Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [45,3,Mod(7,45)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(45, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([8, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("45.7");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 45 = 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 45.k (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.22616118962\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −3.30223 | + | 0.884830i | −2.58106 | − | 1.52909i | 6.65771 | − | 3.84383i | 3.76250 | + | 3.29296i | 9.87625 | + | 2.76562i | 6.43786 | − | 1.72502i | −8.91454 | + | 8.91454i | 4.32375 | + | 7.89336i | −15.3384 | − | 7.54494i |
7.2 | −3.22423 | + | 0.863931i | 1.08621 | + | 2.79645i | 6.18520 | − | 3.57103i | −4.88999 | + | 1.04305i | −5.91814 | − | 8.07800i | −8.79970 | + | 2.35787i | −7.41620 | + | 7.41620i | −6.64028 | + | 6.07508i | 14.8654 | − | 7.58766i |
7.3 | −2.38711 | + | 0.639624i | 2.13208 | − | 2.11050i | 1.82507 | − | 1.05371i | −1.83989 | − | 4.64917i | −3.73959 | + | 6.40173i | 10.3622 | − | 2.77655i | 3.30727 | − | 3.30727i | 0.0915623 | − | 8.99953i | 7.36573 | + | 9.92126i |
7.4 | −0.891829 | + | 0.238965i | −2.93652 | − | 0.613889i | −2.72585 | + | 1.57377i | −1.31764 | − | 4.82326i | 2.76557 | − | 0.154241i | −11.0534 | + | 2.96175i | 4.66637 | − | 4.66637i | 8.24628 | + | 3.60539i | 2.32770 | + | 3.98665i |
7.5 | −0.725667 | + | 0.194442i | 2.68329 | + | 1.34163i | −2.97532 | + | 1.71780i | 4.81907 | + | 1.33289i | −2.20804 | − | 0.451834i | −1.79727 | + | 0.481578i | 3.94998 | − | 3.94998i | 5.40005 | + | 7.19996i | −3.75621 | − | 0.0302083i |
7.6 | −0.183646 | + | 0.0492077i | −1.82902 | + | 2.37796i | −3.43280 | + | 1.98193i | −1.61810 | + | 4.73094i | 0.218877 | − | 0.526704i | 8.70492 | − | 2.33248i | 1.07064 | − | 1.07064i | −2.30940 | − | 8.69866i | 0.0643587 | − | 0.948439i |
7.7 | 1.62192 | − | 0.434591i | −0.485971 | − | 2.96038i | −1.02236 | + | 0.590260i | 4.97136 | − | 0.534392i | −2.07476 | − | 4.59028i | 2.65078 | − | 0.710273i | −6.15096 | + | 6.15096i | −8.52766 | + | 2.87732i | 7.83089 | − | 3.02725i |
7.8 | 1.84813 | − | 0.495206i | 2.82294 | − | 1.01538i | −0.293735 | + | 0.169588i | −4.92689 | + | 0.851907i | 4.71435 | − | 3.27449i | −3.01652 | + | 0.808273i | −5.87059 | + | 5.87059i | 6.93801 | − | 5.73271i | −8.68368 | + | 4.01426i |
7.9 | 2.40598 | − | 0.644680i | −0.325974 | + | 2.98224i | 1.90902 | − | 1.10217i | 0.360208 | − | 4.98701i | 1.13830 | + | 7.38535i | −0.0658171 | + | 0.0176356i | −3.16269 | + | 3.16269i | −8.78748 | − | 1.94426i | −2.34837 | − | 12.2309i |
7.10 | 3.47266 | − | 0.930497i | −2.93201 | − | 0.635068i | 7.72947 | − | 4.46261i | −2.41870 | + | 4.37606i | −10.7728 | + | 0.522853i | −4.78910 | + | 1.28323i | 12.5207 | − | 12.5207i | 8.19338 | + | 3.72405i | −4.32742 | + | 17.4472i |
13.1 | −3.30223 | − | 0.884830i | −2.58106 | + | 1.52909i | 6.65771 | + | 3.84383i | 3.76250 | − | 3.29296i | 9.87625 | − | 2.76562i | 6.43786 | + | 1.72502i | −8.91454 | − | 8.91454i | 4.32375 | − | 7.89336i | −15.3384 | + | 7.54494i |
13.2 | −3.22423 | − | 0.863931i | 1.08621 | − | 2.79645i | 6.18520 | + | 3.57103i | −4.88999 | − | 1.04305i | −5.91814 | + | 8.07800i | −8.79970 | − | 2.35787i | −7.41620 | − | 7.41620i | −6.64028 | − | 6.07508i | 14.8654 | + | 7.58766i |
13.3 | −2.38711 | − | 0.639624i | 2.13208 | + | 2.11050i | 1.82507 | + | 1.05371i | −1.83989 | + | 4.64917i | −3.73959 | − | 6.40173i | 10.3622 | + | 2.77655i | 3.30727 | + | 3.30727i | 0.0915623 | + | 8.99953i | 7.36573 | − | 9.92126i |
13.4 | −0.891829 | − | 0.238965i | −2.93652 | + | 0.613889i | −2.72585 | − | 1.57377i | −1.31764 | + | 4.82326i | 2.76557 | + | 0.154241i | −11.0534 | − | 2.96175i | 4.66637 | + | 4.66637i | 8.24628 | − | 3.60539i | 2.32770 | − | 3.98665i |
13.5 | −0.725667 | − | 0.194442i | 2.68329 | − | 1.34163i | −2.97532 | − | 1.71780i | 4.81907 | − | 1.33289i | −2.20804 | + | 0.451834i | −1.79727 | − | 0.481578i | 3.94998 | + | 3.94998i | 5.40005 | − | 7.19996i | −3.75621 | + | 0.0302083i |
13.6 | −0.183646 | − | 0.0492077i | −1.82902 | − | 2.37796i | −3.43280 | − | 1.98193i | −1.61810 | − | 4.73094i | 0.218877 | + | 0.526704i | 8.70492 | + | 2.33248i | 1.07064 | + | 1.07064i | −2.30940 | + | 8.69866i | 0.0643587 | + | 0.948439i |
13.7 | 1.62192 | + | 0.434591i | −0.485971 | + | 2.96038i | −1.02236 | − | 0.590260i | 4.97136 | + | 0.534392i | −2.07476 | + | 4.59028i | 2.65078 | + | 0.710273i | −6.15096 | − | 6.15096i | −8.52766 | − | 2.87732i | 7.83089 | + | 3.02725i |
13.8 | 1.84813 | + | 0.495206i | 2.82294 | + | 1.01538i | −0.293735 | − | 0.169588i | −4.92689 | − | 0.851907i | 4.71435 | + | 3.27449i | −3.01652 | − | 0.808273i | −5.87059 | − | 5.87059i | 6.93801 | + | 5.73271i | −8.68368 | − | 4.01426i |
13.9 | 2.40598 | + | 0.644680i | −0.325974 | − | 2.98224i | 1.90902 | + | 1.10217i | 0.360208 | + | 4.98701i | 1.13830 | − | 7.38535i | −0.0658171 | − | 0.0176356i | −3.16269 | − | 3.16269i | −8.78748 | + | 1.94426i | −2.34837 | + | 12.2309i |
13.10 | 3.47266 | + | 0.930497i | −2.93201 | + | 0.635068i | 7.72947 | + | 4.46261i | −2.41870 | − | 4.37606i | −10.7728 | − | 0.522853i | −4.78910 | − | 1.28323i | 12.5207 | + | 12.5207i | 8.19338 | − | 3.72405i | −4.32742 | − | 17.4472i |
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
9.c | even | 3 | 1 | inner |
45.k | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 45.3.k.a | ✓ | 40 |
3.b | odd | 2 | 1 | 135.3.l.a | 40 | ||
5.b | even | 2 | 1 | 225.3.o.b | 40 | ||
5.c | odd | 4 | 1 | inner | 45.3.k.a | ✓ | 40 |
5.c | odd | 4 | 1 | 225.3.o.b | 40 | ||
9.c | even | 3 | 1 | inner | 45.3.k.a | ✓ | 40 |
9.c | even | 3 | 1 | 405.3.g.h | 20 | ||
9.d | odd | 6 | 1 | 135.3.l.a | 40 | ||
9.d | odd | 6 | 1 | 405.3.g.g | 20 | ||
15.e | even | 4 | 1 | 135.3.l.a | 40 | ||
45.j | even | 6 | 1 | 225.3.o.b | 40 | ||
45.k | odd | 12 | 1 | inner | 45.3.k.a | ✓ | 40 |
45.k | odd | 12 | 1 | 225.3.o.b | 40 | ||
45.k | odd | 12 | 1 | 405.3.g.h | 20 | ||
45.l | even | 12 | 1 | 135.3.l.a | 40 | ||
45.l | even | 12 | 1 | 405.3.g.g | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
45.3.k.a | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
45.3.k.a | ✓ | 40 | 5.c | odd | 4 | 1 | inner |
45.3.k.a | ✓ | 40 | 9.c | even | 3 | 1 | inner |
45.3.k.a | ✓ | 40 | 45.k | odd | 12 | 1 | inner |
135.3.l.a | 40 | 3.b | odd | 2 | 1 | ||
135.3.l.a | 40 | 9.d | odd | 6 | 1 | ||
135.3.l.a | 40 | 15.e | even | 4 | 1 | ||
135.3.l.a | 40 | 45.l | even | 12 | 1 | ||
225.3.o.b | 40 | 5.b | even | 2 | 1 | ||
225.3.o.b | 40 | 5.c | odd | 4 | 1 | ||
225.3.o.b | 40 | 45.j | even | 6 | 1 | ||
225.3.o.b | 40 | 45.k | odd | 12 | 1 | ||
405.3.g.g | 20 | 9.d | odd | 6 | 1 | ||
405.3.g.g | 20 | 45.l | even | 12 | 1 | ||
405.3.g.h | 20 | 9.c | even | 3 | 1 | ||
405.3.g.h | 20 | 45.k | odd | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(45, [\chi])\).