Properties

Label 405.3.g
Level $405$
Weight $3$
Character orbit 405.g
Rep. character $\chi_{405}(82,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $88$
Newform subspaces $8$
Sturm bound $162$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.g (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 8 \)
Sturm bound: \(162\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(405, [\chi])\).

Total New Old
Modular forms 240 104 136
Cusp forms 192 88 104
Eisenstein series 48 16 32

Trace form

\( 88 q + 4 q^{7} - 8 q^{10} - 44 q^{13} - 248 q^{16} - 28 q^{22} + 16 q^{25} - 88 q^{28} + 8 q^{31} - 20 q^{37} + 84 q^{40} + 28 q^{43} + 200 q^{46} - 140 q^{52} + 224 q^{55} - 36 q^{58} - 184 q^{61} + 160 q^{67}+ \cdots - 392 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(405, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
405.3.g.a 405.g 5.c $4$ $11.035$ \(\Q(\zeta_{12})\) None 405.3.g.a \(-2\) \(0\) \(10\) \(-20\) $\mathrm{SU}(2)[C_{4}]$ \(q+(\zeta_{12}-\zeta_{12}^{2})q^{2}+(-1+2\zeta_{12}^{2}+\cdots)q^{4}+\cdots\)
405.3.g.b 405.g 5.c $4$ $11.035$ \(\Q(\zeta_{12})\) None 405.3.g.a \(2\) \(0\) \(-10\) \(-20\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(1+\cdots)q^{4}+\cdots\)
405.3.g.c 405.g 5.c $8$ $11.035$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 405.3.g.c \(-2\) \(0\) \(-2\) \(26\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{6}q^{2}+(-\beta _{1}-4\beta _{2}-\beta _{5}-\beta _{6}+\cdots)q^{4}+\cdots\)
405.3.g.d 405.g 5.c $8$ $11.035$ 8.0.49787136.1 None 405.3.g.d \(0\) \(0\) \(0\) \(-52\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta _{2}-\beta _{7})q^{2}+(-2\beta _{1}-\beta _{5}-\beta _{6}+\cdots)q^{4}+\cdots\)
405.3.g.e 405.g 5.c $8$ $11.035$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 405.3.g.c \(2\) \(0\) \(2\) \(26\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{6}q^{2}+(-\beta _{1}-4\beta _{2}-\beta _{5}-\beta _{6}+\cdots)q^{4}+\cdots\)
405.3.g.f 405.g 5.c $16$ $11.035$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 405.3.g.f \(0\) \(0\) \(0\) \(40\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{9}q^{2}+(-3\beta _{2}-\beta _{5}-\beta _{6})q^{4}+(\beta _{9}+\cdots)q^{5}+\cdots\)
405.3.g.g 405.g 5.c $20$ $11.035$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 45.3.k.a \(-2\) \(0\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{1}q^{2}+(2\beta _{5}+\beta _{9})q^{4}+\beta _{7}q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
405.3.g.h 405.g 5.c $20$ $11.035$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 45.3.k.a \(2\) \(0\) \(2\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{3}q^{2}+(-2\beta _{5}-\beta _{9})q^{4}-\beta _{12}q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(405, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(405, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)