Properties

Label 405.3.d.a.404.4
Level $405$
Weight $3$
Character 405.404
Analytic conductor $11.035$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(404,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.404"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{18} - 19 x^{16} + 66 x^{14} + 109 x^{12} - 813 x^{10} + 981 x^{8} + 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{20} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 404.4
Root \(0.346576 - 1.69702i\) of defining polynomial
Character \(\chi\) \(=\) 405.404
Dual form 405.3.d.a.404.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.84162 q^{2} +4.07481 q^{4} +(4.81147 + 1.36005i) q^{5} -9.72928i q^{7} -0.212574 q^{8} +(-13.6724 - 3.86473i) q^{10} -0.428355i q^{11} -18.7519i q^{13} +27.6469i q^{14} -15.6952 q^{16} +2.85718 q^{17} +0.530568 q^{19} +(19.6058 + 5.54192i) q^{20} +1.21722i q^{22} -21.7727 q^{23} +(21.3006 + 13.0876i) q^{25} +53.2858i q^{26} -39.6450i q^{28} +24.3218i q^{29} -12.6633 q^{31} +45.4500 q^{32} -8.11902 q^{34} +(13.2323 - 46.8122i) q^{35} +14.5875i q^{37} -1.50767 q^{38} +(-1.02279 - 0.289110i) q^{40} -38.2436i q^{41} -57.7661i q^{43} -1.74546i q^{44} +61.8697 q^{46} -49.5700 q^{47} -45.6590 q^{49} +(-60.5281 - 37.1901i) q^{50} -76.4104i q^{52} -44.5876 q^{53} +(0.582582 - 2.06102i) q^{55} +2.06819i q^{56} -69.1132i q^{58} -63.0846i q^{59} -22.1646 q^{61} +35.9842 q^{62} -66.3710 q^{64} +(25.5035 - 90.2243i) q^{65} +32.5440i q^{67} +11.6425 q^{68} +(-37.6011 + 133.022i) q^{70} -89.8896i q^{71} -144.328i q^{73} -41.4522i q^{74} +2.16196 q^{76} -4.16759 q^{77} +50.2480 q^{79} +(-75.5169 - 21.3462i) q^{80} +108.674i q^{82} +76.5112 q^{83} +(13.7472 + 3.88589i) q^{85} +164.149i q^{86} +0.0910570i q^{88} +28.9588i q^{89} -182.443 q^{91} -88.7195 q^{92} +140.859 q^{94} +(2.55282 + 0.721597i) q^{95} +22.9900i q^{97} +129.746 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} + 4 q^{10} + 52 q^{16} - 8 q^{19} - 4 q^{25} - 56 q^{31} + 8 q^{34} + 68 q^{40} + 116 q^{46} + 80 q^{49} + 36 q^{55} + 100 q^{61} + 140 q^{64} + 108 q^{70} + 192 q^{76} + 256 q^{79} + 148 q^{85}+ \cdots - 436 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.84162 −1.42081 −0.710405 0.703793i \(-0.751488\pi\)
−0.710405 + 0.703793i \(0.751488\pi\)
\(3\) 0 0
\(4\) 4.07481 1.01870
\(5\) 4.81147 + 1.36005i 0.962295 + 0.272009i
\(6\) 0 0
\(7\) 9.72928i 1.38990i −0.719059 0.694949i \(-0.755427\pi\)
0.719059 0.694949i \(-0.244573\pi\)
\(8\) −0.212574 −0.0265717
\(9\) 0 0
\(10\) −13.6724 3.86473i −1.36724 0.386473i
\(11\) 0.428355i 0.0389413i −0.999810 0.0194707i \(-0.993802\pi\)
0.999810 0.0194707i \(-0.00619810\pi\)
\(12\) 0 0
\(13\) 18.7519i 1.44245i −0.692699 0.721227i \(-0.743578\pi\)
0.692699 0.721227i \(-0.256422\pi\)
\(14\) 27.6469i 1.97478i
\(15\) 0 0
\(16\) −15.6952 −0.980948
\(17\) 2.85718 0.168069 0.0840347 0.996463i \(-0.473219\pi\)
0.0840347 + 0.996463i \(0.473219\pi\)
\(18\) 0 0
\(19\) 0.530568 0.0279246 0.0139623 0.999903i \(-0.495556\pi\)
0.0139623 + 0.999903i \(0.495556\pi\)
\(20\) 19.6058 + 5.54192i 0.980291 + 0.277096i
\(21\) 0 0
\(22\) 1.21722i 0.0553283i
\(23\) −21.7727 −0.946639 −0.473319 0.880891i \(-0.656944\pi\)
−0.473319 + 0.880891i \(0.656944\pi\)
\(24\) 0 0
\(25\) 21.3006 + 13.0876i 0.852022 + 0.523506i
\(26\) 53.2858i 2.04945i
\(27\) 0 0
\(28\) 39.6450i 1.41589i
\(29\) 24.3218i 0.838682i 0.907829 + 0.419341i \(0.137739\pi\)
−0.907829 + 0.419341i \(0.862261\pi\)
\(30\) 0 0
\(31\) −12.6633 −0.408492 −0.204246 0.978920i \(-0.565474\pi\)
−0.204246 + 0.978920i \(0.565474\pi\)
\(32\) 45.4500 1.42031
\(33\) 0 0
\(34\) −8.11902 −0.238795
\(35\) 13.2323 46.8122i 0.378065 1.33749i
\(36\) 0 0
\(37\) 14.5875i 0.394257i 0.980378 + 0.197129i \(0.0631617\pi\)
−0.980378 + 0.197129i \(0.936838\pi\)
\(38\) −1.50767 −0.0396756
\(39\) 0 0
\(40\) −1.02279 0.289110i −0.0255698 0.00722776i
\(41\) 38.2436i 0.932771i −0.884581 0.466386i \(-0.845556\pi\)
0.884581 0.466386i \(-0.154444\pi\)
\(42\) 0 0
\(43\) 57.7661i 1.34340i −0.740824 0.671699i \(-0.765565\pi\)
0.740824 0.671699i \(-0.234435\pi\)
\(44\) 1.74546i 0.0396696i
\(45\) 0 0
\(46\) 61.8697 1.34499
\(47\) −49.5700 −1.05468 −0.527341 0.849654i \(-0.676811\pi\)
−0.527341 + 0.849654i \(0.676811\pi\)
\(48\) 0 0
\(49\) −45.6590 −0.931816
\(50\) −60.5281 37.1901i −1.21056 0.743803i
\(51\) 0 0
\(52\) 76.4104i 1.46943i
\(53\) −44.5876 −0.841275 −0.420637 0.907229i \(-0.638193\pi\)
−0.420637 + 0.907229i \(0.638193\pi\)
\(54\) 0 0
\(55\) 0.582582 2.06102i 0.0105924 0.0374730i
\(56\) 2.06819i 0.0369320i
\(57\) 0 0
\(58\) 69.1132i 1.19161i
\(59\) 63.0846i 1.06923i −0.845096 0.534615i \(-0.820457\pi\)
0.845096 0.534615i \(-0.179543\pi\)
\(60\) 0 0
\(61\) −22.1646 −0.363353 −0.181677 0.983358i \(-0.558152\pi\)
−0.181677 + 0.983358i \(0.558152\pi\)
\(62\) 35.9842 0.580390
\(63\) 0 0
\(64\) −66.3710 −1.03705
\(65\) 25.5035 90.2243i 0.392361 1.38807i
\(66\) 0 0
\(67\) 32.5440i 0.485731i 0.970060 + 0.242866i \(0.0780874\pi\)
−0.970060 + 0.242866i \(0.921913\pi\)
\(68\) 11.6425 0.171213
\(69\) 0 0
\(70\) −37.6011 + 133.022i −0.537159 + 1.90032i
\(71\) 89.8896i 1.26605i −0.774131 0.633025i \(-0.781813\pi\)
0.774131 0.633025i \(-0.218187\pi\)
\(72\) 0 0
\(73\) 144.328i 1.97709i −0.150926 0.988545i \(-0.548225\pi\)
0.150926 0.988545i \(-0.451775\pi\)
\(74\) 41.4522i 0.560165i
\(75\) 0 0
\(76\) 2.16196 0.0284469
\(77\) −4.16759 −0.0541245
\(78\) 0 0
\(79\) 50.2480 0.636051 0.318025 0.948082i \(-0.396980\pi\)
0.318025 + 0.948082i \(0.396980\pi\)
\(80\) −75.5169 21.3462i −0.943961 0.266827i
\(81\) 0 0
\(82\) 108.674i 1.32529i
\(83\) 76.5112 0.921822 0.460911 0.887446i \(-0.347523\pi\)
0.460911 + 0.887446i \(0.347523\pi\)
\(84\) 0 0
\(85\) 13.7472 + 3.88589i 0.161732 + 0.0457164i
\(86\) 164.149i 1.90871i
\(87\) 0 0
\(88\) 0.0910570i 0.00103474i
\(89\) 28.9588i 0.325379i 0.986677 + 0.162690i \(0.0520169\pi\)
−0.986677 + 0.162690i \(0.947983\pi\)
\(90\) 0 0
\(91\) −182.443 −2.00486
\(92\) −88.7195 −0.964343
\(93\) 0 0
\(94\) 140.859 1.49850
\(95\) 2.55282 + 0.721597i 0.0268717 + 0.00759576i
\(96\) 0 0
\(97\) 22.9900i 0.237010i 0.992953 + 0.118505i \(0.0378102\pi\)
−0.992953 + 0.118505i \(0.962190\pi\)
\(98\) 129.746 1.32393
\(99\) 0 0
\(100\) 86.7956 + 53.3296i 0.867956 + 0.533296i
\(101\) 57.4276i 0.568590i 0.958737 + 0.284295i \(0.0917595\pi\)
−0.958737 + 0.284295i \(0.908241\pi\)
\(102\) 0 0
\(103\) 86.1903i 0.836799i −0.908263 0.418400i \(-0.862591\pi\)
0.908263 0.418400i \(-0.137409\pi\)
\(104\) 3.98617i 0.0383285i
\(105\) 0 0
\(106\) 126.701 1.19529
\(107\) −97.0919 −0.907401 −0.453701 0.891154i \(-0.649896\pi\)
−0.453701 + 0.891154i \(0.649896\pi\)
\(108\) 0 0
\(109\) 164.495 1.50913 0.754565 0.656225i \(-0.227848\pi\)
0.754565 + 0.656225i \(0.227848\pi\)
\(110\) −1.65548 + 5.85663i −0.0150498 + 0.0532421i
\(111\) 0 0
\(112\) 152.703i 1.36342i
\(113\) 42.8047 0.378803 0.189401 0.981900i \(-0.439345\pi\)
0.189401 + 0.981900i \(0.439345\pi\)
\(114\) 0 0
\(115\) −104.759 29.6119i −0.910946 0.257494i
\(116\) 99.1065i 0.854366i
\(117\) 0 0
\(118\) 179.262i 1.51917i
\(119\) 27.7983i 0.233599i
\(120\) 0 0
\(121\) 120.817 0.998484
\(122\) 62.9832 0.516256
\(123\) 0 0
\(124\) −51.6003 −0.416132
\(125\) 84.6872 + 91.9406i 0.677498 + 0.735525i
\(126\) 0 0
\(127\) 78.7223i 0.619861i 0.950759 + 0.309931i \(0.100306\pi\)
−0.950759 + 0.309931i \(0.899694\pi\)
\(128\) 6.80117 0.0531342
\(129\) 0 0
\(130\) −72.4711 + 256.383i −0.557470 + 1.97218i
\(131\) 182.783i 1.39529i 0.716444 + 0.697644i \(0.245768\pi\)
−0.716444 + 0.697644i \(0.754232\pi\)
\(132\) 0 0
\(133\) 5.16205i 0.0388124i
\(134\) 92.4776i 0.690132i
\(135\) 0 0
\(136\) −0.607362 −0.00446589
\(137\) 5.56392 0.0406125 0.0203063 0.999794i \(-0.493536\pi\)
0.0203063 + 0.999794i \(0.493536\pi\)
\(138\) 0 0
\(139\) −169.920 −1.22245 −0.611224 0.791458i \(-0.709323\pi\)
−0.611224 + 0.791458i \(0.709323\pi\)
\(140\) 53.9190 190.751i 0.385135 1.36250i
\(141\) 0 0
\(142\) 255.432i 1.79882i
\(143\) −8.03247 −0.0561711
\(144\) 0 0
\(145\) −33.0787 + 117.024i −0.228129 + 0.807059i
\(146\) 410.124i 2.80907i
\(147\) 0 0
\(148\) 59.4413i 0.401631i
\(149\) 80.7344i 0.541842i −0.962602 0.270921i \(-0.912672\pi\)
0.962602 0.270921i \(-0.0873282\pi\)
\(150\) 0 0
\(151\) 88.2744 0.584598 0.292299 0.956327i \(-0.405580\pi\)
0.292299 + 0.956327i \(0.405580\pi\)
\(152\) −0.112785 −0.000742006
\(153\) 0 0
\(154\) 11.8427 0.0769006
\(155\) −60.9289 17.2226i −0.393090 0.111114i
\(156\) 0 0
\(157\) 62.7465i 0.399659i −0.979831 0.199830i \(-0.935961\pi\)
0.979831 0.199830i \(-0.0640389\pi\)
\(158\) −142.786 −0.903707
\(159\) 0 0
\(160\) 218.682 + 61.8141i 1.36676 + 0.386338i
\(161\) 211.833i 1.31573i
\(162\) 0 0
\(163\) 241.437i 1.48121i −0.671941 0.740605i \(-0.734539\pi\)
0.671941 0.740605i \(-0.265461\pi\)
\(164\) 155.835i 0.950216i
\(165\) 0 0
\(166\) −217.416 −1.30973
\(167\) −133.174 −0.797451 −0.398726 0.917070i \(-0.630547\pi\)
−0.398726 + 0.917070i \(0.630547\pi\)
\(168\) 0 0
\(169\) −182.634 −1.08068
\(170\) −39.0644 11.0422i −0.229791 0.0649543i
\(171\) 0 0
\(172\) 235.386i 1.36852i
\(173\) −67.0423 −0.387527 −0.193764 0.981048i \(-0.562070\pi\)
−0.193764 + 0.981048i \(0.562070\pi\)
\(174\) 0 0
\(175\) 127.333 207.239i 0.727620 1.18422i
\(176\) 6.72310i 0.0381994i
\(177\) 0 0
\(178\) 82.2898i 0.462302i
\(179\) 37.9613i 0.212074i −0.994362 0.106037i \(-0.966184\pi\)
0.994362 0.106037i \(-0.0338162\pi\)
\(180\) 0 0
\(181\) 278.012 1.53598 0.767990 0.640462i \(-0.221257\pi\)
0.767990 + 0.640462i \(0.221257\pi\)
\(182\) 518.433 2.84853
\(183\) 0 0
\(184\) 4.62831 0.0251538
\(185\) −19.8397 + 70.1875i −0.107242 + 0.379392i
\(186\) 0 0
\(187\) 1.22389i 0.00654485i
\(188\) −201.988 −1.07441
\(189\) 0 0
\(190\) −7.25413 2.05051i −0.0381796 0.0107921i
\(191\) 58.3058i 0.305266i −0.988283 0.152633i \(-0.951225\pi\)
0.988283 0.152633i \(-0.0487752\pi\)
\(192\) 0 0
\(193\) 126.567i 0.655789i 0.944714 + 0.327895i \(0.106339\pi\)
−0.944714 + 0.327895i \(0.893661\pi\)
\(194\) 65.3287i 0.336746i
\(195\) 0 0
\(196\) −186.052 −0.949243
\(197\) 335.557 1.70333 0.851667 0.524083i \(-0.175592\pi\)
0.851667 + 0.524083i \(0.175592\pi\)
\(198\) 0 0
\(199\) −127.161 −0.638998 −0.319499 0.947587i \(-0.603515\pi\)
−0.319499 + 0.947587i \(0.603515\pi\)
\(200\) −4.52794 2.78209i −0.0226397 0.0139105i
\(201\) 0 0
\(202\) 163.187i 0.807858i
\(203\) 236.633 1.16568
\(204\) 0 0
\(205\) 52.0131 184.008i 0.253722 0.897601i
\(206\) 244.920i 1.18893i
\(207\) 0 0
\(208\) 294.314i 1.41497i
\(209\) 0.227271i 0.00108742i
\(210\) 0 0
\(211\) 97.7160 0.463109 0.231555 0.972822i \(-0.425619\pi\)
0.231555 + 0.972822i \(0.425619\pi\)
\(212\) −181.686 −0.857008
\(213\) 0 0
\(214\) 275.898 1.28925
\(215\) 78.5646 277.940i 0.365417 1.29275i
\(216\) 0 0
\(217\) 123.204i 0.567762i
\(218\) −467.433 −2.14419
\(219\) 0 0
\(220\) 2.37391 8.39825i 0.0107905 0.0381739i
\(221\) 53.5776i 0.242432i
\(222\) 0 0
\(223\) 93.4261i 0.418951i −0.977814 0.209476i \(-0.932824\pi\)
0.977814 0.209476i \(-0.0671757\pi\)
\(224\) 442.196i 1.97409i
\(225\) 0 0
\(226\) −121.635 −0.538207
\(227\) −197.990 −0.872202 −0.436101 0.899898i \(-0.643641\pi\)
−0.436101 + 0.899898i \(0.643641\pi\)
\(228\) 0 0
\(229\) 181.239 0.791439 0.395719 0.918372i \(-0.370495\pi\)
0.395719 + 0.918372i \(0.370495\pi\)
\(230\) 297.685 + 84.1457i 1.29428 + 0.365851i
\(231\) 0 0
\(232\) 5.17017i 0.0222852i
\(233\) −178.525 −0.766202 −0.383101 0.923706i \(-0.625144\pi\)
−0.383101 + 0.923706i \(0.625144\pi\)
\(234\) 0 0
\(235\) −238.505 67.4175i −1.01491 0.286883i
\(236\) 257.058i 1.08923i
\(237\) 0 0
\(238\) 78.9923i 0.331900i
\(239\) 15.2601i 0.0638499i 0.999490 + 0.0319250i \(0.0101638\pi\)
−0.999490 + 0.0319250i \(0.989836\pi\)
\(240\) 0 0
\(241\) −319.166 −1.32434 −0.662170 0.749354i \(-0.730364\pi\)
−0.662170 + 0.749354i \(0.730364\pi\)
\(242\) −343.315 −1.41866
\(243\) 0 0
\(244\) −90.3163 −0.370149
\(245\) −219.687 62.0983i −0.896682 0.253462i
\(246\) 0 0
\(247\) 9.94917i 0.0402800i
\(248\) 2.69188 0.0108543
\(249\) 0 0
\(250\) −240.649 261.260i −0.962596 1.04504i
\(251\) 95.3404i 0.379842i 0.981799 + 0.189921i \(0.0608232\pi\)
−0.981799 + 0.189921i \(0.939177\pi\)
\(252\) 0 0
\(253\) 9.32644i 0.0368634i
\(254\) 223.699i 0.880705i
\(255\) 0 0
\(256\) 246.158 0.961554
\(257\) −7.93274 −0.0308667 −0.0154334 0.999881i \(-0.504913\pi\)
−0.0154334 + 0.999881i \(0.504913\pi\)
\(258\) 0 0
\(259\) 141.926 0.547977
\(260\) 103.922 367.647i 0.399699 1.41403i
\(261\) 0 0
\(262\) 519.399i 1.98244i
\(263\) 410.379 1.56038 0.780188 0.625545i \(-0.215123\pi\)
0.780188 + 0.625545i \(0.215123\pi\)
\(264\) 0 0
\(265\) −214.532 60.6411i −0.809554 0.228834i
\(266\) 14.6686i 0.0551451i
\(267\) 0 0
\(268\) 132.610i 0.494815i
\(269\) 201.081i 0.747513i 0.927527 + 0.373757i \(0.121930\pi\)
−0.927527 + 0.373757i \(0.878070\pi\)
\(270\) 0 0
\(271\) 121.070 0.446751 0.223376 0.974732i \(-0.428292\pi\)
0.223376 + 0.974732i \(0.428292\pi\)
\(272\) −44.8439 −0.164867
\(273\) 0 0
\(274\) −15.8105 −0.0577027
\(275\) 5.60616 9.12419i 0.0203860 0.0331789i
\(276\) 0 0
\(277\) 335.008i 1.20941i 0.796448 + 0.604707i \(0.206710\pi\)
−0.796448 + 0.604707i \(0.793290\pi\)
\(278\) 482.849 1.73687
\(279\) 0 0
\(280\) −2.81284 + 9.95105i −0.0100458 + 0.0355395i
\(281\) 138.870i 0.494199i −0.968990 0.247099i \(-0.920523\pi\)
0.968990 0.247099i \(-0.0794774\pi\)
\(282\) 0 0
\(283\) 96.8045i 0.342066i −0.985265 0.171033i \(-0.945290\pi\)
0.985265 0.171033i \(-0.0547104\pi\)
\(284\) 366.283i 1.28973i
\(285\) 0 0
\(286\) 22.8252 0.0798085
\(287\) −372.083 −1.29646
\(288\) 0 0
\(289\) −280.837 −0.971753
\(290\) 93.9972 332.536i 0.324128 1.14668i
\(291\) 0 0
\(292\) 588.107i 2.01407i
\(293\) −385.079 −1.31426 −0.657131 0.753776i \(-0.728230\pi\)
−0.657131 + 0.753776i \(0.728230\pi\)
\(294\) 0 0
\(295\) 85.7979 303.530i 0.290840 1.02891i
\(296\) 3.10093i 0.0104761i
\(297\) 0 0
\(298\) 229.417i 0.769854i
\(299\) 408.280i 1.36548i
\(300\) 0 0
\(301\) −562.023 −1.86719
\(302\) −250.842 −0.830603
\(303\) 0 0
\(304\) −8.32736 −0.0273926
\(305\) −106.644 30.1448i −0.349653 0.0988354i
\(306\) 0 0
\(307\) 207.311i 0.675281i −0.941275 0.337641i \(-0.890371\pi\)
0.941275 0.337641i \(-0.109629\pi\)
\(308\) −16.9821 −0.0551367
\(309\) 0 0
\(310\) 173.137 + 48.9401i 0.558506 + 0.157871i
\(311\) 162.163i 0.521425i 0.965417 + 0.260712i \(0.0839574\pi\)
−0.965417 + 0.260712i \(0.916043\pi\)
\(312\) 0 0
\(313\) 226.814i 0.724645i 0.932053 + 0.362322i \(0.118016\pi\)
−0.932053 + 0.362322i \(0.881984\pi\)
\(314\) 178.302i 0.567840i
\(315\) 0 0
\(316\) 204.751 0.647946
\(317\) 488.776 1.54188 0.770941 0.636907i \(-0.219787\pi\)
0.770941 + 0.636907i \(0.219787\pi\)
\(318\) 0 0
\(319\) 10.4183 0.0326594
\(320\) −319.342 90.2676i −0.997945 0.282086i
\(321\) 0 0
\(322\) 601.948i 1.86940i
\(323\) 1.51593 0.00469328
\(324\) 0 0
\(325\) 245.418 399.426i 0.755134 1.22900i
\(326\) 686.073i 2.10452i
\(327\) 0 0
\(328\) 8.12960i 0.0247854i
\(329\) 482.281i 1.46590i
\(330\) 0 0
\(331\) 237.646 0.717964 0.358982 0.933345i \(-0.383124\pi\)
0.358982 + 0.933345i \(0.383124\pi\)
\(332\) 311.768 0.939061
\(333\) 0 0
\(334\) 378.431 1.13303
\(335\) −44.2613 + 156.584i −0.132123 + 0.467416i
\(336\) 0 0
\(337\) 282.035i 0.836900i 0.908240 + 0.418450i \(0.137427\pi\)
−0.908240 + 0.418450i \(0.862573\pi\)
\(338\) 518.977 1.53543
\(339\) 0 0
\(340\) 56.0174 + 15.8343i 0.164757 + 0.0465714i
\(341\) 5.42437i 0.0159072i
\(342\) 0 0
\(343\) 32.5057i 0.0947688i
\(344\) 12.2796i 0.0356964i
\(345\) 0 0
\(346\) 190.509 0.550603
\(347\) 439.971 1.26793 0.633963 0.773363i \(-0.281427\pi\)
0.633963 + 0.773363i \(0.281427\pi\)
\(348\) 0 0
\(349\) −97.2581 −0.278677 −0.139338 0.990245i \(-0.544498\pi\)
−0.139338 + 0.990245i \(0.544498\pi\)
\(350\) −361.833 + 588.895i −1.03381 + 1.68256i
\(351\) 0 0
\(352\) 19.4687i 0.0553089i
\(353\) 98.1956 0.278174 0.139087 0.990280i \(-0.455583\pi\)
0.139087 + 0.990280i \(0.455583\pi\)
\(354\) 0 0
\(355\) 122.254 432.501i 0.344377 1.21831i
\(356\) 118.001i 0.331465i
\(357\) 0 0
\(358\) 107.872i 0.301317i
\(359\) 500.068i 1.39295i 0.717582 + 0.696474i \(0.245249\pi\)
−0.717582 + 0.696474i \(0.754751\pi\)
\(360\) 0 0
\(361\) −360.718 −0.999220
\(362\) −790.005 −2.18234
\(363\) 0 0
\(364\) −743.419 −2.04236
\(365\) 196.292 694.428i 0.537787 1.90254i
\(366\) 0 0
\(367\) 341.818i 0.931385i −0.884947 0.465692i \(-0.845805\pi\)
0.884947 0.465692i \(-0.154195\pi\)
\(368\) 341.726 0.928604
\(369\) 0 0
\(370\) 56.3769 199.446i 0.152370 0.539044i
\(371\) 433.805i 1.16929i
\(372\) 0 0
\(373\) 611.043i 1.63819i 0.573661 + 0.819093i \(0.305523\pi\)
−0.573661 + 0.819093i \(0.694477\pi\)
\(374\) 3.47782i 0.00929899i
\(375\) 0 0
\(376\) 10.5373 0.0280247
\(377\) 456.080 1.20976
\(378\) 0 0
\(379\) 187.436 0.494555 0.247277 0.968945i \(-0.420464\pi\)
0.247277 + 0.968945i \(0.420464\pi\)
\(380\) 10.4022 + 2.94037i 0.0273743 + 0.00773782i
\(381\) 0 0
\(382\) 165.683i 0.433725i
\(383\) 147.818 0.385947 0.192973 0.981204i \(-0.438187\pi\)
0.192973 + 0.981204i \(0.438187\pi\)
\(384\) 0 0
\(385\) −20.0522 5.66811i −0.0520837 0.0147224i
\(386\) 359.656i 0.931752i
\(387\) 0 0
\(388\) 93.6797i 0.241442i
\(389\) 459.444i 1.18109i 0.807005 + 0.590545i \(0.201087\pi\)
−0.807005 + 0.590545i \(0.798913\pi\)
\(390\) 0 0
\(391\) −62.2085 −0.159101
\(392\) 9.70591 0.0247600
\(393\) 0 0
\(394\) −953.525 −2.42011
\(395\) 241.767 + 68.3396i 0.612068 + 0.173012i
\(396\) 0 0
\(397\) 718.905i 1.81084i 0.424512 + 0.905422i \(0.360446\pi\)
−0.424512 + 0.905422i \(0.639554\pi\)
\(398\) 361.342 0.907895
\(399\) 0 0
\(400\) −334.316 205.413i −0.835790 0.513532i
\(401\) 75.7434i 0.188886i −0.995530 0.0944431i \(-0.969893\pi\)
0.995530 0.0944431i \(-0.0301070\pi\)
\(402\) 0 0
\(403\) 237.460i 0.589231i
\(404\) 234.006i 0.579223i
\(405\) 0 0
\(406\) −672.422 −1.65621
\(407\) 6.24863 0.0153529
\(408\) 0 0
\(409\) 510.069 1.24711 0.623556 0.781778i \(-0.285687\pi\)
0.623556 + 0.781778i \(0.285687\pi\)
\(410\) −147.801 + 522.881i −0.360491 + 1.27532i
\(411\) 0 0
\(412\) 351.209i 0.852449i
\(413\) −613.768 −1.48612
\(414\) 0 0
\(415\) 368.132 + 104.059i 0.887064 + 0.250744i
\(416\) 852.275i 2.04874i
\(417\) 0 0
\(418\) 0.645819i 0.00154502i
\(419\) 697.172i 1.66389i 0.554855 + 0.831947i \(0.312774\pi\)
−0.554855 + 0.831947i \(0.687226\pi\)
\(420\) 0 0
\(421\) 756.820 1.79767 0.898836 0.438285i \(-0.144414\pi\)
0.898836 + 0.438285i \(0.144414\pi\)
\(422\) −277.672 −0.657990
\(423\) 0 0
\(424\) 9.47815 0.0223541
\(425\) 60.8595 + 37.3938i 0.143199 + 0.0879853i
\(426\) 0 0
\(427\) 215.645i 0.505024i
\(428\) −395.631 −0.924371
\(429\) 0 0
\(430\) −223.251 + 789.801i −0.519188 + 1.83675i
\(431\) 497.875i 1.15516i −0.816333 0.577581i \(-0.803997\pi\)
0.816333 0.577581i \(-0.196003\pi\)
\(432\) 0 0
\(433\) 421.645i 0.973775i 0.873465 + 0.486888i \(0.161868\pi\)
−0.873465 + 0.486888i \(0.838132\pi\)
\(434\) 350.100i 0.806683i
\(435\) 0 0
\(436\) 670.286 1.53735
\(437\) −11.5519 −0.0264346
\(438\) 0 0
\(439\) 457.487 1.04211 0.521055 0.853523i \(-0.325539\pi\)
0.521055 + 0.853523i \(0.325539\pi\)
\(440\) −0.123842 + 0.438118i −0.000281458 + 0.000995724i
\(441\) 0 0
\(442\) 152.247i 0.344450i
\(443\) −232.271 −0.524314 −0.262157 0.965025i \(-0.584434\pi\)
−0.262157 + 0.965025i \(0.584434\pi\)
\(444\) 0 0
\(445\) −39.3852 + 139.334i −0.0885062 + 0.313111i
\(446\) 265.481i 0.595250i
\(447\) 0 0
\(448\) 645.743i 1.44139i
\(449\) 678.345i 1.51079i −0.655269 0.755395i \(-0.727445\pi\)
0.655269 0.755395i \(-0.272555\pi\)
\(450\) 0 0
\(451\) −16.3818 −0.0363234
\(452\) 174.421 0.385887
\(453\) 0 0
\(454\) 562.612 1.23923
\(455\) −877.818 248.130i −1.92927 0.545342i
\(456\) 0 0
\(457\) 735.553i 1.60953i 0.593596 + 0.804763i \(0.297708\pi\)
−0.593596 + 0.804763i \(0.702292\pi\)
\(458\) −515.014 −1.12448
\(459\) 0 0
\(460\) −426.872 120.663i −0.927982 0.262310i
\(461\) 398.085i 0.863525i −0.901987 0.431763i \(-0.857892\pi\)
0.901987 0.431763i \(-0.142108\pi\)
\(462\) 0 0
\(463\) 160.591i 0.346849i 0.984847 + 0.173424i \(0.0554832\pi\)
−0.984847 + 0.173424i \(0.944517\pi\)
\(464\) 381.734i 0.822703i
\(465\) 0 0
\(466\) 507.301 1.08863
\(467\) 406.660 0.870792 0.435396 0.900239i \(-0.356608\pi\)
0.435396 + 0.900239i \(0.356608\pi\)
\(468\) 0 0
\(469\) 316.630 0.675117
\(470\) 677.740 + 191.575i 1.44200 + 0.407606i
\(471\) 0 0
\(472\) 13.4101i 0.0284113i
\(473\) −24.7444 −0.0523137
\(474\) 0 0
\(475\) 11.3014 + 6.94389i 0.0237924 + 0.0146187i
\(476\) 113.273i 0.237968i
\(477\) 0 0
\(478\) 43.3635i 0.0907186i
\(479\) 844.606i 1.76327i −0.471932 0.881635i \(-0.656443\pi\)
0.471932 0.881635i \(-0.343557\pi\)
\(480\) 0 0
\(481\) 273.544 0.568698
\(482\) 906.948 1.88164
\(483\) 0 0
\(484\) 492.304 1.01716
\(485\) −31.2674 + 110.616i −0.0644689 + 0.228073i
\(486\) 0 0
\(487\) 225.518i 0.463075i 0.972826 + 0.231538i \(0.0743757\pi\)
−0.972826 + 0.231538i \(0.925624\pi\)
\(488\) 4.71160 0.00965493
\(489\) 0 0
\(490\) 624.267 + 176.460i 1.27401 + 0.360122i
\(491\) 765.150i 1.55835i −0.626807 0.779175i \(-0.715638\pi\)
0.626807 0.779175i \(-0.284362\pi\)
\(492\) 0 0
\(493\) 69.4916i 0.140957i
\(494\) 28.2718i 0.0572303i
\(495\) 0 0
\(496\) 198.752 0.400710
\(497\) −874.562 −1.75968
\(498\) 0 0
\(499\) −204.049 −0.408916 −0.204458 0.978875i \(-0.565543\pi\)
−0.204458 + 0.978875i \(0.565543\pi\)
\(500\) 345.084 + 374.640i 0.690168 + 0.749280i
\(501\) 0 0
\(502\) 270.921i 0.539684i
\(503\) 585.545 1.16411 0.582053 0.813151i \(-0.302250\pi\)
0.582053 + 0.813151i \(0.302250\pi\)
\(504\) 0 0
\(505\) −78.1041 + 276.311i −0.154662 + 0.547151i
\(506\) 26.5022i 0.0523759i
\(507\) 0 0
\(508\) 320.778i 0.631454i
\(509\) 11.9351i 0.0234482i 0.999931 + 0.0117241i \(0.00373198\pi\)
−0.999931 + 0.0117241i \(0.996268\pi\)
\(510\) 0 0
\(511\) −1404.20 −2.74795
\(512\) −726.692 −1.41932
\(513\) 0 0
\(514\) 22.5418 0.0438557
\(515\) 117.223 414.702i 0.227617 0.805247i
\(516\) 0 0
\(517\) 21.2336i 0.0410707i
\(518\) −403.300 −0.778572
\(519\) 0 0
\(520\) −5.42137 + 19.1793i −0.0104257 + 0.0368833i
\(521\) 541.869i 1.04006i −0.854149 0.520028i \(-0.825922\pi\)
0.854149 0.520028i \(-0.174078\pi\)
\(522\) 0 0
\(523\) 356.100i 0.680880i −0.940266 0.340440i \(-0.889424\pi\)
0.940266 0.340440i \(-0.110576\pi\)
\(524\) 744.805i 1.42138i
\(525\) 0 0
\(526\) −1166.14 −2.21700
\(527\) −36.1812 −0.0686550
\(528\) 0 0
\(529\) −54.9498 −0.103875
\(530\) 609.618 + 172.319i 1.15022 + 0.325130i
\(531\) 0 0
\(532\) 21.0344i 0.0395383i
\(533\) −717.141 −1.34548
\(534\) 0 0
\(535\) −467.155 132.049i −0.873187 0.246821i
\(536\) 6.91800i 0.0129067i
\(537\) 0 0
\(538\) 571.396i 1.06207i
\(539\) 19.5582i 0.0362862i
\(540\) 0 0
\(541\) 378.892 0.700355 0.350178 0.936683i \(-0.386121\pi\)
0.350178 + 0.936683i \(0.386121\pi\)
\(542\) −344.034 −0.634749
\(543\) 0 0
\(544\) 129.859 0.238711
\(545\) 791.464 + 223.721i 1.45223 + 0.410497i
\(546\) 0 0
\(547\) 559.346i 1.02257i −0.859411 0.511285i \(-0.829170\pi\)
0.859411 0.511285i \(-0.170830\pi\)
\(548\) 22.6719 0.0413721
\(549\) 0 0
\(550\) −15.9306 + 25.9275i −0.0289647 + 0.0471409i
\(551\) 12.9044i 0.0234199i
\(552\) 0 0
\(553\) 488.877i 0.884045i
\(554\) 951.965i 1.71835i
\(555\) 0 0
\(556\) −692.392 −1.24531
\(557\) −471.971 −0.847345 −0.423673 0.905815i \(-0.639259\pi\)
−0.423673 + 0.905815i \(0.639259\pi\)
\(558\) 0 0
\(559\) −1083.23 −1.93779
\(560\) −207.683 + 734.726i −0.370862 + 1.31201i
\(561\) 0 0
\(562\) 394.615i 0.702162i
\(563\) −494.577 −0.878467 −0.439234 0.898373i \(-0.644750\pi\)
−0.439234 + 0.898373i \(0.644750\pi\)
\(564\) 0 0
\(565\) 205.954 + 58.2164i 0.364520 + 0.103038i
\(566\) 275.082i 0.486010i
\(567\) 0 0
\(568\) 19.1082i 0.0336412i
\(569\) 165.474i 0.290815i −0.989372 0.145408i \(-0.953551\pi\)
0.989372 0.145408i \(-0.0464494\pi\)
\(570\) 0 0
\(571\) 51.0603 0.0894226 0.0447113 0.999000i \(-0.485763\pi\)
0.0447113 + 0.999000i \(0.485763\pi\)
\(572\) −32.7308 −0.0572216
\(573\) 0 0
\(574\) 1057.32 1.84202
\(575\) −463.770 284.953i −0.806557 0.495571i
\(576\) 0 0
\(577\) 707.833i 1.22675i 0.789793 + 0.613373i \(0.210188\pi\)
−0.789793 + 0.613373i \(0.789812\pi\)
\(578\) 798.031 1.38068
\(579\) 0 0
\(580\) −134.789 + 476.848i −0.232396 + 0.822152i
\(581\) 744.399i 1.28124i
\(582\) 0 0
\(583\) 19.0993i 0.0327604i
\(584\) 30.6803i 0.0525347i
\(585\) 0 0
\(586\) 1094.25 1.86732
\(587\) 452.501 0.770871 0.385436 0.922735i \(-0.374051\pi\)
0.385436 + 0.922735i \(0.374051\pi\)
\(588\) 0 0
\(589\) −6.71872 −0.0114070
\(590\) −243.805 + 862.517i −0.413229 + 1.46189i
\(591\) 0 0
\(592\) 228.954i 0.386746i
\(593\) −227.811 −0.384168 −0.192084 0.981379i \(-0.561525\pi\)
−0.192084 + 0.981379i \(0.561525\pi\)
\(594\) 0 0
\(595\) 37.8070 133.751i 0.0635411 0.224791i
\(596\) 328.977i 0.551975i
\(597\) 0 0
\(598\) 1160.18i 1.94009i
\(599\) 559.580i 0.934191i −0.884207 0.467096i \(-0.845300\pi\)
0.884207 0.467096i \(-0.154700\pi\)
\(600\) 0 0
\(601\) 670.543 1.11571 0.557856 0.829938i \(-0.311624\pi\)
0.557856 + 0.829938i \(0.311624\pi\)
\(602\) 1597.06 2.65292
\(603\) 0 0
\(604\) 359.701 0.595532
\(605\) 581.305 + 164.316i 0.960835 + 0.271597i
\(606\) 0 0
\(607\) 998.017i 1.64418i 0.569357 + 0.822090i \(0.307192\pi\)
−0.569357 + 0.822090i \(0.692808\pi\)
\(608\) 24.1143 0.0396618
\(609\) 0 0
\(610\) 303.042 + 85.6601i 0.496791 + 0.140426i
\(611\) 929.533i 1.52133i
\(612\) 0 0
\(613\) 229.314i 0.374086i −0.982352 0.187043i \(-0.940110\pi\)
0.982352 0.187043i \(-0.0598903\pi\)
\(614\) 589.100i 0.959447i
\(615\) 0 0
\(616\) 0.885920 0.00143818
\(617\) −497.435 −0.806215 −0.403108 0.915153i \(-0.632070\pi\)
−0.403108 + 0.915153i \(0.632070\pi\)
\(618\) 0 0
\(619\) −1057.73 −1.70878 −0.854390 0.519633i \(-0.826069\pi\)
−0.854390 + 0.519633i \(0.826069\pi\)
\(620\) −248.274 70.1788i −0.400441 0.113192i
\(621\) 0 0
\(622\) 460.806i 0.740846i
\(623\) 281.748 0.452244
\(624\) 0 0
\(625\) 282.427 + 557.548i 0.451883 + 0.892077i
\(626\) 644.519i 1.02958i
\(627\) 0 0
\(628\) 255.680i 0.407134i
\(629\) 41.6792i 0.0662626i
\(630\) 0 0
\(631\) 638.591 1.01203 0.506015 0.862524i \(-0.331118\pi\)
0.506015 + 0.862524i \(0.331118\pi\)
\(632\) −10.6814 −0.0169010
\(633\) 0 0
\(634\) −1388.92 −2.19072
\(635\) −107.066 + 378.770i −0.168608 + 0.596489i
\(636\) 0 0
\(637\) 856.193i 1.34410i
\(638\) −29.6050 −0.0464028
\(639\) 0 0
\(640\) 32.7237 + 9.24991i 0.0511307 + 0.0144530i
\(641\) 884.263i 1.37951i −0.724045 0.689753i \(-0.757719\pi\)
0.724045 0.689753i \(-0.242281\pi\)
\(642\) 0 0
\(643\) 1021.23i 1.58822i −0.607773 0.794111i \(-0.707937\pi\)
0.607773 0.794111i \(-0.292063\pi\)
\(644\) 863.178i 1.34034i
\(645\) 0 0
\(646\) −4.30769 −0.00666826
\(647\) −488.043 −0.754317 −0.377159 0.926149i \(-0.623099\pi\)
−0.377159 + 0.926149i \(0.623099\pi\)
\(648\) 0 0
\(649\) −27.0226 −0.0416373
\(650\) −697.386 + 1135.02i −1.07290 + 1.74618i
\(651\) 0 0
\(652\) 983.810i 1.50891i
\(653\) 611.295 0.936134 0.468067 0.883693i \(-0.344951\pi\)
0.468067 + 0.883693i \(0.344951\pi\)
\(654\) 0 0
\(655\) −248.593 + 879.455i −0.379531 + 1.34268i
\(656\) 600.240i 0.915001i
\(657\) 0 0
\(658\) 1370.46i 2.08276i
\(659\) 145.131i 0.220230i −0.993919 0.110115i \(-0.964878\pi\)
0.993919 0.110115i \(-0.0351219\pi\)
\(660\) 0 0
\(661\) 830.256 1.25606 0.628030 0.778189i \(-0.283861\pi\)
0.628030 + 0.778189i \(0.283861\pi\)
\(662\) −675.300 −1.02009
\(663\) 0 0
\(664\) −16.2643 −0.0244944
\(665\) 7.02063 24.8371i 0.0105573 0.0373490i
\(666\) 0 0
\(667\) 529.550i 0.793929i
\(668\) −542.660 −0.812365
\(669\) 0 0
\(670\) 125.774 444.954i 0.187722 0.664110i
\(671\) 9.49429i 0.0141495i
\(672\) 0 0
\(673\) 271.416i 0.403293i −0.979458 0.201647i \(-0.935371\pi\)
0.979458 0.201647i \(-0.0646293\pi\)
\(674\) 801.438i 1.18908i
\(675\) 0 0
\(676\) −744.199 −1.10089
\(677\) 895.939 1.32340 0.661698 0.749770i \(-0.269836\pi\)
0.661698 + 0.749770i \(0.269836\pi\)
\(678\) 0 0
\(679\) 223.676 0.329420
\(680\) −2.92230 0.826040i −0.00429751 0.00121476i
\(681\) 0 0
\(682\) 15.4140i 0.0226012i
\(683\) 255.548 0.374155 0.187078 0.982345i \(-0.440098\pi\)
0.187078 + 0.982345i \(0.440098\pi\)
\(684\) 0 0
\(685\) 26.7706 + 7.56719i 0.0390812 + 0.0110470i
\(686\) 92.3689i 0.134648i
\(687\) 0 0
\(688\) 906.650i 1.31780i
\(689\) 836.102i 1.21350i
\(690\) 0 0
\(691\) 122.595 0.177416 0.0887081 0.996058i \(-0.471726\pi\)
0.0887081 + 0.996058i \(0.471726\pi\)
\(692\) −273.184 −0.394775
\(693\) 0 0
\(694\) −1250.23 −1.80148
\(695\) −817.567 231.099i −1.17636 0.332517i
\(696\) 0 0
\(697\) 109.269i 0.156770i
\(698\) 276.371 0.395947
\(699\) 0 0
\(700\) 518.859 844.459i 0.741228 1.20637i
\(701\) 595.027i 0.848826i −0.905469 0.424413i \(-0.860480\pi\)
0.905469 0.424413i \(-0.139520\pi\)
\(702\) 0 0
\(703\) 7.73968i 0.0110095i
\(704\) 28.4303i 0.0403840i
\(705\) 0 0
\(706\) −279.035 −0.395233
\(707\) 558.729 0.790282
\(708\) 0 0
\(709\) 560.984 0.791232 0.395616 0.918416i \(-0.370531\pi\)
0.395616 + 0.918416i \(0.370531\pi\)
\(710\) −347.399 + 1229.00i −0.489295 + 1.73099i
\(711\) 0 0
\(712\) 6.15588i 0.00864589i
\(713\) 275.713 0.386695
\(714\) 0 0
\(715\) −38.6480 10.9245i −0.0540532 0.0152791i
\(716\) 154.685i 0.216040i
\(717\) 0 0
\(718\) 1421.00i 1.97911i
\(719\) 1218.37i 1.69453i 0.531168 + 0.847266i \(0.321753\pi\)
−0.531168 + 0.847266i \(0.678247\pi\)
\(720\) 0 0
\(721\) −838.570 −1.16307
\(722\) 1025.03 1.41970
\(723\) 0 0
\(724\) 1132.85 1.56471
\(725\) −318.315 + 518.067i −0.439055 + 0.714575i
\(726\) 0 0
\(727\) 794.343i 1.09263i 0.837579 + 0.546316i \(0.183970\pi\)
−0.837579 + 0.546316i \(0.816030\pi\)
\(728\) 38.7825 0.0532727
\(729\) 0 0
\(730\) −557.788 + 1973.30i −0.764093 + 2.70315i
\(731\) 165.048i 0.225784i
\(732\) 0 0
\(733\) 786.822i 1.07343i 0.843764 + 0.536714i \(0.180334\pi\)
−0.843764 + 0.536714i \(0.819666\pi\)
\(734\) 971.318i 1.32332i
\(735\) 0 0
\(736\) −989.570 −1.34452
\(737\) 13.9404 0.0189150
\(738\) 0 0
\(739\) 1398.66 1.89264 0.946320 0.323231i \(-0.104769\pi\)
0.946320 + 0.323231i \(0.104769\pi\)
\(740\) −80.8430 + 286.000i −0.109247 + 0.386487i
\(741\) 0 0
\(742\) 1232.71i 1.66133i
\(743\) 548.629 0.738398 0.369199 0.929350i \(-0.379632\pi\)
0.369199 + 0.929350i \(0.379632\pi\)
\(744\) 0 0
\(745\) 109.802 388.451i 0.147386 0.521411i
\(746\) 1736.35i 2.32755i
\(747\) 0 0
\(748\) 4.98710i 0.00666725i
\(749\) 944.635i 1.26120i
\(750\) 0 0
\(751\) −267.361 −0.356007 −0.178003 0.984030i \(-0.556964\pi\)
−0.178003 + 0.984030i \(0.556964\pi\)
\(752\) 778.010 1.03459
\(753\) 0 0
\(754\) −1296.01 −1.71884
\(755\) 424.730 + 120.057i 0.562556 + 0.159016i
\(756\) 0 0
\(757\) 471.386i 0.622703i −0.950295 0.311351i \(-0.899218\pi\)
0.950295 0.311351i \(-0.100782\pi\)
\(758\) −532.623 −0.702669
\(759\) 0 0
\(760\) −0.542662 0.153393i −0.000714029 0.000201833i
\(761\) 1060.01i 1.39292i 0.717595 + 0.696461i \(0.245243\pi\)
−0.717595 + 0.696461i \(0.754757\pi\)
\(762\) 0 0
\(763\) 1600.42i 2.09754i
\(764\) 237.585i 0.310975i
\(765\) 0 0
\(766\) −420.042 −0.548357
\(767\) −1182.96 −1.54232
\(768\) 0 0
\(769\) 433.026 0.563103 0.281551 0.959546i \(-0.409151\pi\)
0.281551 + 0.959546i \(0.409151\pi\)
\(770\) 56.9808 + 16.1066i 0.0740011 + 0.0209177i
\(771\) 0 0
\(772\) 515.737i 0.668054i
\(773\) 1088.28 1.40787 0.703936 0.710264i \(-0.251424\pi\)
0.703936 + 0.710264i \(0.251424\pi\)
\(774\) 0 0
\(775\) −269.734 165.732i −0.348044 0.213848i
\(776\) 4.88707i 0.00629776i
\(777\) 0 0
\(778\) 1305.56i 1.67810i
\(779\) 20.2909i 0.0260473i
\(780\) 0 0
\(781\) −38.5046 −0.0493017
\(782\) 176.773 0.226052
\(783\) 0 0
\(784\) 716.626 0.914063
\(785\) 85.3381 301.903i 0.108711 0.384590i
\(786\) 0 0
\(787\) 322.934i 0.410336i −0.978727 0.205168i \(-0.934226\pi\)
0.978727 0.205168i \(-0.0657740\pi\)
\(788\) 1367.33 1.73519
\(789\) 0 0
\(790\) −687.010 194.195i −0.869633 0.245817i
\(791\) 416.459i 0.526497i
\(792\) 0 0
\(793\) 415.628i 0.524121i
\(794\) 2042.86i 2.57287i
\(795\) 0 0
\(796\) −518.155 −0.650949
\(797\) −1445.43 −1.81358 −0.906792 0.421578i \(-0.861476\pi\)
−0.906792 + 0.421578i \(0.861476\pi\)
\(798\) 0 0
\(799\) −141.630 −0.177260
\(800\) 968.111 + 594.834i 1.21014 + 0.743542i
\(801\) 0 0
\(802\) 215.234i 0.268372i
\(803\) −61.8234 −0.0769905
\(804\) 0 0
\(805\) −288.102 + 1019.23i −0.357891 + 1.26612i
\(806\) 674.772i 0.837186i
\(807\) 0 0
\(808\) 12.2076i 0.0151084i
\(809\) 981.839i 1.21365i 0.794837 + 0.606823i \(0.207556\pi\)
−0.794837 + 0.606823i \(0.792444\pi\)
\(810\) 0 0
\(811\) −600.049 −0.739888 −0.369944 0.929054i \(-0.620623\pi\)
−0.369944 + 0.929054i \(0.620623\pi\)
\(812\) 964.235 1.18748
\(813\) 0 0
\(814\) −17.7562 −0.0218136
\(815\) 328.366 1161.67i 0.402903 1.42536i
\(816\) 0 0
\(817\) 30.6489i 0.0375139i
\(818\) −1449.42 −1.77191
\(819\) 0 0
\(820\) 211.943 749.798i 0.258467 0.914388i
\(821\) 1035.02i 1.26068i 0.776318 + 0.630342i \(0.217085\pi\)
−0.776318 + 0.630342i \(0.782915\pi\)
\(822\) 0 0
\(823\) 1408.02i 1.71084i −0.517933 0.855421i \(-0.673298\pi\)
0.517933 0.855421i \(-0.326702\pi\)
\(824\) 18.3218i 0.0222352i
\(825\) 0 0
\(826\) 1744.10 2.11150
\(827\) −1535.05 −1.85617 −0.928086 0.372367i \(-0.878546\pi\)
−0.928086 + 0.372367i \(0.878546\pi\)
\(828\) 0 0
\(829\) −185.325 −0.223552 −0.111776 0.993733i \(-0.535654\pi\)
−0.111776 + 0.993733i \(0.535654\pi\)
\(830\) −1046.09 295.695i −1.26035 0.356260i
\(831\) 0 0
\(832\) 1244.58i 1.49589i
\(833\) −130.456 −0.156610
\(834\) 0 0
\(835\) −640.765 181.123i −0.767383 0.216914i
\(836\) 0.926087i 0.00110776i
\(837\) 0 0
\(838\) 1981.10i 2.36408i
\(839\) 1293.87i 1.54216i 0.636737 + 0.771081i \(0.280284\pi\)
−0.636737 + 0.771081i \(0.719716\pi\)
\(840\) 0 0
\(841\) 249.452 0.296613
\(842\) −2150.59 −2.55415
\(843\) 0 0
\(844\) 398.174 0.471770
\(845\) −878.739 248.391i −1.03993 0.293954i
\(846\) 0 0
\(847\) 1175.46i 1.38779i
\(848\) 699.809 0.825247
\(849\) 0 0
\(850\) −172.940 106.259i −0.203458 0.125010i
\(851\) 317.610i 0.373219i
\(852\) 0 0
\(853\) 387.663i 0.454471i −0.973840 0.227235i \(-0.927031\pi\)
0.973840 0.227235i \(-0.0729686\pi\)
\(854\) 612.782i 0.717543i
\(855\) 0 0
\(856\) 20.6392 0.0241112
\(857\) −79.1392 −0.0923444 −0.0461722 0.998933i \(-0.514702\pi\)
−0.0461722 + 0.998933i \(0.514702\pi\)
\(858\) 0 0
\(859\) −659.058 −0.767239 −0.383620 0.923491i \(-0.625323\pi\)
−0.383620 + 0.923491i \(0.625323\pi\)
\(860\) 320.136 1132.55i 0.372251 1.31692i
\(861\) 0 0
\(862\) 1414.77i 1.64127i
\(863\) 1070.61 1.24057 0.620286 0.784375i \(-0.287016\pi\)
0.620286 + 0.784375i \(0.287016\pi\)
\(864\) 0 0
\(865\) −322.572 91.1805i −0.372916 0.105411i
\(866\) 1198.15i 1.38355i
\(867\) 0 0
\(868\) 502.034i 0.578381i
\(869\) 21.5240i 0.0247687i
\(870\) 0 0
\(871\) 610.262 0.700645
\(872\) −34.9674 −0.0401002
\(873\) 0 0
\(874\) 32.8261 0.0375585
\(875\) 894.516 823.946i 1.02230 0.941653i
\(876\) 0 0
\(877\) 1072.49i 1.22290i −0.791281 0.611452i \(-0.790586\pi\)
0.791281 0.611452i \(-0.209414\pi\)
\(878\) −1300.00 −1.48064
\(879\) 0 0
\(880\) −9.14373 + 32.3480i −0.0103906 + 0.0367591i
\(881\) 1433.62i 1.62726i −0.581381 0.813632i \(-0.697487\pi\)
0.581381 0.813632i \(-0.302513\pi\)
\(882\) 0 0
\(883\) 731.816i 0.828784i 0.910099 + 0.414392i \(0.136006\pi\)
−0.910099 + 0.414392i \(0.863994\pi\)
\(884\) 218.318i 0.246966i
\(885\) 0 0
\(886\) 660.026 0.744951
\(887\) 1284.96 1.44866 0.724331 0.689452i \(-0.242149\pi\)
0.724331 + 0.689452i \(0.242149\pi\)
\(888\) 0 0
\(889\) 765.912 0.861543
\(890\) 111.918 395.935i 0.125750 0.444871i
\(891\) 0 0
\(892\) 380.693i 0.426786i
\(893\) −26.3003 −0.0294516
\(894\) 0 0
\(895\) 51.6291 182.650i 0.0576861 0.204078i
\(896\) 66.1706i 0.0738511i
\(897\) 0 0
\(898\) 1927.60i 2.14655i
\(899\) 307.993i 0.342595i
\(900\) 0 0
\(901\) −127.395 −0.141392
\(902\) 46.5510 0.0516086
\(903\) 0 0
\(904\) −9.09916 −0.0100654
\(905\) 1337.65 + 378.109i 1.47806 + 0.417801i
\(906\) 0 0
\(907\) 1012.85i 1.11671i −0.829603 0.558353i \(-0.811433\pi\)
0.829603 0.558353i \(-0.188567\pi\)
\(908\) −806.770 −0.888514
\(909\) 0 0
\(910\) 2494.43 + 705.092i 2.74113 + 0.774827i
\(911\) 636.509i 0.698693i −0.936994 0.349347i \(-0.886404\pi\)
0.936994 0.349347i \(-0.113596\pi\)
\(912\) 0 0
\(913\) 32.7739i 0.0358970i
\(914\) 2090.16i 2.28683i
\(915\) 0 0
\(916\) 738.516 0.806240
\(917\) 1778.35 1.93931
\(918\) 0 0
\(919\) 1142.09 1.24275 0.621377 0.783511i \(-0.286573\pi\)
0.621377 + 0.783511i \(0.286573\pi\)
\(920\) 22.2690 + 6.29471i 0.0242054 + 0.00684207i
\(921\) 0 0
\(922\) 1131.21i 1.22691i
\(923\) −1685.60 −1.82622
\(924\) 0 0
\(925\) −190.916 + 310.722i −0.206396 + 0.335916i
\(926\) 456.338i 0.492806i
\(927\) 0 0
\(928\) 1105.42i 1.19119i
\(929\) 786.538i 0.846651i 0.905978 + 0.423325i \(0.139137\pi\)
−0.905978 + 0.423325i \(0.860863\pi\)
\(930\) 0 0
\(931\) −24.2252 −0.0260206
\(932\) −727.456 −0.780532
\(933\) 0 0
\(934\) −1155.57 −1.23723
\(935\) 1.66454 5.88870i 0.00178026 0.00629807i
\(936\) 0 0
\(937\) 811.089i 0.865623i 0.901484 + 0.432812i \(0.142478\pi\)
−0.901484 + 0.432812i \(0.857522\pi\)
\(938\) −899.741 −0.959213
\(939\) 0 0
\(940\) −971.861 274.713i −1.03389 0.292248i
\(941\) 826.195i 0.877996i −0.898488 0.438998i \(-0.855333\pi\)
0.898488 0.438998i \(-0.144667\pi\)
\(942\) 0 0
\(943\) 832.667i 0.882998i
\(944\) 990.124i 1.04886i
\(945\) 0 0
\(946\) 70.3142 0.0743279
\(947\) 917.450 0.968796 0.484398 0.874848i \(-0.339039\pi\)
0.484398 + 0.874848i \(0.339039\pi\)
\(948\) 0 0
\(949\) −2706.42 −2.85186
\(950\) −32.1143 19.7319i −0.0338045 0.0207704i
\(951\) 0 0
\(952\) 5.90919i 0.00620714i
\(953\) −192.772 −0.202279 −0.101140 0.994872i \(-0.532249\pi\)
−0.101140 + 0.994872i \(0.532249\pi\)
\(954\) 0 0
\(955\) 79.2986 280.537i 0.0830352 0.293756i
\(956\) 62.1821i 0.0650440i
\(957\) 0 0
\(958\) 2400.05i 2.50527i
\(959\) 54.1330i 0.0564473i
\(960\) 0 0
\(961\) −800.642 −0.833134
\(962\) −777.308 −0.808012
\(963\) 0 0
\(964\) −1300.54 −1.34911
\(965\) −172.137 + 608.975i −0.178381 + 0.631063i
\(966\) 0 0
\(967\) 857.697i 0.886967i 0.896283 + 0.443483i \(0.146257\pi\)
−0.896283 + 0.443483i \(0.853743\pi\)
\(968\) −25.6824 −0.0265314
\(969\) 0 0
\(970\) 88.8501 314.328i 0.0915980 0.324049i
\(971\) 546.278i 0.562594i 0.959621 + 0.281297i \(0.0907645\pi\)
−0.959621 + 0.281297i \(0.909235\pi\)
\(972\) 0 0
\(973\) 1653.20i 1.69908i
\(974\) 640.836i 0.657942i
\(975\) 0 0
\(976\) 347.877 0.356431
\(977\) −795.327 −0.814050 −0.407025 0.913417i \(-0.633434\pi\)
−0.407025 + 0.913417i \(0.633434\pi\)
\(978\) 0 0
\(979\) 12.4046 0.0126707
\(980\) −895.182 253.039i −0.913451 0.258203i
\(981\) 0 0
\(982\) 2174.27i 2.21412i
\(983\) −1079.42 −1.09809 −0.549044 0.835794i \(-0.685008\pi\)
−0.549044 + 0.835794i \(0.685008\pi\)
\(984\) 0 0
\(985\) 1614.52 + 456.373i 1.63911 + 0.463322i
\(986\) 197.469i 0.200273i
\(987\) 0 0
\(988\) 40.5409i 0.0410333i
\(989\) 1257.72i 1.27171i
\(990\) 0 0
\(991\) 168.017 0.169543 0.0847716 0.996400i \(-0.472984\pi\)
0.0847716 + 0.996400i \(0.472984\pi\)
\(992\) −575.545 −0.580187
\(993\) 0 0
\(994\) 2485.17 2.50017
\(995\) −611.830 172.944i −0.614905 0.173813i
\(996\) 0 0
\(997\) 874.234i 0.876864i −0.898764 0.438432i \(-0.855534\pi\)
0.898764 0.438432i \(-0.144466\pi\)
\(998\) 579.829 0.580991
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.d.a.404.4 20
3.2 odd 2 inner 405.3.d.a.404.17 20
5.4 even 2 inner 405.3.d.a.404.18 20
9.2 odd 6 45.3.h.a.14.2 20
9.4 even 3 45.3.h.a.29.9 yes 20
9.5 odd 6 135.3.h.a.89.2 20
9.7 even 3 135.3.h.a.44.9 20
15.14 odd 2 inner 405.3.d.a.404.3 20
45.2 even 12 225.3.j.e.176.9 20
45.4 even 6 45.3.h.a.29.2 yes 20
45.7 odd 12 675.3.j.e.476.2 20
45.13 odd 12 225.3.j.e.101.2 20
45.14 odd 6 135.3.h.a.89.9 20
45.22 odd 12 225.3.j.e.101.9 20
45.23 even 12 675.3.j.e.251.9 20
45.29 odd 6 45.3.h.a.14.9 yes 20
45.32 even 12 675.3.j.e.251.2 20
45.34 even 6 135.3.h.a.44.2 20
45.38 even 12 225.3.j.e.176.2 20
45.43 odd 12 675.3.j.e.476.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.2 20 9.2 odd 6
45.3.h.a.14.9 yes 20 45.29 odd 6
45.3.h.a.29.2 yes 20 45.4 even 6
45.3.h.a.29.9 yes 20 9.4 even 3
135.3.h.a.44.2 20 45.34 even 6
135.3.h.a.44.9 20 9.7 even 3
135.3.h.a.89.2 20 9.5 odd 6
135.3.h.a.89.9 20 45.14 odd 6
225.3.j.e.101.2 20 45.13 odd 12
225.3.j.e.101.9 20 45.22 odd 12
225.3.j.e.176.2 20 45.38 even 12
225.3.j.e.176.9 20 45.2 even 12
405.3.d.a.404.3 20 15.14 odd 2 inner
405.3.d.a.404.4 20 1.1 even 1 trivial
405.3.d.a.404.17 20 3.2 odd 2 inner
405.3.d.a.404.18 20 5.4 even 2 inner
675.3.j.e.251.2 20 45.32 even 12
675.3.j.e.251.9 20 45.23 even 12
675.3.j.e.476.2 20 45.7 odd 12
675.3.j.e.476.9 20 45.43 odd 12