Properties

Label 45.3.k
Level $45$
Weight $3$
Character orbit 45.k
Rep. character $\chi_{45}(7,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $40$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 45.k (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(45, [\chi])\).

Total New Old
Modular forms 56 56 0
Cusp forms 40 40 0
Eisenstein series 16 16 0

Trace form

\( 40 q - 2 q^{2} - 6 q^{3} - 2 q^{5} - 24 q^{6} - 2 q^{7} - 24 q^{8} - 8 q^{10} + 8 q^{11} - 30 q^{12} - 2 q^{13} - 30 q^{15} + 28 q^{16} + 28 q^{17} + 48 q^{18} - 114 q^{20} + 12 q^{21} + 14 q^{22} + 82 q^{23}+ \cdots - 1876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(45, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
45.3.k.a 45.k 45.k $40$ $1.226$ None 45.3.k.a \(-2\) \(-6\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{12}]$