L(s) = 1 | + (−1.18 + 1.18i)2-s + 1.18i·4-s + (−2.02 − 4.57i)5-s + (−1.94 + 1.94i)7-s + (−6.15 − 6.15i)8-s + (7.83 + 3.02i)10-s + 14.5·11-s + (−4.15 − 4.15i)13-s − 4.60i·14-s + 9.88·16-s + (5.66 − 5.66i)17-s + 30.5i·19-s + (5.39 − 2.38i)20-s + (−17.2 + 17.2i)22-s + (15.9 + 15.9i)23-s + ⋯ |
L(s) = 1 | + (−0.593 + 0.593i)2-s + 0.295i·4-s + (−0.404 − 0.914i)5-s + (−0.277 + 0.277i)7-s + (−0.768 − 0.768i)8-s + (0.783 + 0.302i)10-s + 1.32·11-s + (−0.319 − 0.319i)13-s − 0.329i·14-s + 0.617·16-s + (0.333 − 0.333i)17-s + 1.60i·19-s + (0.269 − 0.119i)20-s + (−0.784 + 0.784i)22-s + (0.695 + 0.695i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.136 - 0.990i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.136 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.774262 + 0.674803i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.774262 + 0.674803i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (2.02 + 4.57i)T \) |
good | 2 | \( 1 + (1.18 - 1.18i)T - 4iT^{2} \) |
| 7 | \( 1 + (1.94 - 1.94i)T - 49iT^{2} \) |
| 11 | \( 1 - 14.5T + 121T^{2} \) |
| 13 | \( 1 + (4.15 + 4.15i)T + 169iT^{2} \) |
| 17 | \( 1 + (-5.66 + 5.66i)T - 289iT^{2} \) |
| 19 | \( 1 - 30.5iT - 361T^{2} \) |
| 23 | \( 1 + (-15.9 - 15.9i)T + 529iT^{2} \) |
| 29 | \( 1 + 1.74iT - 841T^{2} \) |
| 31 | \( 1 - 51.0T + 961T^{2} \) |
| 37 | \( 1 + (-2.78 + 2.78i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 33.1T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-28.0 - 28.0i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (30.1 - 30.1i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (4.77 + 4.77i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 80.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 15.2T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-45.2 + 45.2i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 45.4T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-92.0 - 92.0i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 32.5iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (4.89 + 4.89i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 35.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-43.7 + 43.7i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49974073076185244985950351460, −9.841301940219842422570891310285, −9.325686918391978367735561177982, −8.387929101597314147021672517459, −7.76539560767953242716531805516, −6.68414204795340173977226700482, −5.69712834961132384820634669263, −4.29295488432858446824368993339, −3.26496043012306110817266097211, −1.09956043500720577362269823343,
0.68785889848348748128646283086, 2.32736344084827804250528832729, 3.49449770396141452798228737294, 4.84168647311413629508193583279, 6.45880442773252901857021910390, 6.85692241590686854539899777427, 8.308611977279579224816275115509, 9.230172701947112147421696496043, 9.998401364016051847901708002500, 10.81380556968031122567564366227