Properties

Label 45.3.k.a.13.7
Level $45$
Weight $3$
Character 45.13
Analytic conductor $1.226$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,3,Mod(7,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([8, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.7"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 45.k (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22616118962\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 13.7
Character \(\chi\) \(=\) 45.13
Dual form 45.3.k.a.7.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.62192 + 0.434591i) q^{2} +(-0.485971 + 2.96038i) q^{3} +(-1.02236 - 0.590260i) q^{4} +(4.97136 + 0.534392i) q^{5} +(-2.07476 + 4.59028i) q^{6} +(2.65078 + 0.710273i) q^{7} +(-6.15096 - 6.15096i) q^{8} +(-8.52766 - 2.87732i) q^{9} +(7.83089 + 3.02725i) q^{10} +(-7.26798 - 12.5885i) q^{11} +(2.24423 - 2.73972i) q^{12} +(5.67678 - 1.52109i) q^{13} +(3.99065 + 2.30401i) q^{14} +(-3.99794 + 14.4574i) q^{15} +(-4.94214 - 8.56004i) q^{16} +(5.66128 - 5.66128i) q^{17} +(-12.5807 - 8.37281i) q^{18} +30.5333i q^{19} +(-4.76709 - 3.48074i) q^{20} +(-3.39088 + 7.50212i) q^{21} +(-6.31720 - 23.5761i) q^{22} +(-21.8511 + 5.85498i) q^{23} +(21.1983 - 15.2200i) q^{24} +(24.4289 + 5.31331i) q^{25} +9.86831 q^{26} +(12.6621 - 23.8468i) q^{27} +(-2.29080 - 2.29080i) q^{28} +(-1.51233 + 0.873143i) q^{29} +(-12.7674 + 21.7112i) q^{30} +(-25.5269 + 44.2139i) q^{31} +(4.71001 + 17.5780i) q^{32} +(40.7988 - 15.3983i) q^{33} +(11.6425 - 6.72178i) q^{34} +(12.7984 + 4.94758i) q^{35} +(7.01998 + 7.97520i) q^{36} +(2.78899 - 2.78899i) q^{37} +(-13.2695 + 49.5224i) q^{38} +(1.74424 + 17.5446i) q^{39} +(-27.2916 - 33.8657i) q^{40} +(16.5617 - 28.6857i) q^{41} +(-8.76007 + 10.6942i) q^{42} +(10.2504 - 38.2550i) q^{43} +17.1600i q^{44} +(-40.8565 - 18.8613i) q^{45} -37.9852 q^{46} +(41.1513 + 11.0264i) q^{47} +(27.7427 - 10.4707i) q^{48} +(-35.9131 - 20.7345i) q^{49} +(37.3124 + 19.2343i) q^{50} +(14.0083 + 19.5107i) q^{51} +(-6.70155 - 1.79568i) q^{52} +(-4.77052 - 4.77052i) q^{53} +(30.9005 - 33.1747i) q^{54} +(-29.4046 - 66.4660i) q^{55} +(-11.9359 - 20.6737i) q^{56} +(-90.3900 - 14.8383i) q^{57} +(-2.83233 + 0.758920i) q^{58} +(-69.8599 - 40.3336i) q^{59} +(12.6210 - 12.4209i) q^{60} +(-7.61593 - 13.1912i) q^{61} +(-60.6174 + 60.6174i) q^{62} +(-20.5612 - 13.6841i) q^{63} +70.0941i q^{64} +(29.0342 - 4.52826i) q^{65} +(72.8641 - 7.24398i) q^{66} +(16.5707 + 61.8428i) q^{67} +(-9.12950 + 2.44624i) q^{68} +(-6.71395 - 67.5329i) q^{69} +(18.6077 + 13.5866i) q^{70} +45.4076 q^{71} +(34.7551 + 70.1516i) q^{72} +(92.0685 + 92.0685i) q^{73} +(5.73558 - 3.31144i) q^{74} +(-27.6011 + 69.7365i) q^{75} +(18.0226 - 31.2160i) q^{76} +(-10.3245 - 38.5316i) q^{77} +(-4.79571 + 29.2139i) q^{78} +(28.1913 - 16.2762i) q^{79} +(-19.9948 - 45.1961i) q^{80} +(64.4421 + 49.0736i) q^{81} +(39.3283 - 39.3283i) q^{82} +(-1.79188 + 6.68739i) q^{83} +(7.89490 - 5.66838i) q^{84} +(31.1696 - 25.1189i) q^{85} +(33.2505 - 57.5916i) q^{86} +(-1.84988 - 4.90138i) q^{87} +(-32.7264 + 122.136i) q^{88} -35.7887i q^{89} +(-58.0688 - 48.3473i) q^{90} +16.1283 q^{91} +(25.7957 + 6.91193i) q^{92} +(-118.484 - 97.0559i) q^{93} +(61.9519 + 35.7679i) q^{94} +(-16.3167 + 151.792i) q^{95} +(-54.3264 + 5.40100i) q^{96} +(-59.6982 - 15.9961i) q^{97} +(-49.2370 - 49.2370i) q^{98} +(25.7578 + 128.263i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{2} - 6 q^{3} - 2 q^{5} - 24 q^{6} - 2 q^{7} - 24 q^{8} - 8 q^{10} + 8 q^{11} - 30 q^{12} - 2 q^{13} - 30 q^{15} + 28 q^{16} + 28 q^{17} + 48 q^{18} - 114 q^{20} + 12 q^{21} + 14 q^{22} + 82 q^{23}+ \cdots - 1876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.62192 + 0.434591i 0.810958 + 0.217295i 0.640389 0.768050i \(-0.278773\pi\)
0.170568 + 0.985346i \(0.445440\pi\)
\(3\) −0.485971 + 2.96038i −0.161990 + 0.986792i
\(4\) −1.02236 0.590260i −0.255590 0.147565i
\(5\) 4.97136 + 0.534392i 0.994272 + 0.106878i
\(6\) −2.07476 + 4.59028i −0.345793 + 0.765047i
\(7\) 2.65078 + 0.710273i 0.378682 + 0.101468i 0.443139 0.896453i \(-0.353865\pi\)
−0.0644568 + 0.997920i \(0.520531\pi\)
\(8\) −6.15096 6.15096i −0.768870 0.768870i
\(9\) −8.52766 2.87732i −0.947518 0.319702i
\(10\) 7.83089 + 3.02725i 0.783089 + 0.302725i
\(11\) −7.26798 12.5885i −0.660726 1.14441i −0.980425 0.196891i \(-0.936915\pi\)
0.319700 0.947519i \(-0.396418\pi\)
\(12\) 2.24423 2.73972i 0.187019 0.228310i
\(13\) 5.67678 1.52109i 0.436675 0.117007i −0.0337827 0.999429i \(-0.510755\pi\)
0.470458 + 0.882422i \(0.344089\pi\)
\(14\) 3.99065 + 2.30401i 0.285047 + 0.164572i
\(15\) −3.99794 + 14.4574i −0.266529 + 0.963827i
\(16\) −4.94214 8.56004i −0.308884 0.535003i
\(17\) 5.66128 5.66128i 0.333017 0.333017i −0.520714 0.853731i \(-0.674334\pi\)
0.853731 + 0.520714i \(0.174334\pi\)
\(18\) −12.5807 8.37281i −0.698927 0.465156i
\(19\) 30.5333i 1.60701i 0.595295 + 0.803507i \(0.297035\pi\)
−0.595295 + 0.803507i \(0.702965\pi\)
\(20\) −4.76709 3.48074i −0.238355 0.174037i
\(21\) −3.39088 + 7.50212i −0.161470 + 0.357244i
\(22\) −6.31720 23.5761i −0.287145 1.07164i
\(23\) −21.8511 + 5.85498i −0.950048 + 0.254565i −0.700383 0.713768i \(-0.746987\pi\)
−0.249665 + 0.968332i \(0.580321\pi\)
\(24\) 21.1983 15.2200i 0.883265 0.634165i
\(25\) 24.4289 + 5.31331i 0.977154 + 0.212532i
\(26\) 9.86831 0.379550
\(27\) 12.6621 23.8468i 0.468968 0.883215i
\(28\) −2.29080 2.29080i −0.0818144 0.0818144i
\(29\) −1.51233 + 0.873143i −0.0521492 + 0.0301084i −0.525848 0.850579i \(-0.676252\pi\)
0.473699 + 0.880687i \(0.342919\pi\)
\(30\) −12.7674 + 21.7112i −0.425579 + 0.723707i
\(31\) −25.5269 + 44.2139i −0.823448 + 1.42625i 0.0796510 + 0.996823i \(0.474619\pi\)
−0.903099 + 0.429432i \(0.858714\pi\)
\(32\) 4.71001 + 17.5780i 0.147188 + 0.549312i
\(33\) 40.7988 15.3983i 1.23633 0.466615i
\(34\) 11.6425 6.72178i 0.342425 0.197699i
\(35\) 12.7984 + 4.94758i 0.365668 + 0.141359i
\(36\) 7.01998 + 7.97520i 0.195000 + 0.221533i
\(37\) 2.78899 2.78899i 0.0753782 0.0753782i −0.668413 0.743791i \(-0.733026\pi\)
0.743791 + 0.668413i \(0.233026\pi\)
\(38\) −13.2695 + 49.5224i −0.349197 + 1.30322i
\(39\) 1.74424 + 17.5446i 0.0447242 + 0.449862i
\(40\) −27.2916 33.8657i −0.682290 0.846641i
\(41\) 16.5617 28.6857i 0.403944 0.699652i −0.590254 0.807218i \(-0.700972\pi\)
0.994198 + 0.107566i \(0.0343057\pi\)
\(42\) −8.76007 + 10.6942i −0.208573 + 0.254623i
\(43\) 10.2504 38.2550i 0.238381 0.889650i −0.738214 0.674566i \(-0.764331\pi\)
0.976596 0.215084i \(-0.0690026\pi\)
\(44\) 17.1600i 0.390000i
\(45\) −40.8565 18.8613i −0.907922 0.419140i
\(46\) −37.9852 −0.825764
\(47\) 41.1513 + 11.0264i 0.875559 + 0.234605i 0.668490 0.743721i \(-0.266941\pi\)
0.207069 + 0.978326i \(0.433608\pi\)
\(48\) 27.7427 10.4707i 0.577973 0.218139i
\(49\) −35.9131 20.7345i −0.732921 0.423152i
\(50\) 37.3124 + 19.2343i 0.746248 + 0.384686i
\(51\) 14.0083 + 19.5107i 0.274673 + 0.382564i
\(52\) −6.70155 1.79568i −0.128876 0.0345322i
\(53\) −4.77052 4.77052i −0.0900098 0.0900098i 0.660668 0.750678i \(-0.270273\pi\)
−0.750678 + 0.660668i \(0.770273\pi\)
\(54\) 30.9005 33.1747i 0.572232 0.614345i
\(55\) −29.4046 66.4660i −0.534628 1.20847i
\(56\) −11.9359 20.6737i −0.213142 0.369173i
\(57\) −90.3900 14.8383i −1.58579 0.260321i
\(58\) −2.83233 + 0.758920i −0.0488332 + 0.0130848i
\(59\) −69.8599 40.3336i −1.18407 0.683620i −0.227114 0.973868i \(-0.572929\pi\)
−0.956952 + 0.290248i \(0.906262\pi\)
\(60\) 12.6210 12.4209i 0.210349 0.207014i
\(61\) −7.61593 13.1912i −0.124851 0.216249i 0.796824 0.604212i \(-0.206512\pi\)
−0.921675 + 0.387963i \(0.873179\pi\)
\(62\) −60.6174 + 60.6174i −0.977700 + 0.977700i
\(63\) −20.5612 13.6841i −0.326369 0.217208i
\(64\) 70.0941i 1.09522i
\(65\) 29.0342 4.52826i 0.446680 0.0696655i
\(66\) 72.8641 7.24398i 1.10400 0.109757i
\(67\) 16.5707 + 61.8428i 0.247324 + 0.923027i 0.972201 + 0.234148i \(0.0752302\pi\)
−0.724876 + 0.688879i \(0.758103\pi\)
\(68\) −9.12950 + 2.44624i −0.134257 + 0.0359742i
\(69\) −6.71395 67.5329i −0.0973037 0.978737i
\(70\) 18.6077 + 13.5866i 0.265825 + 0.194095i
\(71\) 45.4076 0.639543 0.319772 0.947495i \(-0.396394\pi\)
0.319772 + 0.947495i \(0.396394\pi\)
\(72\) 34.7551 + 70.1516i 0.482709 + 0.974327i
\(73\) 92.0685 + 92.0685i 1.26121 + 1.26121i 0.950506 + 0.310707i \(0.100566\pi\)
0.310707 + 0.950506i \(0.399434\pi\)
\(74\) 5.73558 3.31144i 0.0775079 0.0447492i
\(75\) −27.6011 + 69.7365i −0.368015 + 0.929820i
\(76\) 18.0226 31.2160i 0.237139 0.410737i
\(77\) −10.3245 38.5316i −0.134084 0.500410i
\(78\) −4.79571 + 29.2139i −0.0614835 + 0.374537i
\(79\) 28.1913 16.2762i 0.356852 0.206028i −0.310847 0.950460i \(-0.600613\pi\)
0.667699 + 0.744431i \(0.267279\pi\)
\(80\) −19.9948 45.1961i −0.249935 0.564951i
\(81\) 64.4421 + 49.0736i 0.795581 + 0.605847i
\(82\) 39.3283 39.3283i 0.479613 0.479613i
\(83\) −1.79188 + 6.68739i −0.0215889 + 0.0805709i −0.975880 0.218308i \(-0.929946\pi\)
0.954291 + 0.298879i \(0.0966128\pi\)
\(84\) 7.89490 5.66838i 0.0939870 0.0674807i
\(85\) 31.1696 25.1189i 0.366701 0.295517i
\(86\) 33.2505 57.5916i 0.386634 0.669670i
\(87\) −1.84988 4.90138i −0.0212630 0.0563377i
\(88\) −32.7264 + 122.136i −0.371891 + 1.38791i
\(89\) 35.7887i 0.402121i −0.979579 0.201060i \(-0.935561\pi\)
0.979579 0.201060i \(-0.0644387\pi\)
\(90\) −58.0688 48.3473i −0.645209 0.537192i
\(91\) 16.1283 0.177234
\(92\) 25.7957 + 6.91193i 0.280388 + 0.0751297i
\(93\) −118.484 97.0559i −1.27403 1.04361i
\(94\) 61.9519 + 35.7679i 0.659063 + 0.380510i
\(95\) −16.3167 + 151.792i −0.171755 + 1.59781i
\(96\) −54.3264 + 5.40100i −0.565900 + 0.0562604i
\(97\) −59.6982 15.9961i −0.615446 0.164908i −0.0623891 0.998052i \(-0.519872\pi\)
−0.553056 + 0.833144i \(0.686539\pi\)
\(98\) −49.2370 49.2370i −0.502419 0.502419i
\(99\) 25.7578 + 128.263i 0.260179 + 1.29558i
\(100\) −21.8389 19.8515i −0.218389 0.198515i
\(101\) −54.5879 94.5491i −0.540475 0.936130i −0.998877 0.0473847i \(-0.984911\pi\)
0.458402 0.888745i \(-0.348422\pi\)
\(102\) 14.2411 + 37.7327i 0.139619 + 0.369928i
\(103\) 113.280 30.3534i 1.09981 0.294693i 0.337122 0.941461i \(-0.390546\pi\)
0.762687 + 0.646768i \(0.223880\pi\)
\(104\) −44.2738 25.5615i −0.425709 0.245783i
\(105\) −20.8663 + 35.4837i −0.198727 + 0.337940i
\(106\) −5.66416 9.81061i −0.0534354 0.0925529i
\(107\) −24.4404 + 24.4404i −0.228415 + 0.228415i −0.812030 0.583615i \(-0.801638\pi\)
0.583615 + 0.812030i \(0.301638\pi\)
\(108\) −27.0211 + 16.9061i −0.250195 + 0.156538i
\(109\) 38.5655i 0.353812i −0.984228 0.176906i \(-0.943391\pi\)
0.984228 0.176906i \(-0.0566088\pi\)
\(110\) −18.8062 120.581i −0.170965 1.09619i
\(111\) 6.90110 + 9.61184i 0.0621721 + 0.0865932i
\(112\) −7.02054 26.2010i −0.0626834 0.233938i
\(113\) 175.184 46.9404i 1.55030 0.415402i 0.620723 0.784030i \(-0.286839\pi\)
0.929577 + 0.368628i \(0.120173\pi\)
\(114\) −140.156 63.3491i −1.22944 0.555694i
\(115\) −111.759 + 17.4302i −0.971814 + 0.151567i
\(116\) 2.06153 0.0177718
\(117\) −52.7863 3.36256i −0.451165 0.0287398i
\(118\) −95.7782 95.7782i −0.811679 0.811679i
\(119\) 19.0278 10.9857i 0.159898 0.0923170i
\(120\) 113.518 64.3357i 0.945984 0.536131i
\(121\) −45.1471 + 78.1971i −0.373117 + 0.646257i
\(122\) −6.61963 24.7048i −0.0542592 0.202498i
\(123\) 76.8720 + 62.9694i 0.624976 + 0.511946i
\(124\) 52.1954 30.1350i 0.420931 0.243024i
\(125\) 118.605 + 39.4689i 0.948842 + 0.315751i
\(126\) −27.4016 31.1302i −0.217473 0.247065i
\(127\) 71.5886 71.5886i 0.563690 0.563690i −0.366664 0.930353i \(-0.619500\pi\)
0.930353 + 0.366664i \(0.119500\pi\)
\(128\) −11.6222 + 43.3747i −0.0907986 + 0.338865i
\(129\) 108.268 + 48.9358i 0.839285 + 0.379347i
\(130\) 49.0589 + 5.27354i 0.377376 + 0.0405657i
\(131\) −93.6880 + 162.272i −0.715176 + 1.23872i 0.247716 + 0.968833i \(0.420320\pi\)
−0.962892 + 0.269888i \(0.913013\pi\)
\(132\) −50.8001 8.33927i −0.384849 0.0631763i
\(133\) −21.6870 + 80.9368i −0.163060 + 0.608548i
\(134\) 107.505i 0.802279i
\(135\) 75.6916 111.785i 0.560679 0.828034i
\(136\) −69.6446 −0.512093
\(137\) −36.9208 9.89289i −0.269495 0.0722109i 0.121541 0.992586i \(-0.461216\pi\)
−0.391036 + 0.920376i \(0.627883\pi\)
\(138\) 18.4597 112.450i 0.133766 0.814858i
\(139\) −87.3985 50.4596i −0.628766 0.363018i 0.151508 0.988456i \(-0.451587\pi\)
−0.780274 + 0.625438i \(0.784920\pi\)
\(140\) −10.1642 12.6126i −0.0726016 0.0900899i
\(141\) −52.6408 + 116.465i −0.373339 + 0.825991i
\(142\) 73.6473 + 19.7337i 0.518643 + 0.138970i
\(143\) −60.4070 60.4070i −0.422426 0.422426i
\(144\) 17.5150 + 87.2173i 0.121632 + 0.605676i
\(145\) −7.98493 + 3.53253i −0.0550685 + 0.0243623i
\(146\) 109.315 + 189.340i 0.748734 + 1.29685i
\(147\) 78.8345 96.2400i 0.536289 0.654694i
\(148\) −4.49759 + 1.20513i −0.0303891 + 0.00814274i
\(149\) 42.4235 + 24.4932i 0.284722 + 0.164384i 0.635559 0.772052i \(-0.280770\pi\)
−0.350837 + 0.936436i \(0.614103\pi\)
\(150\) −75.0735 + 101.112i −0.500490 + 0.674077i
\(151\) −51.0998 88.5075i −0.338409 0.586142i 0.645724 0.763571i \(-0.276556\pi\)
−0.984134 + 0.177428i \(0.943222\pi\)
\(152\) 187.809 187.809i 1.23559 1.23559i
\(153\) −64.5668 + 31.9882i −0.422005 + 0.209073i
\(154\) 66.9819i 0.434947i
\(155\) −150.531 + 206.162i −0.971167 + 1.33008i
\(156\) 8.57264 18.9665i 0.0549528 0.121580i
\(157\) 35.3571 + 131.954i 0.225204 + 0.840473i 0.982323 + 0.187196i \(0.0599399\pi\)
−0.757118 + 0.653278i \(0.773393\pi\)
\(158\) 52.7974 14.1470i 0.334161 0.0895381i
\(159\) 16.4409 11.8042i 0.103402 0.0742403i
\(160\) 14.0216 + 89.9035i 0.0876351 + 0.561897i
\(161\) −62.0810 −0.385596
\(162\) 83.1927 + 107.599i 0.513535 + 0.664192i
\(163\) −150.604 150.604i −0.923951 0.923951i 0.0733548 0.997306i \(-0.476629\pi\)
−0.997306 + 0.0733548i \(0.976629\pi\)
\(164\) −33.8641 + 19.5514i −0.206488 + 0.119216i
\(165\) 211.054 54.7480i 1.27912 0.331806i
\(166\) −5.81255 + 10.0676i −0.0350154 + 0.0606484i
\(167\) −34.4600 128.607i −0.206347 0.770099i −0.989035 0.147684i \(-0.952818\pi\)
0.782687 0.622415i \(-0.213848\pi\)
\(168\) 67.0024 25.2881i 0.398824 0.150524i
\(169\) −116.446 + 67.2302i −0.689031 + 0.397812i
\(170\) 61.4709 27.1948i 0.361594 0.159969i
\(171\) 87.8539 260.378i 0.513766 1.52268i
\(172\) −33.0600 + 33.0600i −0.192209 + 0.192209i
\(173\) −37.9081 + 141.475i −0.219122 + 0.817775i 0.765552 + 0.643373i \(0.222466\pi\)
−0.984675 + 0.174401i \(0.944201\pi\)
\(174\) −0.870259 8.75357i −0.00500149 0.0503079i
\(175\) 60.9815 + 31.4355i 0.348466 + 0.179632i
\(176\) −71.8388 + 124.428i −0.408175 + 0.706980i
\(177\) 153.353 187.211i 0.866399 1.05769i
\(178\) 15.5535 58.0463i 0.0873790 0.326103i
\(179\) 141.161i 0.788611i 0.918979 + 0.394305i \(0.129015\pi\)
−0.918979 + 0.394305i \(0.870985\pi\)
\(180\) 30.6370 + 43.3990i 0.170206 + 0.241106i
\(181\) 182.292 1.00714 0.503568 0.863956i \(-0.332020\pi\)
0.503568 + 0.863956i \(0.332020\pi\)
\(182\) 26.1587 + 7.00919i 0.143729 + 0.0385120i
\(183\) 42.7520 16.1355i 0.233617 0.0881721i
\(184\) 170.419 + 98.3915i 0.926190 + 0.534736i
\(185\) 15.3555 12.3747i 0.0830027 0.0668901i
\(186\) −149.992 208.909i −0.806409 1.12317i
\(187\) −112.413 30.1210i −0.601140 0.161075i
\(188\) −35.5630 35.5630i −0.189165 0.189165i
\(189\) 50.5022 54.2189i 0.267208 0.286873i
\(190\) −92.4317 + 239.103i −0.486483 + 1.25843i
\(191\) −109.084 188.938i −0.571118 0.989206i −0.996451 0.0841691i \(-0.973176\pi\)
0.425333 0.905037i \(-0.360157\pi\)
\(192\) −207.505 34.0637i −1.08075 0.177415i
\(193\) −212.495 + 56.9379i −1.10101 + 0.295015i −0.763176 0.646191i \(-0.776361\pi\)
−0.337834 + 0.941206i \(0.609694\pi\)
\(194\) −89.8737 51.8886i −0.463267 0.267467i
\(195\) −0.704432 + 88.1527i −0.00361247 + 0.452065i
\(196\) 24.4775 + 42.3962i 0.124885 + 0.216307i
\(197\) −241.895 + 241.895i −1.22789 + 1.22789i −0.263133 + 0.964759i \(0.584756\pi\)
−0.964759 + 0.263133i \(0.915244\pi\)
\(198\) −13.9650 + 219.226i −0.0705302 + 1.10720i
\(199\) 126.744i 0.636904i −0.947939 0.318452i \(-0.896837\pi\)
0.947939 0.318452i \(-0.103163\pi\)
\(200\) −117.579 182.943i −0.587895 0.914714i
\(201\) −191.131 + 19.0018i −0.950900 + 0.0945362i
\(202\) −47.4469 177.074i −0.234885 0.876604i
\(203\) −4.62901 + 1.24034i −0.0228030 + 0.00611005i
\(204\) −2.80512 28.2156i −0.0137506 0.138312i
\(205\) 97.6637 133.757i 0.476408 0.652471i
\(206\) 196.922 0.955934
\(207\) 203.185 + 12.9432i 0.981572 + 0.0625275i
\(208\) −41.0760 41.0760i −0.197481 0.197481i
\(209\) 384.369 221.915i 1.83908 1.06180i
\(210\) −49.2643 + 48.4832i −0.234592 + 0.230873i
\(211\) 104.807 181.531i 0.496714 0.860334i −0.503278 0.864124i \(-0.667873\pi\)
0.999993 + 0.00378982i \(0.00120634\pi\)
\(212\) 2.06135 + 7.69304i 0.00972333 + 0.0362879i
\(213\) −22.0668 + 134.424i −0.103600 + 0.631097i
\(214\) −50.2619 + 29.0187i −0.234869 + 0.135601i
\(215\) 71.4015 184.701i 0.332100 0.859077i
\(216\) −224.565 + 68.7964i −1.03965 + 0.318502i
\(217\) −99.0700 + 99.0700i −0.456544 + 0.456544i
\(218\) 16.7602 62.5500i 0.0768817 0.286926i
\(219\) −317.300 + 227.815i −1.44886 + 1.04025i
\(220\) −9.17016 + 85.3086i −0.0416826 + 0.387766i
\(221\) 23.5265 40.7491i 0.106455 0.184385i
\(222\) 7.01578 + 18.5887i 0.0316026 + 0.0837331i
\(223\) 74.1657 276.790i 0.332582 1.24121i −0.573885 0.818936i \(-0.694565\pi\)
0.906467 0.422276i \(-0.138769\pi\)
\(224\) 49.9407i 0.222949i
\(225\) −193.033 115.600i −0.857924 0.513776i
\(226\) 304.533 1.34749
\(227\) 184.462 + 49.4265i 0.812609 + 0.217738i 0.641112 0.767447i \(-0.278473\pi\)
0.171496 + 0.985185i \(0.445140\pi\)
\(228\) 83.6528 + 68.5237i 0.366898 + 0.300543i
\(229\) −259.167 149.630i −1.13173 0.653406i −0.187363 0.982291i \(-0.559994\pi\)
−0.944370 + 0.328885i \(0.893327\pi\)
\(230\) −188.838 20.2989i −0.821035 0.0882563i
\(231\) 119.085 11.8392i 0.515521 0.0512519i
\(232\) 14.6729 + 3.93160i 0.0632454 + 0.0169466i
\(233\) −54.0196 54.0196i −0.231844 0.231844i 0.581618 0.813462i \(-0.302420\pi\)
−0.813462 + 0.581618i \(0.802420\pi\)
\(234\) −84.1536 28.3942i −0.359631 0.121343i
\(235\) 198.685 + 76.8073i 0.845469 + 0.326840i
\(236\) 47.6147 + 82.4710i 0.201757 + 0.349453i
\(237\) 34.4837 + 91.3666i 0.145501 + 0.385513i
\(238\) 35.6358 9.54860i 0.149730 0.0401202i
\(239\) 127.358 + 73.5301i 0.532878 + 0.307657i 0.742188 0.670192i \(-0.233788\pi\)
−0.209310 + 0.977849i \(0.567122\pi\)
\(240\) 143.514 37.2280i 0.597977 0.155117i
\(241\) 194.950 + 337.663i 0.808921 + 1.40109i 0.913612 + 0.406587i \(0.133281\pi\)
−0.104691 + 0.994505i \(0.533386\pi\)
\(242\) −107.209 + 107.209i −0.443010 + 0.443010i
\(243\) −176.593 + 166.925i −0.726721 + 0.686932i
\(244\) 17.9815i 0.0736948i
\(245\) −167.457 122.270i −0.683497 0.499062i
\(246\) 97.3141 + 135.539i 0.395586 + 0.550971i
\(247\) 46.4438 + 173.331i 0.188032 + 0.701744i
\(248\) 428.973 114.943i 1.72973 0.463479i
\(249\) −18.9264 8.55452i −0.0760096 0.0343555i
\(250\) 175.215 + 115.560i 0.700859 + 0.462240i
\(251\) −239.421 −0.953870 −0.476935 0.878938i \(-0.658252\pi\)
−0.476935 + 0.878938i \(0.658252\pi\)
\(252\) 12.9438 + 26.1266i 0.0513644 + 0.103677i
\(253\) 232.519 + 232.519i 0.919047 + 0.919047i
\(254\) 147.222 84.9989i 0.579616 0.334641i
\(255\) 59.2140 + 104.481i 0.232212 + 0.409729i
\(256\) 102.488 177.514i 0.400342 0.693413i
\(257\) −6.26563 23.3837i −0.0243799 0.0909870i 0.952664 0.304025i \(-0.0983307\pi\)
−0.977044 + 0.213038i \(0.931664\pi\)
\(258\) 154.334 + 126.422i 0.598194 + 0.490008i
\(259\) 9.37394 5.41205i 0.0361928 0.0208959i
\(260\) −32.3563 12.5082i −0.124447 0.0481085i
\(261\) 15.4089 3.09442i 0.0590381 0.0118560i
\(262\) −222.476 + 222.476i −0.849146 + 0.849146i
\(263\) −27.4221 + 102.341i −0.104266 + 0.389128i −0.998261 0.0589502i \(-0.981225\pi\)
0.893994 + 0.448078i \(0.147891\pi\)
\(264\) −345.666 156.237i −1.30934 0.591808i
\(265\) −21.1667 26.2653i −0.0798742 0.0991144i
\(266\) −70.3488 + 121.848i −0.264469 + 0.458074i
\(267\) 105.948 + 17.3923i 0.396810 + 0.0651397i
\(268\) 19.5621 73.0067i 0.0729929 0.272413i
\(269\) 33.3603i 0.124016i −0.998076 0.0620079i \(-0.980250\pi\)
0.998076 0.0620079i \(-0.0197504\pi\)
\(270\) 171.346 148.410i 0.634615 0.549667i
\(271\) −89.2173 −0.329215 −0.164608 0.986359i \(-0.552636\pi\)
−0.164608 + 0.986359i \(0.552636\pi\)
\(272\) −76.4397 20.4820i −0.281028 0.0753013i
\(273\) −7.83787 + 47.7457i −0.0287101 + 0.174893i
\(274\) −55.5830 32.0909i −0.202858 0.117120i
\(275\) −110.662 346.140i −0.402407 1.25869i
\(276\) −32.9979 + 73.0059i −0.119558 + 0.264514i
\(277\) 91.9589 + 24.6403i 0.331982 + 0.0889542i 0.420960 0.907079i \(-0.361693\pi\)
−0.0889779 + 0.996034i \(0.528360\pi\)
\(278\) −119.824 119.824i −0.431021 0.431021i
\(279\) 344.902 303.592i 1.23621 1.08814i
\(280\) −48.2901 109.155i −0.172465 0.389838i
\(281\) 149.830 + 259.513i 0.533202 + 0.923534i 0.999248 + 0.0387730i \(0.0123449\pi\)
−0.466046 + 0.884761i \(0.654322\pi\)
\(282\) −135.993 + 166.019i −0.482246 + 0.588719i
\(283\) −4.07727 + 1.09250i −0.0144073 + 0.00386043i −0.266016 0.963969i \(-0.585707\pi\)
0.251608 + 0.967829i \(0.419041\pi\)
\(284\) −46.4229 26.8023i −0.163461 0.0943743i
\(285\) −441.432 122.070i −1.54888 0.428316i
\(286\) −71.7227 124.227i −0.250779 0.434361i
\(287\) 64.2761 64.2761i 0.223958 0.223958i
\(288\) 10.4121 163.451i 0.0361531 0.567539i
\(289\) 224.900i 0.778200i
\(290\) −14.4861 + 2.25929i −0.0499520 + 0.00779067i
\(291\) 76.3661 168.956i 0.262426 0.580603i
\(292\) −39.7829 148.472i −0.136243 0.508465i
\(293\) −110.837 + 29.6986i −0.378282 + 0.101360i −0.442950 0.896546i \(-0.646068\pi\)
0.0646674 + 0.997907i \(0.479401\pi\)
\(294\) 169.688 121.832i 0.577170 0.414396i
\(295\) −325.745 237.845i −1.10422 0.806256i
\(296\) −34.3100 −0.115912
\(297\) −392.224 + 13.9206i −1.32062 + 0.0468706i
\(298\) 58.1629 + 58.1629i 0.195177 + 0.195177i
\(299\) −115.138 + 66.4749i −0.385077 + 0.222324i
\(300\) 69.3810 55.0040i 0.231270 0.183347i
\(301\) 54.3429 94.1247i 0.180541 0.312707i
\(302\) −44.4150 165.759i −0.147070 0.548872i
\(303\) 306.429 115.653i 1.01132 0.381692i
\(304\) 261.366 150.900i 0.859757 0.496381i
\(305\) −30.8123 69.6480i −0.101024 0.228354i
\(306\) −118.624 + 23.8220i −0.387659 + 0.0778497i
\(307\) −148.857 + 148.857i −0.484876 + 0.484876i −0.906685 0.421809i \(-0.861395\pi\)
0.421809 + 0.906685i \(0.361395\pi\)
\(308\) −12.1883 + 45.4873i −0.0395724 + 0.147686i
\(309\) 34.8064 + 350.103i 0.112642 + 1.13302i
\(310\) −333.745 + 268.958i −1.07660 + 0.867605i
\(311\) −17.4318 + 30.1928i −0.0560510 + 0.0970831i −0.892689 0.450672i \(-0.851184\pi\)
0.836638 + 0.547756i \(0.184518\pi\)
\(312\) 97.1874 118.645i 0.311498 0.380272i
\(313\) 43.5756 162.626i 0.139219 0.519573i −0.860726 0.509069i \(-0.829990\pi\)
0.999945 0.0105038i \(-0.00334352\pi\)
\(314\) 229.385i 0.730524i
\(315\) −94.9047 79.0163i −0.301285 0.250845i
\(316\) −38.4289 −0.121610
\(317\) −149.332 40.0134i −0.471078 0.126225i 0.0154670 0.999880i \(-0.495077\pi\)
−0.486545 + 0.873655i \(0.661743\pi\)
\(318\) 31.7957 12.0004i 0.0999865 0.0377370i
\(319\) 21.9831 + 12.6920i 0.0689127 + 0.0397868i
\(320\) −37.4577 + 348.463i −0.117055 + 1.08895i
\(321\) −60.4755 84.2302i −0.188397 0.262399i
\(322\) −100.690 26.9798i −0.312702 0.0837883i
\(323\) 172.857 + 172.857i 0.535162 + 0.535162i
\(324\) −36.9169 88.2085i −0.113941 0.272249i
\(325\) 146.759 6.99598i 0.451567 0.0215261i
\(326\) −178.816 309.718i −0.548515 0.950056i
\(327\) 114.168 + 18.7417i 0.349139 + 0.0573141i
\(328\) −278.315 + 74.5743i −0.848522 + 0.227361i
\(329\) 101.251 + 58.4573i 0.307754 + 0.177682i
\(330\) 366.105 + 2.92556i 1.10941 + 0.00886533i
\(331\) 74.6272 + 129.258i 0.225460 + 0.390508i 0.956457 0.291872i \(-0.0942782\pi\)
−0.730997 + 0.682380i \(0.760945\pi\)
\(332\) 5.77925 5.77925i 0.0174074 0.0174074i
\(333\) −31.8084 + 15.7588i −0.0955207 + 0.0473237i
\(334\) 223.565i 0.669356i
\(335\) 49.3308 + 316.298i 0.147256 + 0.944174i
\(336\) 80.9767 8.05051i 0.241002 0.0239598i
\(337\) −17.7797 66.3546i −0.0527586 0.196898i 0.934516 0.355920i \(-0.115833\pi\)
−0.987275 + 0.159022i \(0.949166\pi\)
\(338\) −218.084 + 58.4353i −0.645218 + 0.172886i
\(339\) 53.8269 + 541.422i 0.158781 + 1.59712i
\(340\) −46.6933 + 7.28243i −0.137333 + 0.0214189i
\(341\) 742.116 2.17629
\(342\) 255.649 384.130i 0.747513 1.12319i
\(343\) −175.555 175.555i −0.511822 0.511822i
\(344\) −298.354 + 172.255i −0.867309 + 0.500741i
\(345\) 2.71150 339.318i 0.00785943 0.983531i
\(346\) −122.968 + 212.986i −0.355398 + 0.615567i
\(347\) 5.27547 + 19.6883i 0.0152031 + 0.0567386i 0.973111 0.230338i \(-0.0739832\pi\)
−0.957908 + 0.287077i \(0.907317\pi\)
\(348\) −1.00184 + 6.10290i −0.00287886 + 0.0175371i
\(349\) 119.850 69.1957i 0.343411 0.198268i −0.318368 0.947967i \(-0.603135\pi\)
0.661779 + 0.749699i \(0.269802\pi\)
\(350\) 85.2452 + 77.4878i 0.243558 + 0.221394i
\(351\) 35.6071 154.633i 0.101445 0.440551i
\(352\) 187.048 187.048i 0.531388 0.531388i
\(353\) −6.05222 + 22.5872i −0.0171451 + 0.0639863i −0.973968 0.226684i \(-0.927212\pi\)
0.956823 + 0.290670i \(0.0938782\pi\)
\(354\) 330.085 236.994i 0.932443 0.669475i
\(355\) 225.737 + 24.2654i 0.635880 + 0.0683533i
\(356\) −21.1247 + 36.5890i −0.0593390 + 0.102778i
\(357\) 23.2749 + 61.6683i 0.0651958 + 0.172740i
\(358\) −61.3474 + 228.952i −0.171362 + 0.639530i
\(359\) 401.663i 1.11884i −0.828885 0.559419i \(-0.811024\pi\)
0.828885 0.559419i \(-0.188976\pi\)
\(360\) 135.291 + 367.322i 0.375810 + 1.02034i
\(361\) −571.281 −1.58250
\(362\) 295.662 + 79.2223i 0.816745 + 0.218846i
\(363\) −209.553 171.654i −0.577280 0.472876i
\(364\) −16.4889 9.51987i −0.0452992 0.0261535i
\(365\) 408.505 + 506.906i 1.11919 + 1.38878i
\(366\) 76.3524 7.59077i 0.208613 0.0207398i
\(367\) 607.153 + 162.686i 1.65437 + 0.443286i 0.960831 0.277135i \(-0.0893849\pi\)
0.693537 + 0.720421i \(0.256052\pi\)
\(368\) 158.110 + 158.110i 0.429647 + 0.429647i
\(369\) −223.771 + 196.969i −0.606424 + 0.533791i
\(370\) 30.2832 13.3973i 0.0818466 0.0362090i
\(371\) −9.25721 16.0340i −0.0249520 0.0432182i
\(372\) 63.8456 + 169.163i 0.171628 + 0.454739i
\(373\) −360.865 + 96.6935i −0.967467 + 0.259232i −0.707758 0.706455i \(-0.750293\pi\)
−0.259709 + 0.965687i \(0.583627\pi\)
\(374\) −169.234 97.7075i −0.452498 0.261250i
\(375\) −174.482 + 331.935i −0.465284 + 0.885161i
\(376\) −185.297 320.943i −0.492810 0.853572i
\(377\) −7.25702 + 7.25702i −0.0192494 + 0.0192494i
\(378\) 105.473 65.9907i 0.279030 0.174579i
\(379\) 223.796i 0.590491i −0.955421 0.295246i \(-0.904599\pi\)
0.955421 0.295246i \(-0.0954015\pi\)
\(380\) 106.278 145.555i 0.279680 0.383040i
\(381\) 177.139 + 246.719i 0.464932 + 0.647557i
\(382\) −94.8135 353.849i −0.248203 0.926306i
\(383\) 34.3604 9.20683i 0.0897138 0.0240387i −0.213683 0.976903i \(-0.568546\pi\)
0.303397 + 0.952864i \(0.401879\pi\)
\(384\) −122.758 55.4851i −0.319681 0.144492i
\(385\) −30.7359 197.072i −0.0798335 0.511874i
\(386\) −369.394 −0.956978
\(387\) −197.483 + 296.732i −0.510293 + 0.766749i
\(388\) 51.5913 + 51.5913i 0.132967 + 0.132967i
\(389\) −180.301 + 104.097i −0.463500 + 0.267602i −0.713515 0.700640i \(-0.752898\pi\)
0.250015 + 0.968242i \(0.419565\pi\)
\(390\) −39.4529 + 142.670i −0.101161 + 0.365821i
\(391\) −90.5585 + 156.852i −0.231607 + 0.401156i
\(392\) 93.3634 + 348.437i 0.238172 + 0.888870i
\(393\) −434.858 356.212i −1.10651 0.906391i
\(394\) −497.458 + 287.208i −1.26258 + 0.728954i
\(395\) 148.847 65.8499i 0.376828 0.166709i
\(396\) 49.3748 146.335i 0.124684 0.369532i
\(397\) 231.955 231.955i 0.584269 0.584269i −0.351805 0.936073i \(-0.614432\pi\)
0.936073 + 0.351805i \(0.114432\pi\)
\(398\) 55.0818 205.568i 0.138396 0.516502i
\(399\) −229.064 103.535i −0.574096 0.259485i
\(400\) −75.2488 235.371i −0.188122 0.588428i
\(401\) 47.0303 81.4589i 0.117283 0.203139i −0.801407 0.598119i \(-0.795915\pi\)
0.918690 + 0.394980i \(0.129248\pi\)
\(402\) −318.256 52.2445i −0.791682 0.129961i
\(403\) −77.6573 + 289.821i −0.192698 + 0.719159i
\(404\) 128.884i 0.319021i
\(405\) 294.140 + 278.400i 0.726273 + 0.687407i
\(406\) −8.04691 −0.0198200
\(407\) −55.3796 14.8389i −0.136068 0.0364593i
\(408\) 33.8453 206.174i 0.0829542 0.505329i
\(409\) 590.758 + 341.074i 1.44440 + 0.833922i 0.998139 0.0609834i \(-0.0194237\pi\)
0.446256 + 0.894905i \(0.352757\pi\)
\(410\) 216.532 174.498i 0.528126 0.425605i
\(411\) 47.2291 104.492i 0.114913 0.254238i
\(412\) −133.730 35.8328i −0.324587 0.0869728i
\(413\) −156.535 156.535i −0.379019 0.379019i
\(414\) 323.925 + 109.295i 0.782427 + 0.263998i
\(415\) −12.4818 + 32.2878i −0.0300765 + 0.0778020i
\(416\) 53.4753 + 92.6220i 0.128546 + 0.222649i
\(417\) 191.853 234.211i 0.460078 0.561656i
\(418\) 719.856 192.885i 1.72214 0.461447i
\(419\) −181.648 104.875i −0.433528 0.250298i 0.267320 0.963608i \(-0.413862\pi\)
−0.700849 + 0.713310i \(0.747195\pi\)
\(420\) 42.2775 23.9606i 0.100661 0.0570490i
\(421\) 2.94824 + 5.10651i 0.00700296 + 0.0121295i 0.869506 0.493923i \(-0.164438\pi\)
−0.862503 + 0.506052i \(0.831104\pi\)
\(422\) 248.879 248.879i 0.589761 0.589761i
\(423\) −319.198 212.435i −0.754604 0.502211i
\(424\) 58.6866i 0.138412i
\(425\) 168.379 108.218i 0.396185 0.254632i
\(426\) −94.2097 + 208.434i −0.221150 + 0.489281i
\(427\) −10.8188 40.3762i −0.0253367 0.0945579i
\(428\) 39.4132 10.5607i 0.0920868 0.0246746i
\(429\) 208.183 149.471i 0.485276 0.348418i
\(430\) 196.077 268.540i 0.455993 0.624511i
\(431\) −623.625 −1.44693 −0.723463 0.690364i \(-0.757451\pi\)
−0.723463 + 0.690364i \(0.757451\pi\)
\(432\) −266.708 + 9.46583i −0.617379 + 0.0219117i
\(433\) 342.585 + 342.585i 0.791190 + 0.791190i 0.981688 0.190497i \(-0.0610100\pi\)
−0.190497 + 0.981688i \(0.561010\pi\)
\(434\) −203.738 + 117.628i −0.469443 + 0.271033i
\(435\) −6.57718 25.3551i −0.0151200 0.0582876i
\(436\) −22.7637 + 39.4278i −0.0522103 + 0.0904308i
\(437\) −178.772 667.186i −0.409089 1.52674i
\(438\) −613.640 + 231.601i −1.40101 + 0.528769i
\(439\) −407.092 + 235.035i −0.927317 + 0.535387i −0.885962 0.463758i \(-0.846501\pi\)
−0.0413552 + 0.999145i \(0.513168\pi\)
\(440\) −227.963 + 589.696i −0.518098 + 1.34022i
\(441\) 246.595 + 280.150i 0.559173 + 0.635260i
\(442\) 55.8673 55.8673i 0.126397 0.126397i
\(443\) 41.6735 155.528i 0.0940712 0.351078i −0.902806 0.430048i \(-0.858496\pi\)
0.996877 + 0.0789700i \(0.0251631\pi\)
\(444\) −1.38193 13.9002i −0.00311245 0.0313068i
\(445\) 19.1252 177.919i 0.0429780 0.399817i
\(446\) 240.581 416.699i 0.539419 0.934302i
\(447\) −93.1259 + 113.687i −0.208335 + 0.254333i
\(448\) −49.7859 + 185.804i −0.111129 + 0.414740i
\(449\) 540.377i 1.20351i −0.798680 0.601756i \(-0.794468\pi\)
0.798680 0.601756i \(-0.205532\pi\)
\(450\) −262.845 271.383i −0.584099 0.603074i
\(451\) −481.481 −1.06759
\(452\) −206.808 55.4141i −0.457540 0.122598i
\(453\) 286.849 108.263i 0.633220 0.238990i
\(454\) 277.702 + 160.331i 0.611678 + 0.353152i
\(455\) 80.1793 + 8.61880i 0.176218 + 0.0189424i
\(456\) 464.716 + 647.255i 1.01911 + 1.41942i
\(457\) 125.433 + 33.6098i 0.274471 + 0.0735444i 0.393429 0.919355i \(-0.371289\pi\)
−0.118958 + 0.992899i \(0.537955\pi\)
\(458\) −355.319 355.319i −0.775805 0.775805i
\(459\) −63.3195 206.687i −0.137951 0.450299i
\(460\) 124.546 + 48.1467i 0.270752 + 0.104667i
\(461\) −383.986 665.083i −0.832941 1.44270i −0.895696 0.444667i \(-0.853322\pi\)
0.0627555 0.998029i \(-0.480011\pi\)
\(462\) 198.292 + 32.5513i 0.429203 + 0.0704573i
\(463\) 533.047 142.830i 1.15129 0.308487i 0.367808 0.929902i \(-0.380108\pi\)
0.783482 + 0.621414i \(0.213442\pi\)
\(464\) 14.9483 + 8.63040i 0.0322161 + 0.0186000i
\(465\) −537.163 545.817i −1.15519 1.17380i
\(466\) −64.1388 111.092i −0.137637 0.238394i
\(467\) −118.969 + 118.969i −0.254752 + 0.254752i −0.822916 0.568163i \(-0.807654\pi\)
0.568163 + 0.822916i \(0.307654\pi\)
\(468\) 51.9819 + 34.5954i 0.111072 + 0.0739218i
\(469\) 175.701i 0.374629i
\(470\) 288.871 + 210.922i 0.614619 + 0.448770i
\(471\) −407.817 + 40.5442i −0.865854 + 0.0860811i
\(472\) 181.615 + 677.795i 0.384777 + 1.43601i
\(473\) −556.073 + 148.999i −1.17563 + 0.315009i
\(474\) 16.2225 + 163.175i 0.0342247 + 0.344252i
\(475\) −162.233 + 745.893i −0.341542 + 1.57030i
\(476\) −25.9378 −0.0544911
\(477\) 26.9551 + 54.4077i 0.0565096 + 0.114062i
\(478\) 174.608 + 174.608i 0.365289 + 0.365289i
\(479\) 266.999 154.152i 0.557409 0.321820i −0.194696 0.980864i \(-0.562372\pi\)
0.752105 + 0.659043i \(0.229039\pi\)
\(480\) −272.962 2.18125i −0.568672 0.00454428i
\(481\) 11.5902 20.0748i 0.0240960 0.0417355i
\(482\) 169.447 + 632.384i 0.351550 + 1.31200i
\(483\) 30.1696 183.783i 0.0624629 0.380503i
\(484\) 92.3133 53.2971i 0.190730 0.110118i
\(485\) −288.233 111.425i −0.594295 0.229741i
\(486\) −358.963 + 193.992i −0.738608 + 0.399160i
\(487\) 337.366 337.366i 0.692744 0.692744i −0.270091 0.962835i \(-0.587054\pi\)
0.962835 + 0.270091i \(0.0870538\pi\)
\(488\) −34.2931 + 127.984i −0.0702728 + 0.262262i
\(489\) 519.034 372.655i 1.06142 0.762077i
\(490\) −218.463 271.087i −0.445843 0.553239i
\(491\) 57.4522 99.5101i 0.117011 0.202668i −0.801571 0.597899i \(-0.796002\pi\)
0.918582 + 0.395231i \(0.129336\pi\)
\(492\) −41.4227 109.752i −0.0841924 0.223073i
\(493\) −3.61861 + 13.5048i −0.00733997 + 0.0273932i
\(494\) 301.312i 0.609943i
\(495\) 59.5085 + 651.406i 0.120219 + 1.31597i
\(496\) 504.630 1.01740
\(497\) 120.365 + 32.2518i 0.242184 + 0.0648929i
\(498\) −26.9793 22.0999i −0.0541752 0.0443774i
\(499\) 367.018 + 211.898i 0.735507 + 0.424645i 0.820433 0.571742i \(-0.193732\pi\)
−0.0849264 + 0.996387i \(0.527066\pi\)
\(500\) −97.9604 110.359i −0.195921 0.220719i
\(501\) 397.470 39.5155i 0.793354 0.0788733i
\(502\) −388.321 104.050i −0.773549 0.207272i
\(503\) 429.215 + 429.215i 0.853309 + 0.853309i 0.990539 0.137230i \(-0.0438199\pi\)
−0.137230 + 0.990539i \(0.543820\pi\)
\(504\) 42.3011 + 210.642i 0.0839307 + 0.417940i
\(505\) −220.850 499.209i −0.437327 0.988533i
\(506\) 276.075 + 478.177i 0.545604 + 0.945013i
\(507\) −142.437 377.397i −0.280941 0.744372i
\(508\) −115.445 + 30.9335i −0.227254 + 0.0608926i
\(509\) −254.721 147.063i −0.500435 0.288926i 0.228458 0.973554i \(-0.426632\pi\)
−0.728893 + 0.684627i \(0.759965\pi\)
\(510\) 50.6336 + 195.193i 0.0992816 + 0.382731i
\(511\) 178.659 + 309.447i 0.349627 + 0.605571i
\(512\) 370.382 370.382i 0.723403 0.723403i
\(513\) 728.121 + 386.617i 1.41934 + 0.753639i
\(514\) 40.6493i 0.0790843i
\(515\) 579.378 90.3615i 1.12501 0.175459i
\(516\) −81.8038 113.936i −0.158535 0.220807i
\(517\) −160.280 598.173i −0.310019 1.15701i
\(518\) 17.5558 4.70405i 0.0338914 0.00908118i
\(519\) −400.397 180.975i −0.771478 0.348700i
\(520\) −206.441 150.735i −0.397002 0.289875i
\(521\) 659.361 1.26557 0.632784 0.774328i \(-0.281912\pi\)
0.632784 + 0.774328i \(0.281912\pi\)
\(522\) 26.3368 + 1.67769i 0.0504536 + 0.00321397i
\(523\) −179.405 179.405i −0.343031 0.343031i 0.514475 0.857506i \(-0.327987\pi\)
−0.857506 + 0.514475i \(0.827987\pi\)
\(524\) 191.566 110.601i 0.365584 0.211070i
\(525\) −122.696 + 165.251i −0.233707 + 0.314765i
\(526\) −88.9526 + 154.070i −0.169111 + 0.292910i
\(527\) 105.792 + 394.822i 0.200744 + 0.749188i
\(528\) −333.444 273.139i −0.631522 0.517308i
\(529\) −14.9377 + 8.62427i −0.0282376 + 0.0163030i
\(530\) −22.9159 51.7990i −0.0432375 0.0977339i
\(531\) 479.689 + 544.960i 0.903369 + 1.02629i
\(532\) 69.9457 69.9457i 0.131477 0.131477i
\(533\) 50.3836 188.034i 0.0945284 0.352785i
\(534\) 164.280 + 74.2530i 0.307641 + 0.139051i
\(535\) −134.563 + 108.441i −0.251520 + 0.202694i
\(536\) 278.467 482.319i 0.519528 0.899848i
\(537\) −417.891 68.6004i −0.778195 0.127747i
\(538\) 14.4981 54.1075i 0.0269481 0.100572i
\(539\) 602.790i 1.11835i
\(540\) −143.366 + 69.6064i −0.265493 + 0.128901i
\(541\) −423.058 −0.781992 −0.390996 0.920392i \(-0.627869\pi\)
−0.390996 + 0.920392i \(0.627869\pi\)
\(542\) −144.703 38.7730i −0.266980 0.0715370i
\(543\) −88.5885 + 539.652i −0.163146 + 0.993834i
\(544\) 126.179 + 72.8493i 0.231946 + 0.133914i
\(545\) 20.6091 191.723i 0.0378148 0.351785i
\(546\) −33.4622 + 74.0332i −0.0612861 + 0.135592i
\(547\) −469.487 125.799i −0.858294 0.229979i −0.197275 0.980348i \(-0.563209\pi\)
−0.661019 + 0.750369i \(0.729876\pi\)
\(548\) 31.9070 + 31.9070i 0.0582244 + 0.0582244i
\(549\) 26.9909 + 134.403i 0.0491637 + 0.244815i
\(550\) −29.0548 609.502i −0.0528270 1.10819i
\(551\) −26.6599 46.1763i −0.0483846 0.0838046i
\(552\) −374.095 + 456.689i −0.677708 + 0.827335i
\(553\) 86.2893 23.1212i 0.156039 0.0418104i
\(554\) 138.441 + 79.9290i 0.249894 + 0.144276i
\(555\) 29.1714 + 51.4718i 0.0525610 + 0.0927420i
\(556\) 59.5686 + 103.176i 0.107138 + 0.185568i
\(557\) −771.430 + 771.430i −1.38497 + 1.38497i −0.549440 + 0.835533i \(0.685159\pi\)
−0.835533 + 0.549440i \(0.814841\pi\)
\(558\) 691.341 342.509i 1.23896 0.613816i
\(559\) 232.757i 0.416380i
\(560\) −20.9000 134.006i −0.0373215 0.239297i
\(561\) 143.799 318.147i 0.256327 0.567108i
\(562\) 130.229 + 486.023i 0.231725 + 0.864809i
\(563\) −368.486 + 98.7354i −0.654504 + 0.175374i −0.570764 0.821114i \(-0.693353\pi\)
−0.0837395 + 0.996488i \(0.526686\pi\)
\(564\) 122.562 87.9972i 0.217309 0.156023i
\(565\) 895.987 139.741i 1.58582 0.247329i
\(566\) −7.08778 −0.0125226
\(567\) 135.966 + 175.855i 0.239799 + 0.310149i
\(568\) −279.300 279.300i −0.491726 0.491726i
\(569\) −466.672 + 269.433i −0.820162 + 0.473521i −0.850472 0.526020i \(-0.823684\pi\)
0.0303100 + 0.999541i \(0.490351\pi\)
\(570\) −662.915 389.830i −1.16301 0.683912i
\(571\) −149.200 + 258.422i −0.261296 + 0.452579i −0.966587 0.256340i \(-0.917483\pi\)
0.705290 + 0.708919i \(0.250817\pi\)
\(572\) 26.1019 + 97.4135i 0.0456327 + 0.170303i
\(573\) 612.340 231.110i 1.06866 0.403333i
\(574\) 132.184 76.3166i 0.230286 0.132956i
\(575\) −564.907 + 26.9290i −0.982446 + 0.0468330i
\(576\) 201.683 597.739i 0.350144 1.03774i
\(577\) −616.326 + 616.326i −1.06816 + 1.06816i −0.0706547 + 0.997501i \(0.522509\pi\)
−0.997501 + 0.0706547i \(0.977491\pi\)
\(578\) −97.7394 + 364.768i −0.169099 + 0.631087i
\(579\) −65.2911 656.736i −0.112765 1.13426i
\(580\) 10.2486 + 1.10166i 0.0176700 + 0.00189942i
\(581\) −9.49974 + 16.4540i −0.0163507 + 0.0283202i
\(582\) 197.286 240.844i 0.338979 0.413821i
\(583\) −25.3817 + 94.7258i −0.0435364 + 0.162480i
\(584\) 1132.62i 1.93942i
\(585\) −260.623 44.9251i −0.445509 0.0767950i
\(586\) −192.675 −0.328796
\(587\) 64.2180 + 17.2072i 0.109400 + 0.0293137i 0.313104 0.949719i \(-0.398631\pi\)
−0.203704 + 0.979033i \(0.565298\pi\)
\(588\) −137.404 + 51.8591i −0.233680 + 0.0881958i
\(589\) −1349.99 779.420i −2.29201 1.32329i
\(590\) −424.965 527.331i −0.720279 0.893781i
\(591\) −598.546 833.654i −1.01277 1.41058i
\(592\) −37.6575 10.0903i −0.0636107 0.0170444i
\(593\) 687.903 + 687.903i 1.16004 + 1.16004i 0.984467 + 0.175572i \(0.0561776\pi\)
0.175572 + 0.984467i \(0.443822\pi\)
\(594\) −642.204 147.879i −1.08115 0.248955i
\(595\) 100.465 44.4457i 0.168849 0.0746987i
\(596\) −28.9148 50.0819i −0.0485147 0.0840300i
\(597\) 375.210 + 61.5939i 0.628492 + 0.103172i
\(598\) −215.633 + 57.7788i −0.360591 + 0.0966200i
\(599\) 657.040 + 379.342i 1.09690 + 0.633293i 0.935404 0.353581i \(-0.115036\pi\)
0.161492 + 0.986874i \(0.448370\pi\)
\(600\) 598.720 259.173i 0.997866 0.431955i
\(601\) −506.677 877.590i −0.843057 1.46022i −0.887298 0.461196i \(-0.847421\pi\)
0.0442418 0.999021i \(-0.485913\pi\)
\(602\) 129.045 129.045i 0.214361 0.214361i
\(603\) 36.6318 575.054i 0.0607492 0.953655i
\(604\) 120.649i 0.199750i
\(605\) −266.230 + 364.620i −0.440050 + 0.602677i
\(606\) 547.264 54.4076i 0.903076 0.0897816i
\(607\) −7.81169 29.1536i −0.0128693 0.0480290i 0.959193 0.282754i \(-0.0912479\pi\)
−0.972062 + 0.234725i \(0.924581\pi\)
\(608\) −536.714 + 143.812i −0.882753 + 0.236533i
\(609\) −1.42231 14.3064i −0.00233548 0.0234916i
\(610\) −19.7065 126.354i −0.0323058 0.207138i
\(611\) 250.379 0.409785
\(612\) 84.8919 + 5.40774i 0.138712 + 0.00883617i
\(613\) −280.031 280.031i −0.456820 0.456820i 0.440790 0.897610i \(-0.354698\pi\)
−0.897610 + 0.440790i \(0.854698\pi\)
\(614\) −306.125 + 176.741i −0.498575 + 0.287853i
\(615\) 348.508 + 354.123i 0.566680 + 0.575810i
\(616\) −173.501 + 300.512i −0.281657 + 0.487844i
\(617\) 137.725 + 513.997i 0.223217 + 0.833058i 0.983111 + 0.183011i \(0.0585843\pi\)
−0.759894 + 0.650047i \(0.774749\pi\)
\(618\) −95.6987 + 582.965i −0.154852 + 0.943308i
\(619\) 252.742 145.921i 0.408307 0.235736i −0.281755 0.959486i \(-0.590916\pi\)
0.690062 + 0.723750i \(0.257583\pi\)
\(620\) 275.586 121.919i 0.444494 0.196644i
\(621\) −137.059 + 595.216i −0.220707 + 0.958479i
\(622\) −41.3945 + 41.3945i −0.0665507 + 0.0665507i
\(623\) 25.4198 94.8679i 0.0408022 0.152276i
\(624\) 141.562 101.639i 0.226863 0.162883i
\(625\) 568.538 + 259.596i 0.909660 + 0.415353i
\(626\) 141.352 244.829i 0.225802 0.391100i
\(627\) 470.161 + 1245.72i 0.749858 + 1.98679i
\(628\) 41.7397 155.775i 0.0664645 0.248049i
\(629\) 31.5785i 0.0502044i
\(630\) −119.588 169.402i −0.189822 0.268893i
\(631\) 872.307 1.38242 0.691210 0.722654i \(-0.257078\pi\)
0.691210 + 0.722654i \(0.257078\pi\)
\(632\) −273.518 73.2889i −0.432782 0.115963i
\(633\) 486.466 + 398.486i 0.768508 + 0.629520i
\(634\) −224.814 129.797i −0.354597 0.204726i
\(635\) 394.149 317.636i 0.620707 0.500215i
\(636\) −23.7761 + 2.36376i −0.0373838 + 0.00371660i
\(637\) −235.410 63.0779i −0.369560 0.0990233i
\(638\) 30.1390 + 30.1390i 0.0472398 + 0.0472398i
\(639\) −387.221 130.652i −0.605979 0.204463i
\(640\) −80.9574 + 209.421i −0.126496 + 0.327220i
\(641\) 508.796 + 881.261i 0.793754 + 1.37482i 0.923627 + 0.383291i \(0.125209\pi\)
−0.129874 + 0.991531i \(0.541457\pi\)
\(642\) −61.4805 162.896i −0.0957640 0.253733i
\(643\) 306.101 82.0195i 0.476051 0.127558i −0.0128120 0.999918i \(-0.504078\pi\)
0.488863 + 0.872360i \(0.337412\pi\)
\(644\) 63.4692 + 36.6439i 0.0985546 + 0.0569005i
\(645\) 512.087 + 301.135i 0.793933 + 0.466876i
\(646\) 205.238 + 355.483i 0.317706 + 0.550283i
\(647\) 638.406 638.406i 0.986717 0.986717i −0.0131963 0.999913i \(-0.504201\pi\)
0.999913 + 0.0131963i \(0.00420064\pi\)
\(648\) −94.5311 698.230i −0.145881 1.07752i
\(649\) 1172.58i 1.80674i
\(650\) 241.071 + 52.4333i 0.370879 + 0.0806667i
\(651\) −245.139 341.430i −0.376558 0.524470i
\(652\) 65.0761 + 242.867i 0.0998100 + 0.372496i
\(653\) −629.363 + 168.637i −0.963803 + 0.258250i −0.706209 0.708003i \(-0.749596\pi\)
−0.257593 + 0.966253i \(0.582930\pi\)
\(654\) 177.026 + 80.0140i 0.270683 + 0.122346i
\(655\) −552.474 + 756.648i −0.843472 + 1.15519i
\(656\) −327.401 −0.499088
\(657\) −520.219 1050.04i −0.791810 1.59823i
\(658\) 138.815 + 138.815i 0.210966 + 0.210966i
\(659\) −434.653 + 250.947i −0.659565 + 0.380800i −0.792111 0.610377i \(-0.791018\pi\)
0.132547 + 0.991177i \(0.457685\pi\)
\(660\) −248.089 68.6047i −0.375893 0.103946i
\(661\) 484.464 839.117i 0.732926 1.26947i −0.222701 0.974887i \(-0.571487\pi\)
0.955627 0.294579i \(-0.0951793\pi\)
\(662\) 64.8646 + 242.078i 0.0979828 + 0.365677i
\(663\) 109.200 + 89.4503i 0.164705 + 0.134918i
\(664\) 52.1556 30.1121i 0.0785476 0.0453495i
\(665\) −151.066 + 390.777i −0.227166 + 0.587634i
\(666\) −58.4392 + 11.7358i −0.0877465 + 0.0176213i
\(667\) 27.9338 27.9338i 0.0418798 0.0418798i
\(668\) −40.6808 + 151.823i −0.0608994 + 0.227279i
\(669\) 783.361 + 354.071i 1.17094 + 0.529254i
\(670\) −57.4499 + 534.448i −0.0857462 + 0.797683i
\(671\) −110.705 + 191.746i −0.164985 + 0.285762i
\(672\) −147.843 24.2697i −0.220005 0.0361157i
\(673\) 104.673 390.643i 0.155531 0.580450i −0.843528 0.537085i \(-0.819525\pi\)
0.999059 0.0433653i \(-0.0138079\pi\)
\(674\) 115.348i 0.171140i
\(675\) 436.027 515.272i 0.645966 0.763366i
\(676\) 158.733 0.234813
\(677\) 122.427 + 32.8042i 0.180837 + 0.0484552i 0.348101 0.937457i \(-0.386827\pi\)
−0.167264 + 0.985912i \(0.553493\pi\)
\(678\) −147.994 + 901.533i −0.218281 + 1.32970i
\(679\) −146.885 84.8041i −0.216325 0.124896i
\(680\) −346.229 37.2175i −0.509160 0.0547316i
\(681\) −235.964 + 522.058i −0.346497 + 0.766605i
\(682\) 1203.65 + 322.517i 1.76488 + 0.472899i
\(683\) −227.456 227.456i −0.333025 0.333025i 0.520709 0.853734i \(-0.325668\pi\)
−0.853734 + 0.520709i \(0.825668\pi\)
\(684\) −243.509 + 214.343i −0.356007 + 0.313367i
\(685\) −178.260 68.9112i −0.260233 0.100600i
\(686\) −208.441 361.030i −0.303850 0.526283i
\(687\) 568.909 694.515i 0.828106 1.01094i
\(688\) −378.123 + 101.318i −0.549597 + 0.147264i
\(689\) −34.3376 19.8248i −0.0498368 0.0287733i
\(690\) 151.862 549.167i 0.220090 0.795894i
\(691\) 514.537 + 891.204i 0.744626 + 1.28973i 0.950369 + 0.311124i \(0.100706\pi\)
−0.205743 + 0.978606i \(0.565961\pi\)
\(692\) 122.263 122.263i 0.176681 0.176681i
\(693\) −22.8236 + 358.291i −0.0329346 + 0.517015i
\(694\) 34.2254i 0.0493162i
\(695\) −407.524 297.558i −0.586366 0.428141i
\(696\) −18.7696 + 41.5268i −0.0269679 + 0.0596649i
\(697\) −68.6375 256.158i −0.0984756 0.367516i
\(698\) 224.459 60.1436i 0.321575 0.0861657i
\(699\) 186.170 133.666i 0.266338 0.191225i
\(700\) −43.7899 68.1334i −0.0625571 0.0973335i
\(701\) −921.196 −1.31412 −0.657058 0.753840i \(-0.728200\pi\)
−0.657058 + 0.753840i \(0.728200\pi\)
\(702\) 124.954 235.328i 0.177997 0.335224i
\(703\) 85.1571 + 85.1571i 0.121134 + 0.121134i
\(704\) 882.380 509.443i 1.25338 0.723640i
\(705\) −323.934 + 550.857i −0.459481 + 0.781358i
\(706\) −19.6324 + 34.0043i −0.0278079 + 0.0481647i
\(707\) −77.5447 289.401i −0.109681 0.409336i
\(708\) −267.285 + 100.879i −0.377521 + 0.142484i
\(709\) 896.021 517.318i 1.26378 0.729645i 0.289977 0.957033i \(-0.406352\pi\)
0.973804 + 0.227389i \(0.0730188\pi\)
\(710\) 355.582 + 137.460i 0.500819 + 0.193606i
\(711\) −287.238 + 57.6831i −0.403991 + 0.0811295i
\(712\) −220.135 + 220.135i −0.309179 + 0.309179i
\(713\) 298.919 1115.58i 0.419242 1.56463i
\(714\) 10.9494 + 110.136i 0.0153354 + 0.154252i
\(715\) −268.024 332.586i −0.374858 0.465155i
\(716\) 83.3219 144.318i 0.116371 0.201561i
\(717\) −279.569 + 341.294i −0.389915 + 0.476002i
\(718\) 174.559 651.463i 0.243118 0.907330i
\(719\) 111.687i 0.155336i 0.996979 + 0.0776681i \(0.0247475\pi\)
−0.996979 + 0.0776681i \(0.975253\pi\)
\(720\) 40.4651 + 442.948i 0.0562015 + 0.615206i
\(721\) 321.840 0.446380
\(722\) −926.570 248.274i −1.28334 0.343869i
\(723\) −1094.35 + 413.031i −1.51362 + 0.571273i
\(724\) −186.368 107.600i −0.257414 0.148618i
\(725\) −41.5837 + 13.2944i −0.0573568 + 0.0183371i
\(726\) −265.277 369.478i −0.365396 0.508923i
\(727\) −1326.37 355.399i −1.82444 0.488857i −0.827120 0.562025i \(-0.810022\pi\)
−0.997320 + 0.0731679i \(0.976689\pi\)
\(728\) −99.2042 99.2042i −0.136270 0.136270i
\(729\) −408.340 603.903i −0.560138 0.828400i
\(730\) 442.264 + 999.692i 0.605841 + 1.36944i
\(731\) −158.542 274.602i −0.216883 0.375653i
\(732\) −53.2321 8.73851i −0.0727214 0.0119379i
\(733\) −370.352 + 99.2355i −0.505255 + 0.135383i −0.502438 0.864613i \(-0.667563\pi\)
−0.00281726 + 0.999996i \(0.500897\pi\)
\(734\) 914.049 + 527.726i 1.24530 + 0.718973i
\(735\) 443.345 436.315i 0.603190 0.593626i
\(736\) −205.838 356.521i −0.279671 0.484404i
\(737\) 658.073 658.073i 0.892908 0.892908i
\(738\) −448.538 + 222.218i −0.607775 + 0.301109i
\(739\) 108.074i 0.146243i 0.997323 + 0.0731215i \(0.0232961\pi\)
−0.997323 + 0.0731215i \(0.976704\pi\)
\(740\) −23.0031 + 3.58764i −0.0310853 + 0.00484816i
\(741\) −535.694 + 53.2574i −0.722934 + 0.0718724i
\(742\) −8.04620 30.0288i −0.0108439 0.0404701i
\(743\) 1095.25 293.471i 1.47409 0.394981i 0.569758 0.821812i \(-0.307037\pi\)
0.904331 + 0.426831i \(0.140370\pi\)
\(744\) 131.806 + 1325.78i 0.177158 + 1.78196i
\(745\) 197.814 + 144.436i 0.265522 + 0.193873i
\(746\) −627.315 −0.840905
\(747\) 34.5223 51.8720i 0.0462146 0.0694404i
\(748\) 97.1476 + 97.1476i 0.129876 + 0.129876i
\(749\) −82.1455 + 47.4267i −0.109673 + 0.0633200i
\(750\) −427.251 + 462.543i −0.569668 + 0.616724i
\(751\) 123.908 214.615i 0.164991 0.285773i −0.771661 0.636034i \(-0.780574\pi\)
0.936652 + 0.350261i \(0.113907\pi\)
\(752\) −108.989 406.751i −0.144932 0.540892i
\(753\) 116.352 708.778i 0.154518 0.941272i
\(754\) −14.9241 + 8.61644i −0.0197933 + 0.0114276i
\(755\) −206.738 467.310i −0.273825 0.618954i
\(756\) −83.6348 + 25.6219i −0.110628 + 0.0338913i
\(757\) 794.781 794.781i 1.04991 1.04991i 0.0512222 0.998687i \(-0.483688\pi\)
0.998687 0.0512222i \(-0.0163117\pi\)
\(758\) 97.2598 362.978i 0.128311 0.478863i
\(759\) −801.341 + 575.346i −1.05579 + 0.758032i
\(760\) 1034.03 833.303i 1.36057 1.09645i
\(761\) −735.111 + 1273.25i −0.965980 + 1.67313i −0.259021 + 0.965872i \(0.583400\pi\)
−0.706959 + 0.707255i \(0.749933\pi\)
\(762\) 180.083 + 477.141i 0.236329 + 0.626169i
\(763\) 27.3920 102.228i 0.0359004 0.133982i
\(764\) 257.551i 0.337109i
\(765\) −338.079 + 124.521i −0.441933 + 0.162772i
\(766\) 59.7308 0.0779776
\(767\) −457.930 122.702i −0.597040 0.159976i
\(768\) 475.702 + 389.669i 0.619403 + 0.507381i
\(769\) −330.109 190.589i −0.429271 0.247840i 0.269765 0.962926i \(-0.413054\pi\)
−0.699036 + 0.715087i \(0.746387\pi\)
\(770\) 35.7945 332.991i 0.0464864 0.432456i
\(771\) 72.2694 7.18485i 0.0937346 0.00931887i
\(772\) 250.855 + 67.2163i 0.324941 + 0.0870678i
\(773\) −325.772 325.772i −0.421438 0.421438i 0.464260 0.885699i \(-0.346320\pi\)
−0.885699 + 0.464260i \(0.846320\pi\)
\(774\) −449.259 + 395.449i −0.580437 + 0.510917i
\(775\) −858.515 + 944.462i −1.10776 + 1.21866i
\(776\) 268.810 + 465.593i 0.346405 + 0.599991i
\(777\) 11.4662 + 30.3805i 0.0147571 + 0.0390997i
\(778\) −337.673 + 90.4793i −0.434028 + 0.116297i
\(779\) 875.869 + 505.683i 1.12435 + 0.649144i
\(780\) 52.7532 89.7081i 0.0676323 0.115010i
\(781\) −330.021 571.614i −0.422563 0.731900i
\(782\) −215.045 + 215.045i −0.274993 + 0.274993i
\(783\) 1.67236 + 47.1201i 0.00213583 + 0.0601789i
\(784\) 409.891i 0.522820i
\(785\) 105.257 + 674.887i 0.134086 + 0.859729i
\(786\) −550.496 766.730i −0.700377 0.975484i
\(787\) −90.6626 338.358i −0.115200 0.429933i 0.884102 0.467295i \(-0.154771\pi\)
−0.999302 + 0.0373615i \(0.988105\pi\)
\(788\) 390.085 104.523i 0.495032 0.132643i
\(789\) −289.640 130.914i −0.367098 0.165924i
\(790\) 270.035 42.1154i 0.341816 0.0533107i
\(791\) 497.714 0.629221
\(792\) 630.505 947.375i 0.796092 1.19618i
\(793\) −63.2989 63.2989i −0.0798220 0.0798220i
\(794\) 477.017 275.406i 0.600776 0.346858i
\(795\) 88.0416 49.8971i 0.110744 0.0627636i
\(796\) −74.8119 + 129.578i −0.0939848 + 0.162787i
\(797\) −32.4527 121.115i −0.0407186 0.151964i 0.942573 0.333999i \(-0.108398\pi\)
−0.983292 + 0.182035i \(0.941732\pi\)
\(798\) −326.528 267.474i −0.409183 0.335180i
\(799\) 295.393 170.545i 0.369703 0.213448i
\(800\) 21.6629 + 454.436i 0.0270786 + 0.568045i
\(801\) −102.976 + 305.194i −0.128559 + 0.381017i
\(802\) 111.680 111.680i 0.139252 0.139252i
\(803\) 489.853 1828.16i 0.610029 2.27666i
\(804\) 206.621 + 93.3904i 0.256991 + 0.116157i
\(805\) −308.627 33.1756i −0.383388 0.0412119i
\(806\) −251.907 + 436.316i −0.312540 + 0.541335i
\(807\) 98.7590 + 16.2121i 0.122378 + 0.0200894i
\(808\) −245.799 + 917.336i −0.304207 + 1.13532i
\(809\) 717.779i 0.887242i −0.896214 0.443621i \(-0.853694\pi\)
0.896214 0.443621i \(-0.146306\pi\)
\(810\) 356.081 + 579.372i 0.439606 + 0.715274i
\(811\) 771.312 0.951063 0.475532 0.879699i \(-0.342256\pi\)
0.475532 + 0.879699i \(0.342256\pi\)
\(812\) 5.46464 + 1.46425i 0.00672986 + 0.00180326i
\(813\) 43.3571 264.117i 0.0533297 0.324867i
\(814\) −83.3722 48.1350i −0.102423 0.0591339i
\(815\) −668.225 829.189i −0.819909 1.01741i
\(816\) 97.7818 216.337i 0.119831 0.265118i
\(817\) 1168.05 + 312.978i 1.42968 + 0.383082i
\(818\) 809.931 + 809.931i 0.990136 + 0.990136i
\(819\) −137.536 46.4061i −0.167932 0.0566619i
\(820\) −178.799 + 79.1006i −0.218047 + 0.0964641i
\(821\) 303.667 + 525.966i 0.369874 + 0.640641i 0.989546 0.144220i \(-0.0460674\pi\)
−0.619671 + 0.784861i \(0.712734\pi\)
\(822\) 122.013 148.951i 0.148434 0.181206i
\(823\) −528.599 + 141.638i −0.642283 + 0.172099i −0.565237 0.824928i \(-0.691215\pi\)
−0.0770455 + 0.997028i \(0.524549\pi\)
\(824\) −883.485 510.080i −1.07219 0.619029i
\(825\) 1078.48 159.387i 1.30725 0.193196i
\(826\) −185.858 321.915i −0.225009 0.389728i
\(827\) −54.4673 + 54.4673i −0.0658613 + 0.0658613i −0.739270 0.673409i \(-0.764829\pi\)
0.673409 + 0.739270i \(0.264829\pi\)
\(828\) −200.089 133.165i −0.241653 0.160827i
\(829\) 533.549i 0.643605i −0.946807 0.321803i \(-0.895711\pi\)
0.946807 0.321803i \(-0.104289\pi\)
\(830\) −34.2764 + 46.9437i −0.0412968 + 0.0565587i
\(831\) −117.634 + 260.259i −0.141557 + 0.313187i
\(832\) 106.619 + 397.909i 0.128148 + 0.478256i
\(833\) −320.698 + 85.9307i −0.384991 + 0.103158i
\(834\) 412.954 296.493i 0.495149 0.355507i
\(835\) −102.587 657.765i −0.122859 0.787742i
\(836\) −523.951 −0.626736
\(837\) 731.135 + 1168.58i 0.873518 + 1.39615i
\(838\) −249.041 249.041i −0.297185 0.297185i
\(839\) −1319.75 + 761.957i −1.57300 + 0.908173i −0.577204 + 0.816600i \(0.695856\pi\)
−0.995798 + 0.0915732i \(0.970810\pi\)
\(840\) 346.607 89.9107i 0.412627 0.107037i
\(841\) −418.975 + 725.686i −0.498187 + 0.862885i
\(842\) 2.56256 + 9.56361i 0.00304342 + 0.0113582i
\(843\) −841.069 + 317.437i −0.997710 + 0.376556i
\(844\) −214.301 + 123.727i −0.253911 + 0.146595i
\(845\) −614.823 + 271.998i −0.727601 + 0.321891i
\(846\) −425.389 483.272i −0.502824 0.571244i
\(847\) −175.216 + 175.216i −0.206867 + 0.206867i
\(848\) −17.2593 + 64.4125i −0.0203529 + 0.0759581i
\(849\) −1.25278 12.6012i −0.00147559 0.0148424i
\(850\) 320.127 102.345i 0.376620 0.120406i
\(851\) −44.6131 + 77.2721i −0.0524243 + 0.0908015i
\(852\) 101.905 124.404i 0.119607 0.146014i
\(853\) −188.905 + 705.002i −0.221459 + 0.826497i 0.762333 + 0.647185i \(0.224054\pi\)
−0.983792 + 0.179312i \(0.942613\pi\)
\(854\) 70.1886i 0.0821880i
\(855\) 575.897 1247.48i 0.673564 1.45904i
\(856\) 300.664 0.351243
\(857\) 1160.15 + 310.861i 1.35373 + 0.362731i 0.861511 0.507739i \(-0.169518\pi\)
0.492221 + 0.870470i \(0.336185\pi\)
\(858\) 402.615 151.955i 0.469248 0.177104i
\(859\) 987.915 + 570.373i 1.15008 + 0.663996i 0.948906 0.315560i \(-0.102192\pi\)
0.201170 + 0.979556i \(0.435526\pi\)
\(860\) −182.020 + 146.686i −0.211651 + 0.170565i
\(861\) 159.045 + 221.518i 0.184721 + 0.257280i
\(862\) −1011.47 271.022i −1.17340 0.314410i
\(863\) 1189.86 + 1189.86i 1.37874 + 1.37874i 0.846744 + 0.532000i \(0.178559\pi\)
0.532000 + 0.846744i \(0.321441\pi\)
\(864\) 478.818 + 110.256i 0.554187 + 0.127612i
\(865\) −264.058 + 683.066i −0.305269 + 0.789671i
\(866\) 406.760 + 704.529i 0.469700 + 0.813544i
\(867\) −665.788 109.295i −0.767922 0.126061i
\(868\) 159.762 42.8082i 0.184058 0.0493182i
\(869\) −409.787 236.591i −0.471562 0.272256i
\(870\) 0.351464 43.9822i 0.000403981 0.0505543i
\(871\) 188.137 + 325.862i 0.216001 + 0.374125i
\(872\) −237.215 + 237.215i −0.272035 + 0.272035i
\(873\) 463.061 + 308.180i 0.530424 + 0.353013i
\(874\) 1159.81i 1.32702i
\(875\) 286.362 + 188.865i 0.327271 + 0.215846i
\(876\) 458.865 45.6193i 0.523819 0.0520768i
\(877\) 375.154 + 1400.09i 0.427769 + 1.59646i 0.757800 + 0.652487i \(0.226274\pi\)
−0.330031 + 0.943970i \(0.607059\pi\)
\(878\) −762.413 + 204.288i −0.868352 + 0.232674i
\(879\) −34.0556 342.551i −0.0387436 0.389706i
\(880\) −423.630 + 580.189i −0.481398 + 0.659305i
\(881\) 127.177 0.144355 0.0721777 0.997392i \(-0.477005\pi\)
0.0721777 + 0.997392i \(0.477005\pi\)
\(882\) 278.206 + 561.548i 0.315427 + 0.636675i
\(883\) −363.077 363.077i −0.411186 0.411186i 0.470966 0.882151i \(-0.343905\pi\)
−0.882151 + 0.470966i \(0.843905\pi\)
\(884\) −48.1052 + 27.7736i −0.0544177 + 0.0314181i
\(885\) 862.415 848.741i 0.974480 0.959029i
\(886\) 135.182 234.142i 0.152575 0.264268i
\(887\) −399.719 1491.77i −0.450642 1.68182i −0.700594 0.713560i \(-0.747082\pi\)
0.249952 0.968258i \(-0.419585\pi\)
\(888\) 16.6737 101.570i 0.0187766 0.114381i
\(889\) 240.613 138.918i 0.270655 0.156263i
\(890\) 108.341 280.258i 0.121732 0.314896i
\(891\) 149.399 1167.90i 0.167676 1.31077i
\(892\) −239.202 + 239.202i −0.268164 + 0.268164i
\(893\) −336.674 + 1256.48i −0.377014 + 1.40704i
\(894\) −200.449 + 143.919i −0.224216 + 0.160983i
\(895\) −75.4354 + 701.764i −0.0842854 + 0.784094i
\(896\) −61.6158 + 106.722i −0.0687677 + 0.119109i
\(897\) −140.837 373.157i −0.157009 0.416005i
\(898\) 234.843 876.446i 0.261518 0.975997i
\(899\) 89.1545i 0.0991708i
\(900\) 129.115 + 232.124i 0.143462 + 0.257916i
\(901\) −54.0145 −0.0599495
\(902\) −780.921 209.247i −0.865766 0.231981i
\(903\) 252.236 + 206.617i 0.279331 + 0.228812i
\(904\) −1366.28 788.821i −1.51137 0.872589i
\(905\) 906.237 + 97.4151i 1.00137 + 0.107641i
\(906\) 512.294 50.9310i 0.565446 0.0562153i
\(907\) 332.129 + 88.9936i 0.366184 + 0.0981186i 0.437219 0.899355i \(-0.355964\pi\)
−0.0710351 + 0.997474i \(0.522630\pi\)
\(908\) −159.412 159.412i −0.175564 0.175564i
\(909\) 193.460 + 963.350i 0.212827 + 1.05979i
\(910\) 126.298 + 48.8242i 0.138790 + 0.0536530i
\(911\) −9.64078 16.6983i −0.0105826 0.0183297i 0.860686 0.509137i \(-0.170035\pi\)
−0.871268 + 0.490807i \(0.836702\pi\)
\(912\) 319.704 + 847.076i 0.350553 + 0.928811i
\(913\) 97.2076 26.0467i 0.106471 0.0285287i
\(914\) 188.836 + 109.024i 0.206604 + 0.119283i
\(915\) 221.158 57.3690i 0.241703 0.0626984i
\(916\) 176.641 + 305.952i 0.192840 + 0.334008i
\(917\) −363.604 + 363.604i −0.396514 + 0.396514i
\(918\) −12.8744 362.748i −0.0140244 0.395150i
\(919\) 947.679i 1.03121i −0.856827 0.515603i \(-0.827568\pi\)
0.856827 0.515603i \(-0.172432\pi\)
\(920\) 794.635 + 580.210i 0.863733 + 0.630663i
\(921\) −368.332 513.013i −0.399927 0.557017i
\(922\) −333.753 1245.58i −0.361988 1.35096i
\(923\) 257.769 69.0689i 0.279273 0.0748309i
\(924\) −128.736 58.1875i −0.139325 0.0629734i
\(925\) 82.9507 53.3131i 0.0896764 0.0576358i
\(926\) 926.630 1.00068
\(927\) −1053.35 67.1001i −1.13630 0.0723841i
\(928\) −22.4712 22.4712i −0.0242146 0.0242146i
\(929\) −216.919 + 125.239i −0.233498 + 0.134810i −0.612185 0.790715i \(-0.709709\pi\)
0.378687 + 0.925525i \(0.376376\pi\)
\(930\) −634.026 1118.72i −0.681748 1.20292i
\(931\) 633.091 1096.55i 0.680012 1.17781i
\(932\) 23.3419 + 87.1132i 0.0250450 + 0.0934691i
\(933\) −80.9108 66.2777i −0.0867211 0.0710372i
\(934\) −244.661 + 141.255i −0.261950 + 0.151237i
\(935\) −542.750 209.815i −0.580481 0.224401i
\(936\) 304.003 + 345.369i 0.324790 + 0.368984i
\(937\) −773.708 + 773.708i −0.825729 + 0.825729i −0.986923 0.161194i \(-0.948466\pi\)
0.161194 + 0.986923i \(0.448466\pi\)
\(938\) −76.3581 + 284.972i −0.0814053 + 0.303809i
\(939\) 460.259 + 208.032i 0.490158 + 0.221546i
\(940\) −157.792 195.801i −0.167864 0.208299i
\(941\) 711.412 1232.20i 0.756017 1.30946i −0.188850 0.982006i \(-0.560476\pi\)
0.944867 0.327454i \(-0.106191\pi\)
\(942\) −679.065 111.474i −0.720876 0.118338i
\(943\) −193.937 + 723.783i −0.205660 + 0.767533i
\(944\) 797.338i 0.844638i
\(945\) 280.039 242.554i 0.296338 0.256671i
\(946\) −966.657 −1.02184
\(947\) 974.990 + 261.248i 1.02956 + 0.275869i 0.733779 0.679388i \(-0.237755\pi\)
0.295778 + 0.955257i \(0.404421\pi\)
\(948\) 18.6753 113.764i 0.0196997 0.120004i
\(949\) 662.697 + 382.608i 0.698311 + 0.403170i
\(950\) −587.286 + 1139.27i −0.618196 + 1.19923i
\(951\) 191.026 422.633i 0.200868 0.444409i
\(952\) −184.612 49.4667i −0.193920 0.0519608i
\(953\) −1340.68 1340.68i −1.40680 1.40680i −0.775700 0.631102i \(-0.782603\pi\)
−0.631102 0.775700i \(-0.717397\pi\)
\(954\) 20.0738 + 99.9591i 0.0210417 + 0.104779i
\(955\) −441.327 997.574i −0.462122 1.04458i
\(956\) −86.8038 150.349i −0.0907989 0.157268i
\(957\) −48.2562 + 58.9105i −0.0504245 + 0.0615574i
\(958\) 500.043 133.986i 0.521966 0.139860i
\(959\) −90.8420 52.4476i −0.0947257 0.0546899i
\(960\) −1013.38 280.232i −1.05560 0.291908i
\(961\) −822.745 1425.04i −0.856134 1.48287i
\(962\) 27.5226 27.5226i 0.0286098 0.0286098i
\(963\) 278.743 138.097i 0.289452 0.143403i
\(964\) 460.285i 0.477474i
\(965\) −1086.82 + 169.503i −1.12623 + 0.175651i
\(966\) 128.803 284.969i 0.133336 0.294999i
\(967\) 224.840 + 839.114i 0.232513 + 0.867750i 0.979254 + 0.202635i \(0.0649506\pi\)
−0.746741 + 0.665114i \(0.768383\pi\)
\(968\) 758.685 203.289i 0.783766 0.210009i
\(969\) −595.727 + 427.720i −0.614785 + 0.441403i
\(970\) −419.066 305.985i −0.432027 0.315448i
\(971\) −35.3368 −0.0363922 −0.0181961 0.999834i \(-0.505792\pi\)
−0.0181961 + 0.999834i \(0.505792\pi\)
\(972\) 279.071 66.4211i 0.287110 0.0683345i
\(973\) −195.834 195.834i −0.201268 0.201268i
\(974\) 693.796 400.563i 0.712316 0.411256i
\(975\) −50.6100 + 437.862i −0.0519077 + 0.449090i
\(976\) −75.2780 + 130.385i −0.0771291 + 0.133592i
\(977\) 181.759 + 678.332i 0.186037 + 0.694301i 0.994406 + 0.105625i \(0.0336842\pi\)
−0.808369 + 0.588677i \(0.799649\pi\)
\(978\) 1003.78 378.848i 1.02636 0.387370i
\(979\) −450.527 + 260.112i −0.460191 + 0.265691i
\(980\) 99.0301 + 223.847i 0.101051 + 0.228416i
\(981\) −110.965 + 328.873i −0.113114 + 0.335243i
\(982\) 136.429 136.429i 0.138929 0.138929i
\(983\) −10.8240 + 40.3956i −0.0110112 + 0.0410942i −0.971213 0.238213i \(-0.923438\pi\)
0.960202 + 0.279308i \(0.0901049\pi\)
\(984\) −85.5149 860.159i −0.0869054 0.874145i
\(985\) −1331.81 + 1073.28i −1.35209 + 1.08962i
\(986\) −11.7381 + 20.3311i −0.0119048 + 0.0206197i
\(987\) −222.261 + 271.332i −0.225188 + 0.274906i
\(988\) 54.8279 204.620i 0.0554938 0.207106i
\(989\) 895.929i 0.905894i
\(990\) −186.577 + 1082.39i −0.188462 + 1.09332i
\(991\) 805.965 0.813284 0.406642 0.913588i \(-0.366700\pi\)
0.406642 + 0.913588i \(0.366700\pi\)
\(992\) −897.423 240.464i −0.904660 0.242403i
\(993\) −418.919 + 158.109i −0.421873 + 0.159223i
\(994\) 181.206 + 104.619i 0.182300 + 0.105251i
\(995\) 67.7309 630.090i 0.0680712 0.633256i
\(996\) 14.3002 + 19.9173i 0.0143576 + 0.0199973i
\(997\) −204.376 54.7624i −0.204991 0.0549271i 0.154862 0.987936i \(-0.450507\pi\)
−0.359853 + 0.933009i \(0.617173\pi\)
\(998\) 503.183 + 503.183i 0.504192 + 0.504192i
\(999\) −31.1939 101.823i −0.0312252 0.101925i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.3.k.a.13.7 yes 40
3.2 odd 2 135.3.l.a.118.4 40
5.2 odd 4 inner 45.3.k.a.22.4 yes 40
5.3 odd 4 225.3.o.b.157.7 40
5.4 even 2 225.3.o.b.193.4 40
9.2 odd 6 135.3.l.a.73.7 40
9.4 even 3 405.3.g.h.163.4 20
9.5 odd 6 405.3.g.g.163.7 20
9.7 even 3 inner 45.3.k.a.43.4 yes 40
15.2 even 4 135.3.l.a.37.7 40
45.2 even 12 135.3.l.a.127.4 40
45.7 odd 12 inner 45.3.k.a.7.7 40
45.22 odd 12 405.3.g.h.82.4 20
45.32 even 12 405.3.g.g.82.7 20
45.34 even 6 225.3.o.b.43.7 40
45.43 odd 12 225.3.o.b.7.4 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.7 40 45.7 odd 12 inner
45.3.k.a.13.7 yes 40 1.1 even 1 trivial
45.3.k.a.22.4 yes 40 5.2 odd 4 inner
45.3.k.a.43.4 yes 40 9.7 even 3 inner
135.3.l.a.37.7 40 15.2 even 4
135.3.l.a.73.7 40 9.2 odd 6
135.3.l.a.118.4 40 3.2 odd 2
135.3.l.a.127.4 40 45.2 even 12
225.3.o.b.7.4 40 45.43 odd 12
225.3.o.b.43.7 40 45.34 even 6
225.3.o.b.157.7 40 5.3 odd 4
225.3.o.b.193.4 40 5.4 even 2
405.3.g.g.82.7 20 45.32 even 12
405.3.g.g.163.7 20 9.5 odd 6
405.3.g.h.82.4 20 45.22 odd 12
405.3.g.h.163.4 20 9.4 even 3