} +(-29.4046 - 66.4660i) q^{55} +23.8719 q^{56} +(2.07341 + 2.07341i) q^{58} +80.6672i q^{59} +15.2319 q^{61} +(-60.6174 + 60.6174i) q^{62} +70.0941i q^{64} +(-10.5955 + 27.4085i) q^{65} +(45.2721 - 45.2721i) q^{67} +(6.68326 + 6.68326i) q^{68} +(-21.0702 + 9.32147i) q^{70} +45.4076 q^{71} +(92.0685 + 92.0685i) q^{73} +6.62288i q^{74} -36.0452 q^{76} +(-28.2071 + 28.2071i) q^{77} +32.5525i q^{79} +(-19.9948 - 45.1961i) q^{80} +(39.3283 - 39.3283i) q^{82} +(-4.89551 - 4.89551i) q^{83} +(-37.3384 - 14.4342i) q^{85} -66.5010 q^{86} +(-89.4101 - 89.4101i) q^{88} -35.7887i q^{89} +16.1283 q^{91} +(-18.8837 + 18.8837i) q^{92} -71.5359i q^{94} +(139.614 - 61.7653i) q^{95} +(43.7021 - 43.7021i) q^{97} +(-49.2370 - 49.2370i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{2} + 2 q^{5} + 2 q^{7} - 12 q^{8} - 4 q^{10} - 8 q^{11} + 2 q^{13} - 28 q^{16} + 14 q^{17} + 114 q^{20} - 14 q^{22} - 82 q^{23} + 8 q^{25} - 56 q^{26} - 44 q^{28} + 4 q^{31} + 14 q^{32} + 176 q^{35}+ \cdots - 938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.18732 + 1.18732i −0.593662 + 0.593662i −0.938619 0.344956i \(-0.887894\pi\)
0.344956 + 0.938619i \(0.387894\pi\)
\(3\) 0 0
\(4\) 1.18052i 0.295130i
\(5\) −2.02288 4.57252i −0.404577 0.914504i
\(6\) 0 0
\(7\) −1.94050 + 1.94050i −0.277215 + 0.277215i −0.831996 0.554782i \(-0.812802\pi\)
0.554782 + 0.831996i \(0.312802\pi\)
\(8\) −6.15096 6.15096i −0.768870 0.768870i
\(9\) 0 0
\(10\) 7.83089 + 3.02725i 0.783089 + 0.302725i
\(11\) 14.5360 1.32145 0.660726 0.750628i \(-0.270249\pi\)
0.660726 + 0.750628i \(0.270249\pi\)
\(12\) 0 0
\(13\) −4.15569 4.15569i −0.319668 0.319668i 0.528971 0.848640i \(-0.322578\pi\)
−0.848640 + 0.528971i \(0.822578\pi\)
\(14\) 4.60801i 0.329144i
\(15\) 0 0
\(16\) 9.88429 0.617768
\(17\) 5.66128 5.66128i 0.333017 0.333017i −0.520714 0.853731i \(-0.674334\pi\)
0.853731 + 0.520714i \(0.174334\pi\)
\(18\) 0 0
\(19\) 30.5333i 1.60701i 0.595295 + 0.803507i \(0.297035\pi\)
−0.595295 + 0.803507i \(0.702965\pi\)
\(20\) 5.39796 2.38806i 0.269898 0.119403i
\(21\) 0 0
\(22\) −17.2589 + 17.2589i −0.784496 + 0.784496i
\(23\) 15.9961 + 15.9961i 0.695483 + 0.695483i 0.963433 0.267950i \(-0.0863461\pi\)
−0.267950 + 0.963433i \(0.586346\pi\)
\(24\) 0 0
\(25\) −16.8159 + 18.4994i −0.672635 + 0.739974i
\(26\) 9.86831 0.379550
\(27\) 0 0
\(28\) −2.29080 2.29080i −0.0818144 0.0818144i
\(29\) 1.74629i 0.0602168i −0.999547 0.0301084i \(-0.990415\pi\)
0.999547 0.0301084i \(-0.00958524\pi\)
\(30\) 0 0
\(31\) 51.0538 1.64690 0.823448 0.567391i \(-0.192047\pi\)
0.823448 + 0.567391i \(0.192047\pi\)
\(32\) 12.8680 12.8680i 0.402124 0.402124i
\(33\) 0 0
\(34\) 13.4436i 0.395399i
\(35\) 12.7984 + 4.94758i 0.365668 + 0.141359i
\(36\) 0 0
\(37\) 2.78899 2.78899i 0.0753782 0.0753782i −0.668413 0.743791i \(-0.733026\pi\)
0.743791 + 0.668413i \(0.233026\pi\)
\(38\) −36.2529 36.2529i −0.954024 0.954024i
\(39\) 0 0
\(40\) −15.6827 + 40.5681i −0.392068 + 1.01420i
\(41\) −33.1234 −0.807888 −0.403944 0.914784i \(-0.632361\pi\)
−0.403944 + 0.914784i \(0.632361\pi\)
\(42\) 0 0
\(43\) 28.0046 + 28.0046i 0.651269 + 0.651269i 0.953299 0.302029i \(-0.0976641\pi\)
−0.302029 + 0.953299i \(0.597664\pi\)
\(44\) 17.1600i 0.390000i
\(45\) 0 0
\(46\) −37.9852 −0.825764
\(47\) −30.1248 + 30.1248i −0.640954 + 0.640954i −0.950790 0.309836i \(-0.899726\pi\)
0.309836 + 0.950790i \(0.399726\pi\)
\(48\) 0 0
\(49\) 41.4689i 0.846304i
\(50\) −1.99882 41.9306i −0.0399765 0.838613i
\(51\) 0 0
\(52\) 4.90588 4.90588i 0.0943438 0.0943438i
\(53\) −4.77052 4.77052i −0.0900098 0.0900098i 0.660668 0.750678i \(-0.270273\pi\)
−0.750678 + 0.660668i \(0.770273\pi\)
\(54\) 0 0
\(55\) −29.4046 66.4660i −0.534628 1.20847i
\(56\) 23.8719 0.426284
\(57\) 0 0
\(58\) 2.07341 + 2.07341i 0.0357484 + 0.0357484i
\(59\) 80.6672i 1.36724i 0.729838 + 0.683620i \(0.239596\pi\)
−0.729838 + 0.683620i \(0.760404\pi\)
\(60\) 0 0
\(61\) 15.2319 0.249703 0.124851 0.992175i \(-0.460155\pi\)
0.124851 + 0.992175i \(0.460155\pi\)
\(62\) −60.6174 + 60.6174i −0.977700 + 0.977700i
\(63\) 0 0
\(64\) 70.0941i 1.09522i
\(65\) −10.5955 + 27.4085i −0.163008 + 0.421669i
\(66\) 0 0
\(67\) 45.2721 45.2721i 0.675703 0.675703i −0.283322 0.959025i \(-0.591437\pi\)
0.959025 + 0.283322i \(0.0914365\pi\)
\(68\) 6.68326 + 6.68326i 0.0982832 + 0.0982832i
\(69\) 0 0
\(70\) −21.0702 + 9.32147i −0.301003 + 0.133164i
\(71\) 45.4076 0.639543 0.319772 0.947495i \(-0.396394\pi\)
0.319772 + 0.947495i \(0.396394\pi\)
\(72\) 0 0
\(73\) 92.0685 + 92.0685i 1.26121 + 1.26121i 0.950506 + 0.310707i \(0.100566\pi\)
0.310707 + 0.950506i \(0.399434\pi\)
\(74\) 6.62288i 0.0894984i
\(75\) 0 0
\(76\) −36.0452 −0.474279
\(77\) −28.2071 + 28.2071i −0.366326 + 0.366326i
\(78\) 0 0
\(79\) 32.5525i 0.412057i 0.978546 + 0.206028i \(0.0660539\pi\)
−0.978546 + 0.206028i \(0.933946\pi\)
\(80\) −19.9948 45.1961i −0.249935 0.564951i
\(81\) 0 0
\(82\) 39.3283 39.3283i 0.479613 0.479613i
\(83\) −4.89551 4.89551i −0.0589820 0.0589820i 0.677001 0.735983i \(-0.263279\pi\)
−0.735983 + 0.677001i \(0.763279\pi\)
\(84\) 0 0
\(85\) −37.3384 14.4342i −0.439276 0.169814i
\(86\) −66.5010 −0.773268
\(87\) 0 0
\(88\) −89.4101 89.4101i −1.01602 1.01602i
\(89\) 35.7887i 0.402121i −0.979579 0.201060i \(-0.935561\pi\)
0.979579 0.201060i \(-0.0644387\pi\)
\(90\) 0 0
\(91\) 16.1283 0.177234
\(92\) −18.8837 + 18.8837i −0.205258 + 0.205258i
\(93\) 0 0
\(94\) 71.5359i 0.761020i
\(95\) 139.614 61.7653i 1.46962 0.650161i
\(96\) 0 0
\(97\) 43.7021 43.7021i 0.450537 0.450537i −0.444995 0.895533i \(-0.646795\pi\)
0.895533 + 0.444995i \(0.146795\pi\)
\(98\) −49.2370 49.2370i −0.502419 0.502419i
\(99\) 0 0
\(100\) −21.8389 19.8515i −0.218389 0.198515i
\(101\) 109.176 1.08095 0.540475 0.841360i \(-0.318245\pi\)
0.540475 + 0.841360i \(0.318245\pi\)
\(102\) 0 0
\(103\) −82.9269 82.9269i −0.805116 0.805116i 0.178774 0.983890i \(-0.442787\pi\)
−0.983890 + 0.178774i \(0.942787\pi\)
\(104\) 51.1230i 0.491567i
\(105\) 0 0
\(106\) 11.3283 0.106871
\(107\) −24.4404 + 24.4404i −0.228415 + 0.228415i −0.812030 0.583615i \(-0.801638\pi\)
0.583615 + 0.812030i \(0.301638\pi\)
\(108\) 0 0
\(109\) 38.5655i 0.353812i −0.984228 0.176906i \(-0.943391\pi\)
0.984228 0.176906i \(-0.0566088\pi\)
\(110\) 113.829 + 44.0039i 1.03481 + 0.400036i
\(111\) 0 0
\(112\) −19.1805 + 19.1805i −0.171254 + 0.171254i
\(113\) −128.243 128.243i −1.13490 1.13490i −0.989351 0.145547i \(-0.953506\pi\)
−0.145547 0.989351i \(-0.546494\pi\)
\(114\) 0 0
\(115\) 40.7843 105.501i 0.354646 0.917399i
\(116\) 2.06153 0.0177718
\(117\) 0 0
\(118\) −95.7782 95.7782i −0.811679 0.811679i
\(119\) 21.9715i 0.184634i
\(120\) 0 0
\(121\) 90.2942 0.746233
\(122\) −18.0852 + 18.0852i −0.148239 + 0.148239i
\(123\) 0 0
\(124\) 60.2701i 0.486049i
\(125\) 118.605 + 39.4689i 0.948842 + 0.315751i
\(126\) 0 0
\(127\) 71.5886 71.5886i 0.563690 0.563690i −0.366664 0.930353i \(-0.619500\pi\)
0.930353 + 0.366664i \(0.119500\pi\)
\(128\) −31.7525 31.7525i −0.248067 0.248067i
\(129\) 0 0
\(130\) −19.9624 45.1230i −0.153557 0.347100i
\(131\) 187.376 1.43035 0.715176 0.698945i \(-0.246347\pi\)
0.715176 + 0.698945i \(0.246347\pi\)
\(132\) 0 0
\(133\) −59.2499 59.2499i −0.445488 0.445488i
\(134\) 107.505i 0.802279i
\(135\) 0 0
\(136\) −69.6446 −0.512093
\(137\) 27.0279 27.0279i 0.197284 0.197284i −0.601551 0.798835i \(-0.705450\pi\)
0.798835 + 0.601551i \(0.205450\pi\)
\(138\) 0 0
\(139\) 100.919i 0.726037i 0.931782 + 0.363018i \(0.118254\pi\)
−0.931782 + 0.363018i \(0.881746\pi\)
\(140\) −5.84071 + 15.1088i −0.0417194 + 0.107920i
\(141\) 0 0
\(142\) −53.9135 + 53.9135i −0.379673 + 0.379673i
\(143\) −60.4070 60.4070i −0.422426 0.422426i
\(144\) 0 0
\(145\) −7.98493 + 3.53253i −0.0550685 + 0.0243623i
\(146\) −218.630 −1.49747
\(147\) 0 0
\(148\) 3.29246 + 3.29246i 0.0222464 + 0.0222464i
\(149\) 48.9865i 0.328768i −0.986396 0.164384i \(-0.947436\pi\)
0.986396 0.164384i \(-0.0525637\pi\)
\(150\) 0 0
\(151\) 102.200 0.676819 0.338409 0.940999i \(-0.390111\pi\)
0.338409 + 0.940999i \(0.390111\pi\)
\(152\) 187.809 187.809i 1.23559 1.23559i
\(153\) 0 0
\(154\) 66.9819i 0.434947i
\(155\) −103.276 233.445i −0.666296 1.50609i
\(156\) 0 0
\(157\) 96.5973 96.5973i 0.615269 0.615269i −0.329045 0.944314i \(-0.606727\pi\)
0.944314 + 0.329045i \(0.106727\pi\)
\(158\) −38.6504 38.6504i −0.244623 0.244623i
\(159\) 0 0
\(160\) −84.8695 32.8087i −0.530435 0.205054i
\(161\) −62.0810 −0.385596
\(162\) 0 0
\(163\) −150.604 150.604i −0.923951 0.923951i 0.0733548 0.997306i \(-0.476629\pi\)
−0.997306 + 0.0733548i \(0.976629\pi\)
\(164\) 39.1029i 0.238432i
\(165\) 0 0
\(166\) 11.6251 0.0700308
\(167\) −94.1465 + 94.1465i −0.563752 + 0.563752i −0.930371 0.366619i \(-0.880515\pi\)
0.366619 + 0.930371i \(0.380515\pi\)
\(168\) 0 0
\(169\) 134.460i 0.795624i
\(170\) 61.4709 27.1948i 0.361594 0.159969i
\(171\) 0 0
\(172\) −33.0600 + 33.0600i −0.192209 + 0.192209i
\(173\) −103.567 103.567i −0.598653 0.598653i 0.341301 0.939954i \(-0.389132\pi\)
−0.939954 + 0.341301i \(0.889132\pi\)
\(174\) 0 0
\(175\) −3.26678 68.5293i −0.0186673 0.391596i
\(176\) 143.678 0.816350
\(177\) 0 0
\(178\) 42.4929 + 42.4929i 0.238724 + 0.238724i
\(179\) 141.161i 0.788611i 0.918979 + 0.394305i \(0.129015\pi\)
−0.918979 + 0.394305i \(0.870985\pi\)
\(180\) 0 0
\(181\) 182.292 1.00714 0.503568 0.863956i \(-0.332020\pi\)
0.503568 + 0.863956i \(0.332020\pi\)
\(182\) −19.1495 + 19.1495i −0.105217 + 0.105217i
\(183\) 0 0
\(184\) 196.783i 1.06947i
\(185\) −18.3945 7.11092i −0.0994299 0.0384374i
\(186\) 0 0
\(187\) 82.2922 82.2922i 0.440065 0.440065i
\(188\) −35.5630 35.5630i −0.189165 0.189165i
\(189\) 0 0
\(190\) −92.4317 + 239.103i −0.486483 + 1.25843i
\(191\) 218.167 1.14224 0.571118 0.820868i \(-0.306510\pi\)
0.571118 + 0.820868i \(0.306510\pi\)
\(192\) 0 0
\(193\) 155.557 + 155.557i 0.805996 + 0.805996i 0.984025 0.178030i \(-0.0569723\pi\)
−0.178030 + 0.984025i \(0.556972\pi\)
\(194\) 103.777i 0.534934i
\(195\) 0 0
\(196\) −48.9549 −0.249770
\(197\) −241.895 + 241.895i −1.22789 + 1.22789i −0.263133 + 0.964759i \(0.584756\pi\)
−0.964759 + 0.263133i \(0.915244\pi\)
\(198\) 0 0
\(199\) 126.744i 0.636904i −0.947939 0.318452i \(-0.896837\pi\)
0.947939 0.318452i \(-0.103163\pi\)
\(200\) 217.223 10.3550i 1.08611 0.0517748i
\(201\) 0 0
\(202\) −129.627 + 129.627i −0.641719 + 0.641719i
\(203\) 3.38867 + 3.38867i 0.0166930 + 0.0166930i
\(204\) 0 0
\(205\) 67.0048 + 151.458i 0.326853 + 0.738817i
\(206\) 196.922 0.955934
\(207\) 0 0
\(208\) −41.0760 41.0760i −0.197481 0.197481i
\(209\) 443.831i 2.12359i
\(210\) 0 0
\(211\) −209.613 −0.993429 −0.496714 0.867914i \(-0.665460\pi\)
−0.496714 + 0.867914i \(0.665460\pi\)
\(212\) 5.63170 5.63170i 0.0265646 0.0265646i
\(213\) 0 0
\(214\) 58.0374i 0.271203i
\(215\) 71.4015 184.701i 0.332100 0.859077i
\(216\) 0 0
\(217\) −99.0700 + 99.0700i −0.456544 + 0.456544i
\(218\) 45.7897 + 45.7897i 0.210045 + 0.210045i
\(219\) 0 0
\(220\) 78.4645 34.7127i 0.356657 0.157785i
\(221\) −47.0531 −0.212910
\(222\) 0 0
\(223\) 202.625 + 202.625i 0.908630 + 0.908630i 0.996162 0.0875316i \(-0.0278979\pi\)
−0.0875316 + 0.996162i \(0.527898\pi\)
\(224\) 49.9407i 0.222949i
\(225\) 0 0
\(226\) 304.533 1.34749
\(227\) −135.036 + 135.036i −0.594871 + 0.594871i −0.938943 0.344072i \(-0.888193\pi\)
0.344072 + 0.938943i \(0.388193\pi\)
\(228\) 0 0
\(229\) 299.260i 1.30681i 0.757008 + 0.653406i \(0.226661\pi\)
−0.757008 + 0.653406i \(0.773339\pi\)
\(230\) 76.8396 + 173.688i 0.334085 + 0.755165i
\(231\) 0 0
\(232\) −10.7413 + 10.7413i −0.0462989 + 0.0462989i
\(233\) −54.0196 54.0196i −0.231844 0.231844i 0.581618 0.813462i \(-0.302420\pi\)
−0.813462 + 0.581618i \(0.802420\pi\)
\(234\) 0 0
\(235\) 198.685 + 76.8073i 0.845469 + 0.326840i
\(236\) −95.2293 −0.403514
\(237\) 0 0
\(238\) −26.0872 26.0872i −0.109610 0.109610i
\(239\) 147.060i 0.615314i −0.951497 0.307657i \(-0.900455\pi\)
0.951497 0.307657i \(-0.0995450\pi\)
\(240\) 0 0
\(241\) −389.900 −1.61784 −0.808921 0.587918i \(-0.799948\pi\)
−0.808921 + 0.587918i \(0.799948\pi\)
\(242\) −107.209 + 107.209i −0.443010 + 0.443010i
\(243\) 0 0
\(244\) 17.9815i 0.0736948i
\(245\) 189.617 83.8868i 0.773949 0.342395i
\(246\) 0 0
\(247\) 126.887 126.887i 0.513712 0.513712i
\(248\) −314.030 314.030i −1.26625 1.26625i
\(249\) 0 0
\(250\) −187.685 + 93.9605i −0.750741 + 0.375842i
\(251\) −239.421 −0.953870 −0.476935 0.878938i \(-0.658252\pi\)
−0.476935 + 0.878938i \(0.658252\pi\)
\(252\) 0 0
\(253\) 232.519 + 232.519i 0.919047 + 0.919047i
\(254\) 169.998i 0.669282i
\(255\) 0 0
\(256\) −204.975 −0.800685
\(257\) −17.1180 + 17.1180i −0.0666071 + 0.0666071i −0.739626 0.673019i \(-0.764997\pi\)
0.673019 + 0.739626i \(0.264997\pi\)
\(258\) 0 0
\(259\) 10.8241i 0.0417919i
\(260\) −32.3563 12.5082i −0.124447 0.0481085i
\(261\) 0 0
\(262\) −222.476 + 222.476i −0.849146 + 0.849146i
\(263\) −74.9185 74.9185i −0.284861 0.284861i 0.550183 0.835044i \(-0.314558\pi\)
−0.835044 + 0.550183i \(0.814558\pi\)
\(264\) 0 0
\(265\) −12.1631 + 31.4635i −0.0458985 + 0.118730i
\(266\) 140.698 0.528939
\(267\) 0 0
\(268\) 53.4446 + 53.4446i 0.199420 + 0.199420i
\(269\) 33.3603i 0.124016i −0.998076 0.0620079i \(-0.980250\pi\)
0.998076 0.0620079i \(-0.0197504\pi\)
\(270\) 0 0
\(271\) −89.2173 −0.329215 −0.164608 0.986359i \(-0.552636\pi\)
−0.164608 + 0.986359i \(0.552636\pi\)
\(272\) 55.9577 55.9577i 0.205727 0.205727i
\(273\) 0 0
\(274\) 64.1817i 0.234240i
\(275\) −244.435 + 268.906i −0.888855 + 0.977840i
\(276\) 0 0
\(277\) −67.3186 + 67.3186i −0.243027 + 0.243027i −0.818101 0.575074i \(-0.804973\pi\)
0.575074 + 0.818101i \(0.304973\pi\)
\(278\) −119.824 119.824i −0.431021 0.431021i
\(279\) 0 0
\(280\) −48.2901 109.155i −0.172465 0.389838i
\(281\) −299.660 −1.06640 −0.533202 0.845988i \(-0.679012\pi\)
−0.533202 + 0.845988i \(0.679012\pi\)
\(282\) 0 0
\(283\) 2.98477 + 2.98477i 0.0105469 + 0.0105469i 0.712361 0.701814i \(-0.247626\pi\)
−0.701814 + 0.712361i \(0.747626\pi\)
\(284\) 53.6046i 0.188749i
\(285\) 0 0
\(286\) 143.445 0.501557
\(287\) 64.2761 64.2761i 0.223958 0.223958i
\(288\) 0 0
\(289\) 224.900i 0.778200i
\(290\) 5.28644 13.6750i 0.0182291 0.0471551i
\(291\) 0 0
\(292\) −108.689 + 108.689i −0.372222 + 0.372222i
\(293\) 81.1381 + 81.1381i 0.276922 + 0.276922i 0.831879 0.554957i \(-0.187265\pi\)
−0.554957 + 0.831879i \(0.687265\pi\)
\(294\) 0 0
\(295\) 368.852 163.180i 1.25035 0.553154i
\(296\) −34.3100 −0.115912
\(297\) 0 0
\(298\) 58.1629 + 58.1629i 0.195177 + 0.195177i
\(299\) 132.950i 0.444648i
\(300\) 0 0
\(301\) −108.686 −0.361083
\(302\) −121.344 + 121.344i −0.401802 + 0.401802i
\(303\) 0 0
\(304\) 301.800i 0.992762i
\(305\) −30.8123 69.6480i −0.101024 0.228354i
\(306\) 0 0
\(307\) −148.857 + 148.857i −0.484876 + 0.484876i −0.906685 0.421809i \(-0.861395\pi\)
0.421809 + 0.906685i \(0.361395\pi\)
\(308\) −33.2990 33.2990i −0.108114 0.108114i
\(309\) 0 0
\(310\) 399.796 + 154.552i 1.28967 + 0.498556i
\(311\) 34.8637 0.112102 0.0560510 0.998428i \(-0.482149\pi\)
0.0560510 + 0.998428i \(0.482149\pi\)
\(312\) 0 0
\(313\) 119.051 + 119.051i 0.380354 + 0.380354i 0.871230 0.490876i \(-0.163323\pi\)
−0.490876 + 0.871230i \(0.663323\pi\)
\(314\) 229.385i 0.730524i
\(315\) 0 0
\(316\) −38.4289 −0.121610
\(317\) 109.319 109.319i 0.344853 0.344853i −0.513335 0.858188i \(-0.671590\pi\)
0.858188 + 0.513335i \(0.171590\pi\)
\(318\) 0 0
\(319\) 25.3839i 0.0795735i
\(320\) 320.507 141.792i 1.00158 0.443101i
\(321\) 0 0
\(322\) 73.7103 73.7103i 0.228914 0.228914i
\(323\) 172.857 + 172.857i 0.535162 + 0.535162i
\(324\) 0 0
\(325\) 146.759 6.99598i 0.451567 0.0215261i
\(326\) 357.632 1.09703
\(327\) 0 0
\(328\) 203.741 + 203.741i 0.621161 + 0.621161i
\(329\) 116.915i 0.355363i
\(330\) 0 0
\(331\) −149.254 −0.450920 −0.225460 0.974252i \(-0.572388\pi\)
−0.225460 + 0.974252i \(0.572388\pi\)
\(332\) 5.77925 5.77925i 0.0174074 0.0174074i
\(333\) 0 0
\(334\) 223.565i 0.669356i
\(335\) −298.588 115.427i −0.891307 0.344559i
\(336\) 0 0
\(337\) −48.5749 + 48.5749i −0.144139 + 0.144139i −0.775494 0.631355i \(-0.782499\pi\)
0.631355 + 0.775494i \(0.282499\pi\)
\(338\) 159.648 + 159.648i 0.472332 + 0.472332i
\(339\) 0 0
\(340\) 17.0399 44.0788i 0.0501173 0.129644i
\(341\) 742.116 2.17629
\(342\) 0 0
\(343\) −175.555 175.555i −0.511822 0.511822i
\(344\) 344.510i 1.00148i
\(345\) 0 0
\(346\) 245.935 0.710795
\(347\) 14.4128 14.4128i 0.0415356 0.0415356i −0.686034 0.727570i \(-0.740650\pi\)
0.727570 + 0.686034i \(0.240650\pi\)
\(348\) 0 0
\(349\) 138.391i 0.396537i 0.980148 + 0.198268i \(0.0635318\pi\)
−0.980148 + 0.198268i \(0.936468\pi\)
\(350\) 85.2452 + 77.4878i 0.243558 + 0.221394i
\(351\) 0 0
\(352\) 187.048 187.048i 0.531388 0.531388i
\(353\) −16.5350 16.5350i −0.0468412 0.0468412i 0.683298 0.730139i \(-0.260545\pi\)
−0.730139 + 0.683298i \(0.760545\pi\)
\(354\) 0 0
\(355\) −91.8543 207.627i −0.258744 0.584865i
\(356\) 42.2494 0.118678
\(357\) 0 0
\(358\) −167.604 167.604i −0.468168 0.468168i
\(359\) 401.663i 1.11884i −0.828885 0.559419i \(-0.811024\pi\)
0.828885 0.559419i \(-0.188976\pi\)
\(360\) 0 0
\(361\) −571.281 −1.58250
\(362\) −216.439 + 216.439i −0.597899 + 0.597899i
\(363\) 0 0
\(364\) 19.0397i 0.0523070i
\(365\) 234.741 607.229i 0.643127 1.66364i
\(366\) 0 0
\(367\) −444.467 + 444.467i −1.21108 + 1.21108i −0.240410 + 0.970672i \(0.577282\pi\)
−0.970672 + 0.240410i \(0.922718\pi\)
\(368\) 158.110 + 158.110i 0.429647 + 0.429647i
\(369\) 0 0
\(370\) 30.2832 13.3973i 0.0818466 0.0362090i
\(371\) 18.5144 0.0499041
\(372\) 0 0
\(373\) 264.172 + 264.172i 0.708235 + 0.708235i 0.966164 0.257929i \(-0.0830401\pi\)
−0.257929 + 0.966164i \(0.583040\pi\)
\(374\) 195.415i 0.522500i
\(375\) 0 0
\(376\) 370.593 0.985620
\(377\) −7.25702 + 7.25702i −0.0192494 + 0.0192494i
\(378\) 0 0
\(379\) 223.796i 0.590491i −0.955421 0.295246i \(-0.904599\pi\)
0.955421 0.295246i \(-0.0954015\pi\)
\(380\) 72.9152 + 164.817i 0.191882 + 0.433730i
\(381\) 0 0
\(382\) −259.035 + 259.035i −0.678103 + 0.678103i
\(383\) −25.1535 25.1535i −0.0656750 0.0656750i 0.673506 0.739181i \(-0.264787\pi\)
−0.739181 + 0.673506i \(0.764787\pi\)
\(384\) 0 0
\(385\) 186.037 + 71.9178i 0.483213 + 0.186799i
\(386\) −369.394 −0.956978
\(387\) 0 0
\(388\) 51.5913 + 51.5913i 0.132967 + 0.132967i
\(389\) 208.194i 0.535204i −0.963530 0.267602i \(-0.913769\pi\)
0.963530 0.267602i \(-0.0862312\pi\)
\(390\) 0 0
\(391\) 181.117 0.463215
\(392\) 255.074 255.074i 0.650698 0.650698i
\(393\) 0 0
\(394\) 574.416i 1.45791i
\(395\) 148.847 65.8499i 0.376828 0.166709i
\(396\) 0 0
\(397\) 231.955 231.955i 0.584269 0.584269i −0.351805 0.936073i \(-0.614432\pi\)
0.936073 + 0.351805i \(0.114432\pi\)
\(398\) 150.486 + 150.486i 0.378106 + 0.378106i
\(399\) 0 0
\(400\) −166.213 + 182.853i −0.415533 + 0.457132i
\(401\) −94.0606 −0.234565 −0.117283 0.993099i \(-0.537418\pi\)
−0.117283 + 0.993099i \(0.537418\pi\)
\(402\) 0 0
\(403\) −212.164 212.164i −0.526461 0.526461i
\(404\) 128.884i 0.319021i
\(405\) 0 0
\(406\) −8.04691 −0.0198200
\(407\) 40.5407 40.5407i 0.0996086 0.0996086i
\(408\) 0 0
\(409\) 682.148i 1.66784i −0.551883 0.833922i \(-0.686090\pi\)
0.551883 0.833922i \(-0.313910\pi\)
\(410\) −259.386 100.273i −0.632648 0.244568i
\(411\) 0 0
\(412\) 97.8970 97.8970i 0.237614 0.237614i
\(413\) −156.535 156.535i −0.379019 0.379019i
\(414\) 0 0
\(415\) −12.4818 + 32.2878i −0.0300765 + 0.0778020i
\(416\) −106.951 −0.257093
\(417\) 0 0
\(418\) −526.971 526.971i −1.26070 1.26070i
\(419\) 209.749i 0.500595i 0.968169 + 0.250298i \(0.0805285\pi\)
−0.968169 + 0.250298i \(0.919472\pi\)
\(420\) 0 0
\(421\) −5.89649 −0.0140059 −0.00700296 0.999975i \(-0.502229\pi\)
−0.00700296 + 0.999975i \(0.502229\pi\)
\(422\) 248.879 248.879i 0.589761 0.589761i
\(423\) 0 0
\(424\) 58.6866i 0.138412i
\(425\) 9.53059 + 199.929i 0.0224249 + 0.470422i
\(426\) 0 0
\(427\) −29.5575 + 29.5575i −0.0692212 + 0.0692212i
\(428\) −28.8524 28.8524i −0.0674122 0.0674122i
\(429\) 0 0
\(430\) 134.524 + 304.077i 0.312846 + 0.707157i
\(431\) −623.625 −1.44693 −0.723463 0.690364i \(-0.757451\pi\)
−0.723463 + 0.690364i \(0.757451\pi\)
\(432\) 0 0
\(433\) 342.585 + 342.585i 0.791190 + 0.791190i 0.981688 0.190497i \(-0.0610100\pi\)
−0.190497 + 0.981688i \(0.561010\pi\)
\(434\) 235.256i 0.542066i
\(435\) 0 0
\(436\) 45.5274 0.104421
\(437\) −488.414 + 488.414i −1.11765 + 1.11765i
\(438\) 0 0
\(439\) 470.070i 1.07077i −0.844607 0.535387i \(-0.820166\pi\)
0.844607 0.535387i \(-0.179834\pi\)
\(440\) −227.963 + 589.696i −0.518098 + 1.34022i
\(441\) 0 0
\(442\) 55.8673 55.8673i 0.126397 0.126397i
\(443\) 113.854 + 113.854i 0.257007 + 0.257007i 0.823836 0.566829i \(-0.191830\pi\)
−0.566829 + 0.823836i \(0.691830\pi\)
\(444\) 0 0
\(445\) −163.645 + 72.3965i −0.367741 + 0.162689i
\(446\) −481.162 −1.07884
\(447\) 0 0
\(448\) −136.018 136.018i −0.303611 0.303611i
\(449\) 540.377i 1.20351i −0.798680 0.601756i \(-0.794468\pi\)
0.798680 0.601756i \(-0.205532\pi\)
\(450\) 0 0
\(451\) −481.481 −1.06759
\(452\) 151.394 151.394i 0.334943 0.334943i
\(453\) 0 0
\(454\) 320.662i 0.706305i
\(455\) −32.6256 73.7468i −0.0717046 0.162081i
\(456\) 0 0
\(457\) −91.8236 + 91.8236i −0.200927 + 0.200927i −0.800397 0.599470i \(-0.795378\pi\)
0.599470 + 0.800397i \(0.295378\pi\)
\(458\) −355.319 355.319i −0.775805 0.775805i
\(459\) 0 0
\(460\) 124.546 + 48.1467i 0.270752 + 0.104667i
\(461\) 767.971 1.66588 0.832941 0.553362i \(-0.186656\pi\)
0.832941 + 0.553362i \(0.186656\pi\)
\(462\) 0 0
\(463\) −390.218 390.218i −0.842803 0.842803i 0.146420 0.989223i \(-0.453225\pi\)
−0.989223 + 0.146420i \(0.953225\pi\)
\(464\) 17.2608i 0.0372000i
\(465\) 0 0
\(466\) 128.278 0.275274
\(467\) −118.969 + 118.969i −0.254752 + 0.254752i −0.822916 0.568163i \(-0.807654\pi\)
0.568163 + 0.822916i \(0.307654\pi\)
\(468\) 0 0
\(469\) 175.701i 0.374629i
\(470\) −327.099 + 144.709i −0.695956 + 0.307891i
\(471\) 0 0
\(472\) 496.181 496.181i 1.05123 1.05123i
\(473\) 407.073 + 407.073i 0.860620 + 0.860620i
\(474\) 0 0
\(475\) −564.846 513.444i −1.18915 1.08093i
\(476\) −25.9378 −0.0544911
\(477\) 0 0
\(478\) 174.608 + 174.608i 0.365289 + 0.365289i
\(479\) 308.304i 0.643641i 0.946801 + 0.321820i \(0.104295\pi\)
−0.946801 + 0.321820i \(0.895705\pi\)
\(480\) 0 0
\(481\) −23.1804 −0.0481921
\(482\) 462.938 462.938i 0.960451 0.960451i
\(483\) 0 0
\(484\) 106.594i 0.220236i
\(485\) −288.233 111.425i −0.594295 0.229741i
\(486\) 0 0
\(487\) 337.366 337.366i 0.692744 0.692744i −0.270091 0.962835i \(-0.587054\pi\)
0.962835 + 0.270091i \(0.0870538\pi\)
\(488\) −93.6905 93.6905i −0.191989 0.191989i
\(489\) 0 0
\(490\) −125.537 + 324.738i −0.256197 + 0.662731i
\(491\) −114.904 −0.234021 −0.117011 0.993131i \(-0.537331\pi\)
−0.117011 + 0.993131i \(0.537331\pi\)
\(492\) 0 0
\(493\) −9.88622 9.88622i −0.0200532 0.0200532i
\(494\) 301.312i 0.609943i
\(495\) 0 0
\(496\) 504.630 1.01740
\(497\) −88.1135 + 88.1135i −0.177291 + 0.177291i
\(498\) 0 0
\(499\) 423.796i 0.849290i −0.905360 0.424645i \(-0.860399\pi\)
0.905360 0.424645i \(-0.139601\pi\)
\(500\) −46.5939 + 140.016i −0.0931878 + 0.280032i
\(501\) 0 0
\(502\) 284.271 284.271i 0.566277 0.566277i
\(503\) 429.215 + 429.215i 0.853309 + 0.853309i 0.990539 0.137230i \(-0.0438199\pi\)
−0.137230 + 0.990539i \(0.543820\pi\)
\(504\) 0 0
\(505\) −220.850 499.209i −0.437327 0.988533i
\(506\) −552.151 −1.09121
\(507\) 0 0
\(508\) 84.5118 + 84.5118i 0.166362 + 0.166362i
\(509\) 294.127i 0.577853i 0.957351 + 0.288926i \(0.0932983\pi\)
−0.957351 + 0.288926i \(0.906702\pi\)
\(510\) 0 0
\(511\) −357.318 −0.699253
\(512\) 370.382 370.382i 0.723403 0.723403i
\(513\) 0 0
\(514\) 40.6493i 0.0790843i
\(515\) −211.434 + 546.937i −0.410551 + 1.06201i
\(516\) 0 0
\(517\) −437.893 + 437.893i −0.846989 + 0.846989i
\(518\) −12.8517 12.8517i −0.0248103 0.0248103i
\(519\) 0 0
\(520\) 233.761 103.416i 0.449540 0.198877i
\(521\) 659.361 1.26557 0.632784 0.774328i \(-0.281912\pi\)
0.632784 + 0.774328i \(0.281912\pi\)
\(522\) 0 0
\(523\) −179.405 179.405i −0.343031 0.343031i 0.514475 0.857506i \(-0.327987\pi\)
−0.857506 + 0.514475i \(0.827987\pi\)
\(524\) 221.201i 0.422140i
\(525\) 0 0
\(526\) 177.905 0.338223
\(527\) 289.030 289.030i 0.548444 0.548444i
\(528\) 0 0
\(529\) 17.2485i 0.0326059i
\(530\) −22.9159 51.7990i −0.0432375 0.0977339i
\(531\) 0 0
\(532\) 69.9457 69.9457i 0.131477 0.131477i
\(533\) 137.651 + 137.651i 0.258256 + 0.258256i
\(534\) 0 0
\(535\) 161.194 + 62.3142i 0.301298 + 0.116475i
\(536\) −556.934 −1.03906
\(537\) 0 0
\(538\) 39.6095 + 39.6095i 0.0736235 + 0.0736235i
\(539\) 602.790i 1.11835i
\(540\) 0 0
\(541\) −423.058 −0.781992 −0.390996 0.920392i \(-0.627869\pi\)
−0.390996 + 0.920392i \(0.627869\pi\)
\(542\) 105.930 105.930i 0.195443 0.195443i
\(543\) 0 0
\(544\) 145.699i 0.267828i
\(545\) −176.341 + 78.0135i −0.323562 + 0.143144i
\(546\) 0 0
\(547\) 343.688 343.688i 0.628315 0.628315i −0.319329 0.947644i \(-0.603457\pi\)
0.947644 + 0.319329i \(0.103457\pi\)
\(548\) 31.9070 + 31.9070i 0.0582244 + 0.0582244i
\(549\) 0 0
\(550\) −29.0548 609.502i −0.0528270 1.10819i
\(551\) 53.3198 0.0967692
\(552\) 0 0
\(553\) −63.1682 63.1682i −0.114228 0.114228i
\(554\) 159.858i 0.288552i
\(555\) 0 0
\(556\) −119.137 −0.214275
\(557\) −771.430 + 771.430i −1.38497 + 1.38497i −0.549440 + 0.835533i \(0.685159\pi\)
−0.835533 + 0.549440i \(0.814841\pi\)
\(558\) 0 0
\(559\) 232.757i 0.416380i
\(560\) 126.503 + 48.9033i 0.225898 + 0.0873272i
\(561\) 0 0
\(562\) 355.793 355.793i 0.633084 0.633084i
\(563\) 269.750 + 269.750i 0.479130 + 0.479130i 0.904853 0.425723i \(-0.139980\pi\)
−0.425723 + 0.904853i \(0.639980\pi\)
\(564\) 0 0
\(565\) −326.974 + 845.818i −0.578716 + 1.49702i
\(566\) −7.08778 −0.0125226
\(567\) 0 0
\(568\) −279.300 279.300i −0.491726 0.491726i
\(569\) 538.867i 0.947042i −0.880783 0.473521i \(-0.842983\pi\)
0.880783 0.473521i \(-0.157017\pi\)
\(570\) 0 0
\(571\) 298.401 0.522593 0.261296 0.965259i \(-0.415850\pi\)
0.261296 + 0.965259i \(0.415850\pi\)
\(572\) 71.3117 71.3117i 0.124671 0.124671i
\(573\) 0 0
\(574\) 152.633i 0.265911i
\(575\) −564.907 + 26.9290i −0.982446 + 0.0468330i
\(576\) 0 0
\(577\) −616.326 + 616.326i −1.06816 + 1.06816i −0.0706547 + 0.997501i \(0.522509\pi\)
−0.997501 + 0.0706547i \(0.977491\pi\)
\(578\) −267.029 267.029i −0.461988 0.461988i
\(579\) 0 0
\(580\) −4.17023 9.42637i −0.00719005 0.0162524i
\(581\) 18.9995 0.0327013
\(582\) 0 0
\(583\) −69.3441 69.3441i −0.118944 0.118944i
\(584\) 1132.62i 1.93942i
\(585\) 0 0
\(586\) −192.675 −0.328796
\(587\) −47.0108 + 47.0108i −0.0800866 + 0.0800866i −0.746015 0.665929i \(-0.768035\pi\)
0.665929 + 0.746015i \(0.268035\pi\)
\(588\) 0 0
\(589\) 1558.84i 2.64659i
\(590\) −244.200 + 631.696i −0.413897 + 1.07067i
\(591\) 0 0
\(592\) 27.5672 27.5672i 0.0465662 0.0465662i
\(593\) 687.903 + 687.903i 1.16004 + 1.16004i 0.984467 + 0.175572i \(0.0561776\pi\)
0.175572 + 0.984467i \(0.443822\pi\)
\(594\) 0 0
\(595\) 100.465 44.4457i 0.168849 0.0746987i
\(596\) 57.8296 0.0970295
\(597\) 0 0
\(598\) 157.855 + 157.855i 0.263971 + 0.263971i
\(599\) 758.685i 1.26659i −0.773912 0.633293i \(-0.781703\pi\)
0.773912 0.633293i \(-0.218297\pi\)
\(600\) 0 0
\(601\) 1013.35 1.68611 0.843057 0.537825i \(-0.180754\pi\)
0.843057 + 0.537825i \(0.180754\pi\)
\(602\) 129.045 129.045i 0.214361 0.214361i
\(603\) 0 0
\(604\) 120.649i 0.199750i
\(605\) −182.655 412.872i −0.301909 0.682433i
\(606\) 0 0
\(607\) −21.3419 + 21.3419i −0.0351597 + 0.0351597i −0.724468 0.689308i \(-0.757915\pi\)
0.689308 + 0.724468i \(0.257915\pi\)
\(608\) 392.902 + 392.902i 0.646220 + 0.646220i
\(609\) 0 0
\(610\) 119.279 + 46.1106i 0.195539 + 0.0755911i
\(611\) 250.379 0.409785
\(612\) 0 0
\(613\) −280.031 280.031i −0.456820 0.456820i 0.440790 0.897610i \(-0.354698\pi\)
−0.897610 + 0.440790i \(0.854698\pi\)
\(614\) 353.483i 0.575705i
\(615\) 0 0
\(616\) 347.001 0.563313
\(617\) 376.272 376.272i 0.609841 0.609841i −0.333064 0.942904i \(-0.608082\pi\)
0.942904 + 0.333064i \(0.108082\pi\)
\(618\) 0 0
\(619\) 291.842i 0.471473i 0.971817 + 0.235736i \(0.0757502\pi\)
−0.971817 + 0.235736i \(0.924250\pi\)
\(620\) 275.586 121.919i 0.444494 0.196644i
\(621\) 0 0
\(622\) −41.3945 + 41.3945i −0.0665507 + 0.0665507i
\(623\) 69.4481 + 69.4481i 0.111474 + 0.111474i
\(624\) 0 0
\(625\) −59.4521 622.166i −0.0951234 0.995465i
\(626\) −282.704 −0.451603
\(627\) 0 0
\(628\) 114.035 + 114.035i 0.181585 + 0.181585i
\(629\) 31.5785i 0.0502044i
\(630\) 0 0
\(631\) 872.307 1.38242 0.691210 0.722654i \(-0.257078\pi\)
0.691210 + 0.722654i \(0.257078\pi\)
\(632\) 200.229 200.229i 0.316818 0.316818i
\(633\) 0 0
\(634\) 259.593i 0.409453i
\(635\) −472.156 182.525i −0.743552 0.287441i
\(636\) 0 0
\(637\) 172.332 172.332i 0.270537 0.270537i
\(638\) 30.1390 + 30.1390i 0.0472398 + 0.0472398i
\(639\) 0 0
\(640\) −80.9574 + 209.421i −0.126496 + 0.327220i
\(641\) −1017.59 −1.58751 −0.793754 0.608239i \(-0.791876\pi\)
−0.793754 + 0.608239i \(0.791876\pi\)
\(642\) 0 0
\(643\) −224.082 224.082i −0.348494 0.348494i 0.511055 0.859548i \(-0.329255\pi\)
−0.859548 + 0.511055i \(0.829255\pi\)
\(644\) 73.2879i 0.113801i
\(645\) 0 0
\(646\) −410.476 −0.635412
\(647\) 638.406 638.406i 0.986717 0.986717i −0.0131963 0.999913i \(-0.504201\pi\)
0.999913 + 0.0131963i \(0.00420064\pi\)
\(648\) 0 0
\(649\) 1172.58i 1.80674i
\(650\) −165.944 + 182.557i −0.255299 + 0.280857i
\(651\) 0 0
\(652\) 177.791 177.791i 0.272686 0.272686i
\(653\) 460.726 + 460.726i 0.705552 + 0.705552i 0.965597 0.260044i \(-0.0837371\pi\)
−0.260044 + 0.965597i \(0.583737\pi\)
\(654\) 0 0
\(655\) −379.040 856.781i −0.578687 1.30806i
\(656\) −327.401 −0.499088
\(657\) 0 0
\(658\) 138.815 + 138.815i 0.210966 + 0.210966i
\(659\) 501.894i 0.761600i −0.924658 0.380800i \(-0.875649\pi\)
0.924658 0.380800i \(-0.124351\pi\)
\(660\) 0 0
\(661\) −968.928 −1.46585 −0.732926 0.680308i \(-0.761846\pi\)
−0.732926 + 0.680308i \(0.761846\pi\)
\(662\) 177.213 177.213i 0.267694 0.267694i
\(663\) 0 0
\(664\) 60.2241i 0.0906990i
\(665\) −151.066 + 390.777i −0.227166 + 0.587634i
\(666\) 0 0
\(667\) 27.9338 27.9338i 0.0418798 0.0418798i
\(668\) −111.142 111.142i −0.166380 0.166380i
\(669\) 0 0
\(670\) 491.570 217.471i 0.733687 0.324583i
\(671\) 221.410 0.329970
\(672\) 0 0
\(673\) 285.971 + 285.971i 0.424919 + 0.424919i 0.886893 0.461974i \(-0.152859\pi\)
−0.461974 + 0.886893i \(0.652859\pi\)
\(674\) 115.348i 0.171140i
\(675\) 0 0
\(676\) 158.733 0.234813
\(677\) −89.6227 + 89.6227i −0.132382 + 0.132382i −0.770193 0.637811i \(-0.779840\pi\)
0.637811 + 0.770193i \(0.279840\pi\)
\(678\) 0 0
\(679\) 169.608i 0.249791i
\(680\) 140.883 + 318.451i 0.207181 + 0.468311i
\(681\) 0 0
\(682\) −881.133 + 881.133i −1.29198 + 1.29198i
\(683\) −227.456 227.456i −0.333025 0.333025i 0.520709 0.853734i \(-0.325668\pi\)
−0.853734 + 0.520709i \(0.825668\pi\)
\(684\) 0 0
\(685\) −178.260 68.9112i −0.260233 0.100600i
\(686\) 416.882 0.607699
\(687\) 0 0
\(688\) 276.805 + 276.805i 0.402333 + 0.402333i
\(689\) 39.6496i 0.0575466i
\(690\) 0 0
\(691\) −1029.07 −1.48925 −0.744626 0.667482i \(-0.767372\pi\)
−0.744626 + 0.667482i \(0.767372\pi\)
\(692\) 122.263 122.263i 0.176681 0.176681i
\(693\) 0 0
\(694\) 34.2254i 0.0493162i
\(695\) 461.455 204.148i 0.663964 0.293738i
\(696\) 0 0
\(697\) −187.521 + 187.521i −0.269040 + 0.269040i
\(698\) −164.316 164.316i −0.235409 0.235409i
\(699\) 0 0
\(700\) 80.9002 3.85650i 0.115572 0.00550928i
\(701\) −921.196 −1.31412 −0.657058 0.753840i \(-0.728200\pi\)
−0.657058 + 0.753840i \(0.728200\pi\)
\(702\) 0 0
\(703\) 85.1571 + 85.1571i 0.121134 + 0.121134i
\(704\) 1018.89i 1.44728i
\(705\) 0 0
\(706\) 39.2647 0.0556158
\(707\) −211.856 + 211.856i −0.299655 + 0.299655i
\(708\) 0 0
\(709\) 1034.64i 1.45929i 0.683827 + 0.729645i \(0.260314\pi\)
−0.683827 + 0.729645i \(0.739686\pi\)
\(710\) 355.582 + 137.460i 0.500819 + 0.193606i
\(711\) 0 0
\(712\) −220.135 + 220.135i −0.309179 + 0.309179i
\(713\) 816.663 + 816.663i 1.14539 + 1.14539i
\(714\) 0 0
\(715\) −154.016 + 398.408i −0.215407 + 0.557214i
\(716\) −166.644 −0.232743
\(717\) 0 0
\(718\) 476.904 + 476.904i 0.664211 + 0.664211i
\(719\) 111.687i 0.155336i 0.996979 + 0.0776681i \(0.0247475\pi\)
−0.996979 + 0.0776681i \(0.975253\pi\)
\(720\) 0 0
\(721\) 321.840 0.446380
\(722\) 678.296 678.296i 0.939468 0.939468i
\(723\) 0 0
\(724\) 215.199i 0.297236i
\(725\) 32.3052 + 29.3653i 0.0445588 + 0.0405039i
\(726\) 0 0
\(727\) 970.969 970.969i 1.33558 1.33558i 0.435295 0.900288i \(-0.356644\pi\)
0.900288 0.435295i \(-0.143356\pi\)
\(728\) −99.2042 99.2042i −0.136270 0.136270i
\(729\) 0 0
\(730\) 442.264 + 999.692i 0.605841 + 1.36944i
\(731\) 317.084 0.433767
\(732\) 0 0
\(733\) 271.116 + 271.116i 0.369872 + 0.369872i 0.867431 0.497558i \(-0.165770\pi\)
−0.497558 + 0.867431i \(0.665770\pi\)
\(734\) 1055.45i 1.43795i
\(735\) 0 0
\(736\) 411.675 0.559342
\(737\) 658.073 658.073i 0.892908 0.892908i
\(738\) 0 0
\(739\) 108.074i 0.146243i 0.997323 + 0.0731215i \(0.0232961\pi\)
−0.997323 + 0.0731215i \(0.976704\pi\)
\(740\) 8.39459 21.7151i 0.0113440 0.0293448i
\(741\) 0 0
\(742\) −21.9826 + 21.9826i −0.0296262 + 0.0296262i
\(743\) −801.778 801.778i −1.07911 1.07911i −0.996589 0.0825189i \(-0.973704\pi\)
−0.0825189 0.996589i \(-0.526296\pi\)
\(744\) 0 0
\(745\) −223.992 + 99.0940i −0.300660 + 0.133012i
\(746\) −627.315 −0.840905
\(747\) 0 0
\(748\) 97.1476 + 97.1476i 0.129876 + 0.129876i
\(749\) 94.8534i 0.126640i
\(750\) 0 0
\(751\) −247.816 −0.329982 −0.164991 0.986295i \(-0.552759\pi\)
−0.164991 + 0.986295i \(0.552759\pi\)
\(752\) −297.762 + 297.762i −0.395961 + 0.395961i
\(753\) 0 0
\(754\) 17.2329i 0.0228553i
\(755\) −206.738 467.310i −0.273825 0.618954i
\(756\) 0 0
\(757\) 794.781 794.781i 1.04991 1.04991i 0.0512222 0.998687i \(-0.483688\pi\)
0.998687 0.0512222i \(-0.0163117\pi\)
\(758\) 265.719 + 265.719i 0.350552 + 0.350552i
\(759\) 0 0
\(760\) −1238.68 478.845i −1.62984 0.630059i
\(761\) 1470.22 1.93196 0.965980 0.258617i \(-0.0832666\pi\)
0.965980 + 0.258617i \(0.0832666\pi\)
\(762\) 0 0
\(763\) 74.8364 + 74.8364i 0.0980818 + 0.0980818i
\(764\) 257.551i 0.337109i
\(765\) 0 0
\(766\) 59.7308 0.0779776
\(767\) 335.228 335.228i 0.437064 0.437064i
\(768\) 0 0
\(769\) 381.177i 0.495679i 0.968801 + 0.247840i \(0.0797206\pi\)
−0.968801 + 0.247840i \(0.920279\pi\)
\(770\) −306.276 + 135.497i −0.397761 + 0.175970i
\(771\) 0 0
\(772\) −183.638 + 183.638i −0.237874 + 0.237874i
\(773\) −325.772 325.772i −0.421438 0.421438i 0.464260 0.885699i \(-0.346320\pi\)
−0.885699 + 0.464260i \(0.846320\pi\)
\(774\) 0 0
\(775\) −858.515 + 944.462i −1.10776 + 1.21866i
\(776\) −537.620 −0.692809
\(777\) 0 0
\(778\) 247.194 + 247.194i 0.317730 + 0.317730i
\(779\) 1011.37i 1.29829i
\(780\) 0 0
\(781\) 660.043 0.845125
\(782\) −215.045 + 215.045i −0.274993 + 0.274993i
\(783\) 0 0
\(784\) 409.891i 0.522820i
\(785\) −637.098 246.288i −0.811590 0.313743i
\(786\) 0 0
\(787\) −247.695 + 247.695i −0.314733 + 0.314733i −0.846740 0.532007i \(-0.821438\pi\)
0.532007 + 0.846740i \(0.321438\pi\)
\(788\) −285.562 285.562i −0.362388 0.362388i
\(789\) 0 0
\(790\) −98.5444 + 254.915i −0.124740 + 0.322677i
\(791\) 497.714 0.629221
\(792\) 0 0
\(793\) −63.2989 63.2989i −0.0798220 0.0798220i
\(794\) 550.811i 0.693717i
\(795\) 0 0
\(796\) 149.624 0.187970
\(797\) −88.6624 + 88.6624i −0.111245 + 0.111245i −0.760538 0.649293i \(-0.775065\pi\)
0.649293 + 0.760538i \(0.275065\pi\)
\(798\) 0 0
\(799\) 341.090i 0.426896i
\(800\) 21.6629 + 454.436i 0.0270786 + 0.568045i
\(801\) 0 0
\(802\) 111.680 111.680i 0.139252 0.139252i
\(803\) 1338.30 + 1338.30i 1.66663 + 1.66663i
\(804\) 0 0
\(805\) 125.583 + 283.867i 0.156003 + 0.352629i
\(806\) 503.815 0.625080
\(807\) 0 0
\(808\) −671.537 671.537i −0.831110 0.831110i
\(809\) 717.779i 0.887242i −0.896214 0.443621i \(-0.853694\pi\)
0.896214 0.443621i \(-0.146306\pi\)
\(810\) 0 0
\(811\) 771.312 0.951063 0.475532 0.879699i \(-0.342256\pi\)
0.475532 + 0.879699i \(0.342256\pi\)
\(812\) −4.00040 + 4.00040i −0.00492660 + 0.00492660i
\(813\) 0 0
\(814\) 96.2699i 0.118268i
\(815\) −383.986 + 993.294i −0.471148 + 1.21877i
\(816\) 0 0
\(817\) −855.071 + 855.071i −1.04660 + 1.04660i
\(818\) 809.931 + 809.931i 0.990136 + 0.990136i
\(819\) 0 0
\(820\) −178.799 + 79.1006i −0.218047 + 0.0964641i
\(821\) −607.334 −0.739749 −0.369874 0.929082i \(-0.620599\pi\)
−0.369874 + 0.929082i \(0.620599\pi\)
\(822\) 0 0
\(823\) 386.961 + 386.961i 0.470184 + 0.470184i 0.901974 0.431790i \(-0.142118\pi\)
−0.431790 + 0.901974i \(0.642118\pi\)
\(824\) 1020.16i 1.23806i
\(825\) 0 0
\(826\) 371.715 0.450019
\(827\) −54.4673 + 54.4673i −0.0658613 + 0.0658613i −0.739270 0.673409i \(-0.764829\pi\)
0.673409 + 0.739270i \(0.264829\pi\)
\(828\) 0 0
\(829\) 533.549i 0.643605i −0.946807 0.321803i \(-0.895711\pi\)
0.946807 0.321803i \(-0.104289\pi\)
\(830\) −23.5162 53.1560i −0.0283328 0.0640434i
\(831\) 0 0
\(832\) 291.289 291.289i 0.350107 0.350107i
\(833\) 234.767 + 234.767i 0.281833 + 0.281833i
\(834\) 0 0
\(835\) 620.934 + 240.039i 0.743634 + 0.287472i
\(836\) −523.951 −0.626736
\(837\) 0 0
\(838\) −249.041 249.041i −0.297185 0.297185i
\(839\) 1523.91i 1.81635i −0.418594 0.908173i \(-0.637477\pi\)
0.418594 0.908173i \(-0.362523\pi\)
\(840\) 0 0
\(841\) 837.950 0.996374
\(842\) 7.00105 7.00105i 0.00831478 0.00831478i
\(843\) 0 0
\(844\) 247.453i 0.293191i
\(845\) −614.823 + 271.998i −0.727601 + 0.321891i
\(846\) 0 0
\(847\) −175.216 + 175.216i −0.206867 + 0.206867i
\(848\) −47.1532 47.1532i −0.0556052 0.0556052i
\(849\) 0 0
\(850\) −248.697 226.065i −0.292585 0.265959i
\(851\) 89.2261 0.104849
\(852\) 0 0
\(853\) −516.097 516.097i −0.605037 0.605037i 0.336608 0.941645i \(-0.390720\pi\)
−0.941645 + 0.336608i \(0.890720\pi\)
\(854\) 70.1886i 0.0821880i
\(855\) 0 0
\(856\) 300.664 0.351243
\(857\) −849.288 + 849.288i −0.991001 + 0.991001i −0.999960 0.00895907i \(-0.997148\pi\)
0.00895907 + 0.999960i \(0.497148\pi\)
\(858\) 0 0
\(859\) 1140.75i 1.32799i −0.747736 0.663996i \(-0.768859\pi\)
0.747736 0.663996i \(-0.231141\pi\)
\(860\) 218.044 + 84.2909i 0.253539 + 0.0980127i
\(861\) 0 0
\(862\) 740.445 740.445i 0.858985 0.858985i
\(863\) 1189.86 + 1189.86i 1.37874 + 1.37874i 0.846744 + 0.532000i \(0.178559\pi\)
0.532000 + 0.846744i \(0.321441\pi\)
\(864\) 0 0
\(865\) −264.058 + 683.066i −0.305269 + 0.789671i
\(866\) −813.520 −0.939400
\(867\) 0 0
\(868\) −116.954 116.954i −0.134740 0.134740i
\(869\) 473.182i 0.544513i
\(870\) 0 0
\(871\) −376.274 −0.432002
\(872\) −237.215 + 237.215i −0.272035 + 0.272035i
\(873\) 0 0
\(874\) 1159.81i 1.32702i
\(875\) −306.743 + 153.564i −0.350564 + 0.175502i
\(876\) 0 0
\(877\) 1024.94 1024.94i 1.16869 1.16869i 0.186170 0.982518i \(-0.440393\pi\)
0.982518 0.186170i \(-0.0596075\pi\)
\(878\) 558.125 + 558.125i 0.635678 + 0.635678i
\(879\) 0 0
\(880\) −290.643 656.969i −0.330276 0.746556i
\(881\) 127.177 0.144355 0.0721777 0.997392i \(-0.477005\pi\)
0.0721777 + 0.997392i \(0.477005\pi\)
\(882\) 0 0
\(883\) −363.077 363.077i −0.411186 0.411186i 0.470966 0.882151i \(-0.343905\pi\)
−0.882151 + 0.470966i \(0.843905\pi\)
\(884\) 55.5471i 0.0628361i
\(885\) 0 0
\(886\) −270.364 −0.305151
\(887\) −1092.05 + 1092.05i −1.23118 + 1.23118i −0.267664 + 0.963512i \(0.586252\pi\)
−0.963512 + 0.267664i \(0.913748\pi\)
\(888\) 0 0
\(889\) 277.836i 0.312526i
\(890\) 108.341 280.258i 0.121732 0.314896i
\(891\) 0 0
\(892\) −239.202 + 239.202i −0.268164 + 0.268164i
\(893\) −919.809 919.809i −1.03002 1.03002i
\(894\) 0 0
\(895\) 645.463 285.553i 0.721188 0.319054i
\(896\) 123.232 0.137535
\(897\) 0 0
\(898\) 641.603 + 641.603i 0.714480 + 0.714480i
\(899\) 89.1545i 0.0991708i
\(900\) 0 0
\(901\) −54.0145 −0.0599495
\(902\) 571.674 571.674i 0.633785 0.633785i
\(903\) 0 0
\(904\) 1577.64i 1.74518i
\(905\) −368.755 833.532i −0.407464 0.921030i
\(906\) 0 0
\(907\) −243.135 + 243.135i −0.268065 + 0.268065i −0.828320 0.560255i \(-0.810703\pi\)
0.560255 + 0.828320i \(0.310703\pi\)
\(908\) −159.412 159.412i −0.175564 0.175564i
\(909\) 0 0
\(910\) 126.298 + 48.8242i 0.138790 + 0.0536530i
\(911\) 19.2816 0.0211653 0.0105826 0.999944i \(-0.496631\pi\)
0.0105826 + 0.999944i \(0.496631\pi\)
\(912\) 0 0
\(913\) −71.1609 71.1609i −0.0779418 0.0779418i
\(914\) 218.049i 0.238566i
\(915\) 0 0
\(916\) −353.283 −0.385680
\(917\) −363.604 + 363.604i −0.396514 + 0.396514i
\(918\) 0 0
\(919\) 947.679i 1.03121i −0.856827 0.515603i \(-0.827568\pi\)
0.856827 0.515603i \(-0.172432\pi\)
\(920\) −899.794 + 398.069i −0.978037 + 0.432684i
\(921\) 0 0
\(922\) −911.831 + 911.831i −0.988971 + 0.988971i
\(923\) −188.700 188.700i −0.204442 0.204442i
\(924\) 0 0
\(925\) 4.69518 + 98.4939i 0.00507587 + 0.106480i
\(926\) 926.630 1.00068
\(927\) 0 0
\(928\) −22.4712 22.4712i −0.0242146 0.0242146i
\(929\) 250.477i 0.269620i −0.990871 0.134810i \(-0.956958\pi\)
0.990871 0.134810i \(-0.0430424\pi\)
\(930\) 0 0
\(931\) −1266.18 −1.36002
\(932\) 63.7713 63.7713i 0.0684241 0.0684241i
\(933\) 0 0
\(934\) 282.510i 0.302474i
\(935\) −542.750 209.815i −0.580481 0.224401i
\(936\) 0 0
\(937\) −773.708 + 773.708i −0.825729 + 0.825729i −0.986923 0.161194i \(-0.948466\pi\)
0.161194 + 0.986923i \(0.448466\pi\)
\(938\) −208.614 208.614i −0.222403 0.222403i
\(939\) 0 0
\(940\) −90.6727 + 234.552i −0.0964603 + 0.249524i
\(941\) −1422.82 −1.51203 −0.756017 0.654552i \(-0.772857\pi\)
−0.756017 + 0.654552i \(0.772857\pi\)
\(942\) 0 0
\(943\) −529.846 529.846i −0.561873 0.561873i
\(944\) 797.338i 0.844638i
\(945\) 0 0
\(946\) −966.657 −1.02184
\(947\) −713.742 + 713.742i −0.753688 + 0.753688i −0.975165 0.221478i \(-0.928912\pi\)
0.221478 + 0.975165i \(0.428912\pi\)
\(948\) 0 0
\(949\) 765.216i 0.806340i
\(950\) 1280.28 61.0307i 1.34766 0.0642428i
\(951\) 0 0
\(952\) 135.146 135.146i 0.141960 0.141960i
\(953\) −1340.68 1340.68i −1.40680 1.40680i −0.775700 0.631102i \(-0.782603\pi\)
−0.631102 0.775700i \(-0.717397\pi\)
\(954\) 0 0
\(955\) −441.327 997.574i −0.462122 1.04458i
\(956\) 173.608 0.181598
\(957\) 0 0
\(958\) −366.057 366.057i −0.382105 0.382105i
\(959\) 104.895i 0.109380i
\(960\) 0 0
\(961\) 1645.49 1.71227
\(962\) 27.5226 27.5226i 0.0286098 0.0286098i
\(963\) 0 0
\(964\) 460.285i 0.477474i
\(965\) 396.614 1025.96i 0.410999 1.06317i
\(966\) 0 0
\(967\) 614.274 614.274i 0.635237 0.635237i −0.314140 0.949377i \(-0.601716\pi\)
0.949377 + 0.314140i \(0.101716\pi\)
\(968\) −555.396 555.396i −0.573756 0.573756i
\(969\) 0 0
\(970\) 474.523 209.929i 0.489199 0.216422i
\(971\) −35.3368 −0.0363922 −0.0181961 0.999834i \(-0.505792\pi\)
−0.0181961 + 0.999834i \(0.505792\pi\)
\(972\) 0 0
\(973\) −195.834 195.834i −0.201268 0.201268i
\(974\) 801.126i 0.822511i
\(975\) 0 0
\(976\) 150.556 0.154258
\(977\) 496.574 496.574i 0.508264 0.508264i −0.405729 0.913993i \(-0.632982\pi\)
0.913993 + 0.405729i \(0.132982\pi\)
\(978\) 0 0
\(979\) 520.224i 0.531383i
\(980\) 99.0301 + 223.847i 0.101051 + 0.228416i
\(981\) 0 0
\(982\) 136.429 136.429i 0.138929 0.138929i
\(983\) −29.5716 29.5716i −0.0300830 0.0300830i 0.691905 0.721988i \(-0.256772\pi\)
−0.721988 + 0.691905i \(0.756772\pi\)
\(984\) 0 0
\(985\) 1595.39 + 616.744i 1.61969 + 0.626136i
\(986\) 23.4763 0.0238096
\(987\) 0 0
\(988\) 149.793 + 149.793i 0.151612 + 0.151612i
\(989\) 895.929i 0.905894i
\(990\) 0 0
\(991\) 805.965 0.813284 0.406642 0.913588i \(-0.366700\pi\)
0.406642 + 0.913588i \(0.366700\pi\)
\(992\) 656.959 656.959i 0.662257 0.662257i
\(993\) 0 0
\(994\) 209.239i 0.210502i
\(995\) −579.539 + 256.388i −0.582452 + 0.257677i
\(996\) 0 0
\(997\) 149.614 149.614i 0.150064 0.150064i −0.628083 0.778147i \(-0.716160\pi\)
0.778147 + 0.628083i \(0.216160\pi\)
\(998\) 503.183 + 503.183i 0.504192 + 0.504192i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.g.h.163.4 20
3.2 odd 2 405.3.g.g.163.7 20
5.2 odd 4 inner 405.3.g.h.82.4 20
9.2 odd 6 135.3.l.a.118.4 40
9.4 even 3 45.3.k.a.43.4 yes 40
9.5 odd 6 135.3.l.a.73.7 40
9.7 even 3 45.3.k.a.13.7 yes 40
15.2 even 4 405.3.g.g.82.7 20
45.2 even 12 135.3.l.a.37.7 40
45.4 even 6 225.3.o.b.43.7 40
45.7 odd 12 45.3.k.a.22.4 yes 40
45.13 odd 12 225.3.o.b.7.4 40
45.22 odd 12 45.3.k.a.7.7 40
45.32 even 12 135.3.l.a.127.4 40
45.34 even 6 225.3.o.b.193.4 40
45.43 odd 12 225.3.o.b.157.7 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.7 40 45.22 odd 12
45.3.k.a.13.7 yes 40 9.7 even 3
45.3.k.a.22.4 yes 40 45.7 odd 12
45.3.k.a.43.4 yes 40 9.4 even 3
135.3.l.a.37.7 40 45.2 even 12
135.3.l.a.73.7 40 9.5 odd 6
135.3.l.a.118.4 40 9.2 odd 6
135.3.l.a.127.4 40 45.32 even 12
225.3.o.b.7.4 40 45.13 odd 12
225.3.o.b.43.7 40 45.4 even 6
225.3.o.b.157.7 40 45.43 odd 12
225.3.o.b.193.4 40 45.34 even 6
405.3.g.g.82.7 20 15.2 even 4
405.3.g.g.163.7 20 3.2 odd 2
405.3.g.h.82.4 20 5.2 odd 4 inner
405.3.g.h.163.4 20 1.1 even 1 trivial