Properties

Label 45.3.h.a.29.2
Level $45$
Weight $3$
Character 45.29
Analytic conductor $1.226$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,3,Mod(14,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.14"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 45.h (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22616118962\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{18} - 19 x^{16} + 66 x^{14} + 109 x^{12} - 813 x^{10} + 981 x^{8} + 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.2
Root \(-0.346576 + 1.69702i\) of defining polynomial
Character \(\chi\) \(=\) 45.29
Dual form 45.3.h.a.14.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.42081 + 2.46092i) q^{2} +(2.93933 + 0.600288i) q^{3} +(-2.03740 - 3.52889i) q^{4} +(3.58357 + 3.48684i) q^{5} +(-5.65349 + 6.38055i) q^{6} +(-8.42581 - 4.86464i) q^{7} +0.212574 q^{8} +(8.27931 + 3.52889i) q^{9} +(-13.6724 + 3.86473i) q^{10} +(0.370966 + 0.214177i) q^{11} +(-3.87025 - 11.5956i) q^{12} +(16.2396 - 9.37595i) q^{13} +(23.9429 - 13.8235i) q^{14} +(8.44019 + 12.4001i) q^{15} +(7.84759 - 13.5924i) q^{16} -2.85718 q^{17} +(-20.4476 + 15.3608i) q^{18} +0.530568 q^{19} +(5.00347 - 19.7501i) q^{20} +(-21.8460 - 19.3567i) q^{21} +(-1.05414 + 0.608611i) q^{22} +(-10.8863 - 18.8557i) q^{23} +(0.624825 + 0.127606i) q^{24} +(0.683961 + 24.9906i) q^{25} +53.2858i q^{26} +(22.2173 + 15.3425i) q^{27} +39.6450i q^{28} +(-21.0633 - 12.1609i) q^{29} +(-42.5076 + 3.15236i) q^{30} +(6.33163 + 10.9667i) q^{31} +(22.7250 + 39.3609i) q^{32} +(0.961823 + 0.852224i) q^{33} +(4.05951 - 7.03128i) q^{34} +(-13.2323 - 46.8122i) q^{35} +(-4.41525 - 36.4065i) q^{36} -14.5875i q^{37} +(-0.753837 + 1.30568i) q^{38} +(53.3619 - 17.8106i) q^{39} +(0.761774 + 0.741210i) q^{40} +(-33.1200 + 19.1218i) q^{41} +(78.6743 - 26.2591i) q^{42} +(-50.0269 - 28.8831i) q^{43} -1.74546i q^{44} +(17.3648 + 41.5146i) q^{45} +61.8697 q^{46} +(-24.7850 + 42.9289i) q^{47} +(31.2260 - 35.2418i) q^{48} +(22.8295 + 39.5418i) q^{49} +(-62.4716 - 33.8238i) q^{50} +(-8.39819 - 1.71513i) q^{51} +(-66.1734 - 38.2052i) q^{52} +44.5876 q^{53} +(-69.3232 + 32.8760i) q^{54} +(0.582582 + 2.06102i) q^{55} +(-1.79111 - 1.03410i) q^{56} +(1.55951 + 0.318494i) q^{57} +(59.8538 - 34.5566i) q^{58} +(-54.6329 + 31.5423i) q^{59} +(26.5626 - 55.0485i) q^{60} +(11.0823 - 19.1951i) q^{61} -35.9842 q^{62} +(-52.5931 - 70.0096i) q^{63} -66.3710 q^{64} +(90.8883 + 23.0255i) q^{65} +(-3.46382 + 1.15612i) q^{66} +(-28.1839 + 16.2720i) q^{67} +(5.82123 + 10.0827i) q^{68} +(-20.6797 - 61.9581i) q^{69} +(134.001 + 33.9477i) q^{70} -89.8896i q^{71} +(1.75996 + 0.750149i) q^{72} +144.328i q^{73} +(35.8987 + 20.7261i) q^{74} +(-12.9912 + 73.8663i) q^{75} +(-1.08098 - 1.87232i) q^{76} +(-2.08379 - 3.60923i) q^{77} +(-31.9868 + 156.625i) q^{78} +(-25.1240 + 43.5160i) q^{79} +(75.5169 - 21.3462i) q^{80} +(56.0939 + 58.4335i) q^{81} -108.674i q^{82} +(38.2556 - 66.2606i) q^{83} +(-23.7984 + 116.530i) q^{84} +(-10.2389 - 9.96251i) q^{85} +(142.158 - 82.0747i) q^{86} +(-54.6118 - 48.3889i) q^{87} +(0.0788577 + 0.0455285i) q^{88} +28.9588i q^{89} +(-126.836 - 16.2510i) q^{90} -182.443 q^{91} +(-44.3598 + 76.8334i) q^{92} +(12.0276 + 36.0355i) q^{93} +(-70.4296 - 121.988i) q^{94} +(1.90133 + 1.85000i) q^{95} +(43.1684 + 129.336i) q^{96} +(19.9099 + 11.4950i) q^{97} -129.746 q^{98} +(2.31554 + 3.08234i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 18 q^{4} - 12 q^{5} + 12 q^{6} - 18 q^{9} + 4 q^{10} - 24 q^{11} + 30 q^{14} + 24 q^{15} - 26 q^{16} - 8 q^{19} + 144 q^{20} - 96 q^{21} - 102 q^{24} + 2 q^{25} - 114 q^{29} - 48 q^{30} + 28 q^{31}+ \cdots - 468 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.42081 + 2.46092i −0.710405 + 1.23046i 0.254300 + 0.967125i \(0.418155\pi\)
−0.964705 + 0.263332i \(0.915178\pi\)
\(3\) 2.93933 + 0.600288i 0.979776 + 0.200096i
\(4\) −2.03740 3.52889i −0.509351 0.882222i
\(5\) 3.58357 + 3.48684i 0.716714 + 0.697367i
\(6\) −5.65349 + 6.38055i −0.942248 + 1.06342i
\(7\) −8.42581 4.86464i −1.20369 0.694949i −0.242314 0.970198i \(-0.577906\pi\)
−0.961373 + 0.275249i \(0.911240\pi\)
\(8\) 0.212574 0.0265717
\(9\) 8.27931 + 3.52889i 0.919923 + 0.392099i
\(10\) −13.6724 + 3.86473i −1.36724 + 0.386473i
\(11\) 0.370966 + 0.214177i 0.0337242 + 0.0194707i 0.516767 0.856126i \(-0.327135\pi\)
−0.483043 + 0.875597i \(0.660469\pi\)
\(12\) −3.87025 11.5956i −0.322521 0.966299i
\(13\) 16.2396 9.37595i 1.24920 0.721227i 0.278252 0.960508i \(-0.410245\pi\)
0.970950 + 0.239281i \(0.0769117\pi\)
\(14\) 23.9429 13.8235i 1.71021 0.987391i
\(15\) 8.44019 + 12.4001i 0.562679 + 0.826675i
\(16\) 7.84759 13.5924i 0.490474 0.849526i
\(17\) −2.85718 −0.168069 −0.0840347 0.996463i \(-0.526781\pi\)
−0.0840347 + 0.996463i \(0.526781\pi\)
\(18\) −20.4476 + 15.3608i −1.13598 + 0.853378i
\(19\) 0.530568 0.0279246 0.0139623 0.999903i \(-0.495556\pi\)
0.0139623 + 0.999903i \(0.495556\pi\)
\(20\) 5.00347 19.7501i 0.250173 0.987505i
\(21\) −21.8460 19.3567i −1.04029 0.921747i
\(22\) −1.05414 + 0.608611i −0.0479157 + 0.0276641i
\(23\) −10.8863 18.8557i −0.473319 0.819813i 0.526214 0.850352i \(-0.323611\pi\)
−0.999534 + 0.0305388i \(0.990278\pi\)
\(24\) 0.624825 + 0.127606i 0.0260344 + 0.00531690i
\(25\) 0.683961 + 24.9906i 0.0273584 + 0.999626i
\(26\) 53.2858i 2.04945i
\(27\) 22.2173 + 15.3425i 0.822862 + 0.568242i
\(28\) 39.6450i 1.41589i
\(29\) −21.0633 12.1609i −0.726320 0.419341i 0.0907547 0.995873i \(-0.471072\pi\)
−0.817074 + 0.576532i \(0.804405\pi\)
\(30\) −42.5076 + 3.15236i −1.41692 + 0.105079i
\(31\) 6.33163 + 10.9667i 0.204246 + 0.353765i 0.949892 0.312577i \(-0.101192\pi\)
−0.745646 + 0.666342i \(0.767859\pi\)
\(32\) 22.7250 + 39.3609i 0.710157 + 1.23003i
\(33\) 0.961823 + 0.852224i 0.0291462 + 0.0258250i
\(34\) 4.05951 7.03128i 0.119397 0.206802i
\(35\) −13.2323 46.8122i −0.378065 1.33749i
\(36\) −4.41525 36.4065i −0.122646 1.01129i
\(37\) 14.5875i 0.394257i −0.980378 0.197129i \(-0.936838\pi\)
0.980378 0.197129i \(-0.0631617\pi\)
\(38\) −0.753837 + 1.30568i −0.0198378 + 0.0343601i
\(39\) 53.3619 17.8106i 1.36825 0.456681i
\(40\) 0.761774 + 0.741210i 0.0190443 + 0.0185303i
\(41\) −33.1200 + 19.1218i −0.807804 + 0.466386i −0.846193 0.532877i \(-0.821111\pi\)
0.0383889 + 0.999263i \(0.487777\pi\)
\(42\) 78.6743 26.2591i 1.87320 0.625216i
\(43\) −50.0269 28.8831i −1.16342 0.671699i −0.211297 0.977422i \(-0.567769\pi\)
−0.952121 + 0.305723i \(0.901102\pi\)
\(44\) 1.74546i 0.0396696i
\(45\) 17.3648 + 41.5146i 0.385885 + 0.922547i
\(46\) 61.8697 1.34499
\(47\) −24.7850 + 42.9289i −0.527341 + 0.913381i 0.472152 + 0.881517i \(0.343478\pi\)
−0.999492 + 0.0318635i \(0.989856\pi\)
\(48\) 31.2260 35.2418i 0.650542 0.734204i
\(49\) 22.8295 + 39.5418i 0.465908 + 0.806976i
\(50\) −62.4716 33.8238i −1.24943 0.676476i
\(51\) −8.39819 1.71513i −0.164670 0.0336300i
\(52\) −66.1734 38.2052i −1.27256 0.734716i
\(53\) 44.5876 0.841275 0.420637 0.907229i \(-0.361807\pi\)
0.420637 + 0.907229i \(0.361807\pi\)
\(54\) −69.3232 + 32.8760i −1.28376 + 0.608815i
\(55\) 0.582582 + 2.06102i 0.0105924 + 0.0374730i
\(56\) −1.79111 1.03410i −0.0319840 0.0184660i
\(57\) 1.55951 + 0.318494i 0.0273599 + 0.00558761i
\(58\) 59.8538 34.5566i 1.03196 0.595804i
\(59\) −54.6329 + 31.5423i −0.925981 + 0.534615i −0.885538 0.464567i \(-0.846210\pi\)
−0.0404426 + 0.999182i \(0.512877\pi\)
\(60\) 26.5626 55.0485i 0.442710 0.917476i
\(61\) 11.0823 19.1951i 0.181677 0.314673i −0.760775 0.649016i \(-0.775181\pi\)
0.942452 + 0.334343i \(0.108514\pi\)
\(62\) −35.9842 −0.580390
\(63\) −52.5931 70.0096i −0.834811 1.11126i
\(64\) −66.3710 −1.03705
\(65\) 90.8883 + 23.0255i 1.39828 + 0.354239i
\(66\) −3.46382 + 1.15612i −0.0524821 + 0.0175169i
\(67\) −28.1839 + 16.2720i −0.420655 + 0.242866i −0.695358 0.718664i \(-0.744754\pi\)
0.274702 + 0.961529i \(0.411421\pi\)
\(68\) 5.82123 + 10.0827i 0.0856063 + 0.148274i
\(69\) −20.6797 61.9581i −0.299706 0.897943i
\(70\) 134.001 + 33.9477i 1.91431 + 0.484968i
\(71\) 89.8896i 1.26605i −0.774131 0.633025i \(-0.781813\pi\)
0.774131 0.633025i \(-0.218187\pi\)
\(72\) 1.75996 + 0.750149i 0.0244440 + 0.0104187i
\(73\) 144.328i 1.97709i 0.150926 + 0.988545i \(0.451775\pi\)
−0.150926 + 0.988545i \(0.548225\pi\)
\(74\) 35.8987 + 20.7261i 0.485117 + 0.280082i
\(75\) −12.9912 + 73.8663i −0.173216 + 0.984884i
\(76\) −1.08098 1.87232i −0.0142234 0.0246357i
\(77\) −2.08379 3.60923i −0.0270622 0.0468732i
\(78\) −31.9868 + 156.625i −0.410087 + 2.00801i
\(79\) −25.1240 + 43.5160i −0.318025 + 0.550836i −0.980076 0.198623i \(-0.936353\pi\)
0.662051 + 0.749459i \(0.269686\pi\)
\(80\) 75.5169 21.3462i 0.943961 0.266827i
\(81\) 56.0939 + 58.4335i 0.692518 + 0.721401i
\(82\) 108.674i 1.32529i
\(83\) 38.2556 66.2606i 0.460911 0.798321i −0.538096 0.842884i \(-0.680856\pi\)
0.999007 + 0.0445628i \(0.0141895\pi\)
\(84\) −23.7984 + 116.530i −0.283314 + 1.38726i
\(85\) −10.2389 9.96251i −0.120458 0.117206i
\(86\) 142.158 82.0747i 1.65300 0.954357i
\(87\) −54.6118 48.3889i −0.627722 0.556194i
\(88\) 0.0788577 + 0.0455285i 0.000896110 + 0.000517369i
\(89\) 28.9588i 0.325379i 0.986677 + 0.162690i \(0.0520169\pi\)
−0.986677 + 0.162690i \(0.947983\pi\)
\(90\) −126.836 16.2510i −1.40929 0.180566i
\(91\) −182.443 −2.00486
\(92\) −44.3598 + 76.8334i −0.482171 + 0.835145i
\(93\) 12.0276 + 36.0355i 0.129329 + 0.387479i
\(94\) −70.4296 121.988i −0.749251 1.29774i
\(95\) 1.90133 + 1.85000i 0.0200140 + 0.0194737i
\(96\) 43.1684 + 129.336i 0.449671 + 1.34725i
\(97\) 19.9099 + 11.4950i 0.205257 + 0.118505i 0.599105 0.800670i \(-0.295523\pi\)
−0.393848 + 0.919175i \(0.628857\pi\)
\(98\) −129.746 −1.32393
\(99\) 2.31554 + 3.08234i 0.0233892 + 0.0311347i
\(100\) 86.7956 53.3296i 0.867956 0.533296i
\(101\) −49.7337 28.7138i −0.492413 0.284295i 0.233162 0.972438i \(-0.425093\pi\)
−0.725575 + 0.688143i \(0.758426\pi\)
\(102\) 16.1530 18.2304i 0.158363 0.178729i
\(103\) 74.6430 43.0952i 0.724689 0.418400i −0.0917868 0.995779i \(-0.529258\pi\)
0.816476 + 0.577379i \(0.195924\pi\)
\(104\) 3.45212 1.99308i 0.0331935 0.0191643i
\(105\) −10.7932 145.540i −0.102793 1.38609i
\(106\) −63.3504 + 109.726i −0.597646 + 1.03515i
\(107\) 97.0919 0.907401 0.453701 0.891154i \(-0.350104\pi\)
0.453701 + 0.891154i \(0.350104\pi\)
\(108\) 8.87650 109.661i 0.0821898 1.01538i
\(109\) 164.495 1.50913 0.754565 0.656225i \(-0.227848\pi\)
0.754565 + 0.656225i \(0.227848\pi\)
\(110\) −5.89973 1.49463i −0.0536339 0.0135875i
\(111\) 8.75671 42.8775i 0.0788893 0.386284i
\(112\) −132.245 + 76.3514i −1.18075 + 0.681709i
\(113\) 21.4024 + 37.0700i 0.189401 + 0.328053i 0.945051 0.326924i \(-0.106012\pi\)
−0.755649 + 0.654976i \(0.772679\pi\)
\(114\) −2.99956 + 3.38532i −0.0263119 + 0.0296957i
\(115\) 26.7347 105.530i 0.232476 0.917649i
\(116\) 99.1065i 0.854366i
\(117\) 167.540 20.3186i 1.43196 0.173663i
\(118\) 179.262i 1.51917i
\(119\) 24.0740 + 13.8992i 0.202303 + 0.116800i
\(120\) 1.79416 + 2.63594i 0.0149514 + 0.0219662i
\(121\) −60.4083 104.630i −0.499242 0.864712i
\(122\) 31.4916 + 54.5451i 0.258128 + 0.447091i
\(123\) −108.829 + 36.3238i −0.884789 + 0.295315i
\(124\) 25.8002 44.6872i 0.208066 0.360381i
\(125\) −84.6872 + 91.9406i −0.677498 + 0.735525i
\(126\) 247.013 29.9568i 1.96042 0.237752i
\(127\) 78.7223i 0.619861i −0.950759 0.309931i \(-0.899694\pi\)
0.950759 0.309931i \(-0.100306\pi\)
\(128\) 3.40059 5.88999i 0.0265671 0.0460155i
\(129\) −129.707 114.927i −1.00548 0.890910i
\(130\) −185.799 + 190.953i −1.42922 + 1.46887i
\(131\) 158.295 91.3914i 1.20836 0.697644i 0.245956 0.969281i \(-0.420898\pi\)
0.962400 + 0.271637i \(0.0875649\pi\)
\(132\) 1.04778 5.13049i 0.00793773 0.0388673i
\(133\) −4.47047 2.58103i −0.0336125 0.0194062i
\(134\) 92.4776i 0.690132i
\(135\) 26.1203 + 132.449i 0.193484 + 0.981104i
\(136\) −0.607362 −0.00446589
\(137\) 2.78196 4.81850i 0.0203063 0.0351715i −0.855694 0.517483i \(-0.826869\pi\)
0.876000 + 0.482311i \(0.160203\pi\)
\(138\) 181.856 + 37.1396i 1.31779 + 0.269128i
\(139\) 84.9601 + 147.155i 0.611224 + 1.05867i 0.991034 + 0.133607i \(0.0426559\pi\)
−0.379810 + 0.925064i \(0.624011\pi\)
\(140\) −138.235 + 142.071i −0.987396 + 1.01479i
\(141\) −98.6210 + 111.304i −0.699440 + 0.789390i
\(142\) 221.211 + 127.716i 1.55782 + 0.899409i
\(143\) 8.03247 0.0561711
\(144\) 112.939 84.8426i 0.784297 0.589185i
\(145\) −33.0787 117.024i −0.228129 0.807059i
\(146\) −355.178 205.062i −2.43273 1.40454i
\(147\) 43.3669 + 129.931i 0.295013 + 0.883883i
\(148\) −51.4777 + 29.7207i −0.347822 + 0.200815i
\(149\) −69.9180 + 40.3672i −0.469249 + 0.270921i −0.715925 0.698177i \(-0.753995\pi\)
0.246677 + 0.969098i \(0.420661\pi\)
\(150\) −163.321 136.920i −1.08880 0.912801i
\(151\) −44.1372 + 76.4478i −0.292299 + 0.506277i −0.974353 0.225025i \(-0.927754\pi\)
0.682054 + 0.731302i \(0.261087\pi\)
\(152\) 0.112785 0.000742006
\(153\) −23.6555 10.0827i −0.154611 0.0658998i
\(154\) 11.8427 0.0769006
\(155\) −15.5492 + 61.3773i −0.100318 + 0.395983i
\(156\) −171.571 152.021i −1.09982 0.974492i
\(157\) 54.3401 31.3732i 0.346115 0.199830i −0.316858 0.948473i \(-0.602628\pi\)
0.662973 + 0.748643i \(0.269294\pi\)
\(158\) −71.3929 123.656i −0.451854 0.782633i
\(159\) 131.057 + 26.7654i 0.824261 + 0.168336i
\(160\) −55.8082 + 220.291i −0.348801 + 1.37682i
\(161\) 211.833i 1.31573i
\(162\) −223.499 + 55.0195i −1.37962 + 0.339627i
\(163\) 241.437i 1.48121i 0.671941 + 0.740605i \(0.265461\pi\)
−0.671941 + 0.740605i \(0.734539\pi\)
\(164\) 134.957 + 77.9177i 0.822911 + 0.475108i
\(165\) 0.475197 + 6.40773i 0.00287998 + 0.0388347i
\(166\) 108.708 + 188.288i 0.654867 + 1.13426i
\(167\) −66.5872 115.332i −0.398726 0.690613i 0.594843 0.803842i \(-0.297214\pi\)
−0.993569 + 0.113229i \(0.963881\pi\)
\(168\) −4.64390 4.11473i −0.0276422 0.0244924i
\(169\) 91.3170 158.166i 0.540338 0.935892i
\(170\) 39.0644 11.0422i 0.229791 0.0649543i
\(171\) 4.39274 + 1.87232i 0.0256885 + 0.0109492i
\(172\) 235.386i 1.36852i
\(173\) −33.5211 + 58.0603i −0.193764 + 0.335609i −0.946495 0.322720i \(-0.895403\pi\)
0.752731 + 0.658328i \(0.228736\pi\)
\(174\) 196.674 65.6437i 1.13031 0.377263i
\(175\) 115.808 213.894i 0.661758 1.22225i
\(176\) 5.82238 3.36155i 0.0330817 0.0190997i
\(177\) −179.518 + 59.9177i −1.01423 + 0.338518i
\(178\) −71.2651 41.1449i −0.400366 0.231151i
\(179\) 37.9613i 0.212074i −0.994362 0.106037i \(-0.966184\pi\)
0.994362 0.106037i \(-0.0338162\pi\)
\(180\) 111.121 145.861i 0.617340 0.810337i
\(181\) 278.012 1.53598 0.767990 0.640462i \(-0.221257\pi\)
0.767990 + 0.640462i \(0.221257\pi\)
\(182\) 259.216 448.976i 1.42427 2.46690i
\(183\) 44.0970 49.7681i 0.240967 0.271957i
\(184\) −2.31415 4.00823i −0.0125769 0.0217839i
\(185\) 50.8643 52.2754i 0.274942 0.282570i
\(186\) −105.769 21.6009i −0.568652 0.116134i
\(187\) −1.05992 0.611943i −0.00566800 0.00327242i
\(188\) 201.988 1.07441
\(189\) −112.563 237.352i −0.595569 1.25583i
\(190\) −7.25413 + 2.05051i −0.0381796 + 0.0107921i
\(191\) 50.4943 + 29.1529i 0.264368 + 0.152633i 0.626326 0.779562i \(-0.284558\pi\)
−0.361957 + 0.932195i \(0.617891\pi\)
\(192\) −195.086 39.8417i −1.01607 0.207509i
\(193\) −109.611 + 63.2837i −0.567930 + 0.327895i −0.756322 0.654199i \(-0.773006\pi\)
0.188392 + 0.982094i \(0.439672\pi\)
\(194\) −56.5764 + 32.6644i −0.291631 + 0.168373i
\(195\) 253.329 + 122.239i 1.29912 + 0.626865i
\(196\) 93.0258 161.125i 0.474621 0.822068i
\(197\) −335.557 −1.70333 −0.851667 0.524083i \(-0.824408\pi\)
−0.851667 + 0.524083i \(0.824408\pi\)
\(198\) −10.8753 + 1.31892i −0.0549258 + 0.00666121i
\(199\) −127.161 −0.638998 −0.319499 0.947587i \(-0.603515\pi\)
−0.319499 + 0.947587i \(0.603515\pi\)
\(200\) 0.145392 + 5.31236i 0.000726961 + 0.0265618i
\(201\) −92.6097 + 30.9103i −0.460745 + 0.153782i
\(202\) 141.324 81.5937i 0.699626 0.403929i
\(203\) 118.317 + 204.931i 0.582841 + 1.00951i
\(204\) 11.0580 + 33.1307i 0.0542059 + 0.162405i
\(205\) −185.362 46.9594i −0.904206 0.229070i
\(206\) 244.920i 1.18893i
\(207\) −23.5918 194.529i −0.113970 0.939753i
\(208\) 294.314i 1.41497i
\(209\) 0.196823 + 0.113636i 0.000941736 + 0.000543712i
\(210\) 373.496 + 180.223i 1.77855 + 0.858205i
\(211\) −48.8580 84.6246i −0.231555 0.401064i 0.726711 0.686943i \(-0.241048\pi\)
−0.958266 + 0.285879i \(0.907715\pi\)
\(212\) −90.8428 157.344i −0.428504 0.742191i
\(213\) 53.9596 264.215i 0.253332 1.24045i
\(214\) −137.949 + 238.935i −0.644623 + 1.11652i
\(215\) −78.5646 277.940i −0.365417 1.29275i
\(216\) 4.72281 + 3.26142i 0.0218649 + 0.0150992i
\(217\) 123.204i 0.567762i
\(218\) −233.716 + 404.809i −1.07209 + 1.85692i
\(219\) −86.6381 + 424.226i −0.395608 + 1.93711i
\(220\) 6.08614 6.25499i 0.0276643 0.0284318i
\(221\) −46.3995 + 26.7888i −0.209953 + 0.121216i
\(222\) 93.0763 + 82.4704i 0.419263 + 0.371488i
\(223\) −80.9094 46.7130i −0.362822 0.209476i 0.307496 0.951549i \(-0.400509\pi\)
−0.670318 + 0.742074i \(0.733842\pi\)
\(224\) 442.196i 1.97409i
\(225\) −82.5264 + 209.319i −0.366784 + 0.930306i
\(226\) −121.635 −0.538207
\(227\) −98.9949 + 171.464i −0.436101 + 0.755349i −0.997385 0.0722743i \(-0.976974\pi\)
0.561284 + 0.827623i \(0.310308\pi\)
\(228\) −2.05343 6.15225i −0.00900629 0.0269836i
\(229\) −90.6197 156.958i −0.395719 0.685406i 0.597473 0.801889i \(-0.296171\pi\)
−0.993193 + 0.116483i \(0.962838\pi\)
\(230\) 221.715 + 215.730i 0.963976 + 0.937955i
\(231\) −3.95837 11.8596i −0.0171358 0.0513403i
\(232\) −4.47750 2.58509i −0.0192996 0.0111426i
\(233\) 178.525 0.766202 0.383101 0.923706i \(-0.374856\pi\)
0.383101 + 0.923706i \(0.374856\pi\)
\(234\) −188.040 + 441.170i −0.803588 + 1.88534i
\(235\) −238.505 + 67.4175i −1.01491 + 0.286883i
\(236\) 222.618 + 128.529i 0.943298 + 0.544613i
\(237\) −99.9698 + 112.826i −0.421814 + 0.476060i
\(238\) −68.4093 + 39.4961i −0.287434 + 0.165950i
\(239\) 13.2157 7.63006i 0.0552956 0.0319250i −0.472097 0.881546i \(-0.656503\pi\)
0.527393 + 0.849621i \(0.323170\pi\)
\(240\) 234.783 17.4115i 0.978262 0.0725479i
\(241\) 159.583 276.406i 0.662170 1.14691i −0.317874 0.948133i \(-0.602969\pi\)
0.980044 0.198779i \(-0.0636976\pi\)
\(242\) 343.315 1.41866
\(243\) 129.802 + 205.428i 0.534163 + 0.845382i
\(244\) −90.3163 −0.370149
\(245\) −56.0648 + 221.304i −0.228836 + 0.903280i
\(246\) 65.2356 319.428i 0.265185 1.29849i
\(247\) 8.61623 4.97458i 0.0348835 0.0201400i
\(248\) 1.34594 + 2.33123i 0.00542717 + 0.00940014i
\(249\) 152.221 171.797i 0.611330 0.689950i
\(250\) −105.934 339.038i −0.423734 1.35615i
\(251\) 95.3404i 0.379842i 0.981799 + 0.189921i \(0.0608232\pi\)
−0.981799 + 0.189921i \(0.939177\pi\)
\(252\) −139.903 + 328.233i −0.555169 + 1.30251i
\(253\) 9.32644i 0.0368634i
\(254\) 193.729 + 111.850i 0.762713 + 0.440352i
\(255\) −24.1151 35.4294i −0.0945692 0.138939i
\(256\) −123.079 213.179i −0.480777 0.832730i
\(257\) −3.96637 6.86996i −0.0154334 0.0267313i 0.858206 0.513306i \(-0.171579\pi\)
−0.873639 + 0.486575i \(0.838246\pi\)
\(258\) 467.116 155.909i 1.81053 0.604299i
\(259\) −70.9631 + 122.912i −0.273989 + 0.474562i
\(260\) −103.922 367.647i −0.399699 1.41403i
\(261\) −131.475 175.014i −0.503735 0.670550i
\(262\) 519.399i 1.98244i
\(263\) 205.189 355.399i 0.780188 1.35133i −0.151644 0.988435i \(-0.548457\pi\)
0.931832 0.362890i \(-0.118210\pi\)
\(264\) 0.204459 + 0.181161i 0.000774464 + 0.000686214i
\(265\) 159.783 + 155.469i 0.602953 + 0.586677i
\(266\) 12.7034 7.33429i 0.0477570 0.0275725i
\(267\) −17.3836 + 85.1193i −0.0651071 + 0.318799i
\(268\) 114.844 + 66.3052i 0.428522 + 0.247408i
\(269\) 201.081i 0.747513i 0.927527 + 0.373757i \(0.121930\pi\)
−0.927527 + 0.373757i \(0.878070\pi\)
\(270\) −363.058 123.905i −1.34466 0.458908i
\(271\) 121.070 0.446751 0.223376 0.974732i \(-0.428292\pi\)
0.223376 + 0.974732i \(0.428292\pi\)
\(272\) −22.4220 + 38.8360i −0.0824337 + 0.142779i
\(273\) −536.259 109.518i −1.96432 0.401165i
\(274\) 7.90527 + 13.6923i 0.0288514 + 0.0499720i
\(275\) −5.09870 + 9.41717i −0.0185407 + 0.0342443i
\(276\) −176.510 + 199.210i −0.639529 + 0.721775i
\(277\) 290.125 + 167.504i 1.04738 + 0.604707i 0.921916 0.387391i \(-0.126624\pi\)
0.125468 + 0.992098i \(0.459957\pi\)
\(278\) −482.849 −1.73687
\(279\) 13.7213 + 113.140i 0.0491802 + 0.405521i
\(280\) −2.81284 9.95105i −0.0100458 0.0355395i
\(281\) 120.265 + 69.4349i 0.427989 + 0.247099i 0.698489 0.715620i \(-0.253856\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(282\) −133.788 400.840i −0.474426 1.42142i
\(283\) 83.8352 48.4023i 0.296237 0.171033i −0.344514 0.938781i \(-0.611956\pi\)
0.640751 + 0.767748i \(0.278623\pi\)
\(284\) −317.210 + 183.141i −1.11694 + 0.644864i
\(285\) 4.47810 + 6.57912i 0.0157126 + 0.0230846i
\(286\) −11.4126 + 19.7672i −0.0399042 + 0.0691162i
\(287\) 372.083 1.29646
\(288\) 49.2473 + 406.075i 0.170998 + 1.40998i
\(289\) −280.837 −0.971753
\(290\) 334.984 + 84.8643i 1.15512 + 0.292636i
\(291\) 51.6214 + 45.7392i 0.177393 + 0.157179i
\(292\) 509.316 294.054i 1.74423 1.00703i
\(293\) −192.539 333.488i −0.657131 1.13818i −0.981355 0.192204i \(-0.938437\pi\)
0.324224 0.945980i \(-0.394897\pi\)
\(294\) −381.365 77.8846i −1.29716 0.264914i
\(295\) −305.764 77.4617i −1.03649 0.262582i
\(296\) 3.10093i 0.0104761i
\(297\) 4.95583 + 10.4500i 0.0166863 + 0.0351852i
\(298\) 229.417i 0.769854i
\(299\) −353.580 204.140i −1.18254 0.682742i
\(300\) 287.134 104.651i 0.957114 0.348837i
\(301\) 281.012 + 486.726i 0.933593 + 1.61703i
\(302\) −125.421 217.236i −0.415302 0.719324i
\(303\) −128.947 114.254i −0.425569 0.377075i
\(304\) 4.16368 7.21171i 0.0136963 0.0237227i
\(305\) 106.644 30.1448i 0.349653 0.0988354i
\(306\) 58.4225 43.8886i 0.190923 0.143427i
\(307\) 207.311i 0.675281i 0.941275 + 0.337641i \(0.109629\pi\)
−0.941275 + 0.337641i \(0.890371\pi\)
\(308\) −8.49105 + 14.7069i −0.0275684 + 0.0477498i
\(309\) 245.270 81.8636i 0.793754 0.264931i
\(310\) −128.952 125.471i −0.415974 0.404745i
\(311\) 140.437 81.0816i 0.451567 0.260712i −0.256925 0.966431i \(-0.582709\pi\)
0.708492 + 0.705719i \(0.249376\pi\)
\(312\) 11.3433 3.78606i 0.0363569 0.0121348i
\(313\) 196.427 + 113.407i 0.627561 + 0.362322i 0.779807 0.626020i \(-0.215317\pi\)
−0.152246 + 0.988343i \(0.548651\pi\)
\(314\) 178.302i 0.567840i
\(315\) 55.6408 434.268i 0.176638 1.37863i
\(316\) 204.751 0.647946
\(317\) 244.388 423.293i 0.770941 1.33531i −0.166108 0.986108i \(-0.553120\pi\)
0.937048 0.349200i \(-0.113547\pi\)
\(318\) −252.075 + 284.493i −0.792689 + 0.894632i
\(319\) −5.20917 9.02255i −0.0163297 0.0282839i
\(320\) −237.845 231.425i −0.743267 0.723203i
\(321\) 285.385 + 58.2831i 0.889050 + 0.181567i
\(322\) −521.302 300.974i −1.61895 0.934702i
\(323\) −1.51593 −0.00469328
\(324\) 91.9192 317.002i 0.283701 0.978400i
\(325\) 245.418 + 399.426i 0.755134 + 1.22900i
\(326\) −594.157 343.036i −1.82257 1.05226i
\(327\) 483.505 + 98.7444i 1.47861 + 0.301971i
\(328\) −7.04044 + 4.06480i −0.0214647 + 0.0123927i
\(329\) 417.667 241.140i 1.26951 0.732950i
\(330\) −16.4440 7.93474i −0.0498304 0.0240447i
\(331\) −118.823 + 205.808i −0.358982 + 0.621775i −0.987791 0.155785i \(-0.950209\pi\)
0.628809 + 0.777560i \(0.283543\pi\)
\(332\) −311.768 −0.939061
\(333\) 51.4777 120.775i 0.154588 0.362687i
\(334\) 378.431 1.13303
\(335\) −157.737 39.9608i −0.470856 0.119286i
\(336\) −434.543 + 145.037i −1.29328 + 0.431658i
\(337\) −244.250 + 141.018i −0.724777 + 0.418450i −0.816508 0.577334i \(-0.804093\pi\)
0.0917314 + 0.995784i \(0.470760\pi\)
\(338\) 259.488 + 449.447i 0.767717 + 1.32973i
\(339\) 40.6559 + 121.808i 0.119929 + 0.359317i
\(340\) −14.2958 + 56.4296i −0.0420465 + 0.165969i
\(341\) 5.42437i 0.0159072i
\(342\) −10.8489 + 8.14996i −0.0317218 + 0.0238303i
\(343\) 32.5057i 0.0947688i
\(344\) −10.6344 6.13979i −0.0309140 0.0178482i
\(345\) 141.930 294.138i 0.411392 0.852573i
\(346\) −95.2543 164.985i −0.275302 0.476836i
\(347\) 219.985 + 381.026i 0.633963 + 1.09806i 0.986734 + 0.162347i \(0.0519063\pi\)
−0.352771 + 0.935710i \(0.614760\pi\)
\(348\) −59.4924 + 291.307i −0.170955 + 0.837088i
\(349\) 48.6291 84.2280i 0.139338 0.241341i −0.787908 0.615793i \(-0.788836\pi\)
0.927246 + 0.374452i \(0.122169\pi\)
\(350\) 361.833 + 588.895i 1.03381 + 1.68256i
\(351\) 504.651 + 40.8489i 1.43775 + 0.116379i
\(352\) 19.4687i 0.0553089i
\(353\) 49.0978 85.0399i 0.139087 0.240906i −0.788064 0.615593i \(-0.788916\pi\)
0.927151 + 0.374687i \(0.122250\pi\)
\(354\) 107.609 526.911i 0.303980 1.48845i
\(355\) 313.430 322.126i 0.882902 0.907396i
\(356\) 102.192 59.0007i 0.287057 0.165732i
\(357\) 62.4180 + 55.3055i 0.174840 + 0.154917i
\(358\) 93.4195 + 53.9358i 0.260948 + 0.150659i
\(359\) 500.068i 1.39295i 0.717582 + 0.696474i \(0.245249\pi\)
−0.717582 + 0.696474i \(0.754751\pi\)
\(360\) 3.69131 + 8.82492i 0.0102536 + 0.0245137i
\(361\) −360.718 −0.999220
\(362\) −395.003 + 684.165i −1.09117 + 1.88996i
\(363\) −114.752 343.805i −0.316120 0.947121i
\(364\) 371.709 + 643.819i 1.02118 + 1.76873i
\(365\) −503.246 + 517.208i −1.37876 + 1.41701i
\(366\) 59.8215 + 179.230i 0.163447 + 0.489699i
\(367\) −296.023 170.909i −0.806603 0.465692i 0.0391718 0.999232i \(-0.487528\pi\)
−0.845775 + 0.533540i \(0.820861\pi\)
\(368\) −341.726 −0.928604
\(369\) −341.689 + 41.4388i −0.925987 + 0.112300i
\(370\) 56.3769 + 199.446i 0.152370 + 0.539044i
\(371\) −375.686 216.902i −1.01263 0.584643i
\(372\) 102.660 115.863i 0.275969 0.311459i
\(373\) −529.179 + 305.522i −1.41871 + 0.819093i −0.996186 0.0872584i \(-0.972189\pi\)
−0.422525 + 0.906351i \(0.638856\pi\)
\(374\) 3.01188 1.73891i 0.00805316 0.00464949i
\(375\) −304.114 + 219.407i −0.810972 + 0.585085i
\(376\) −5.26865 + 9.12556i −0.0140124 + 0.0242701i
\(377\) −456.080 −1.20976
\(378\) 744.034 + 60.2257i 1.96834 + 0.159327i
\(379\) 187.436 0.494555 0.247277 0.968945i \(-0.420464\pi\)
0.247277 + 0.968945i \(0.420464\pi\)
\(380\) 2.65468 10.4788i 0.00698600 0.0275757i
\(381\) 47.2561 231.391i 0.124032 0.607325i
\(382\) −143.486 + 82.8415i −0.375617 + 0.216863i
\(383\) 73.9088 + 128.014i 0.192973 + 0.334240i 0.946234 0.323482i \(-0.104854\pi\)
−0.753261 + 0.657722i \(0.771520\pi\)
\(384\) 13.5311 15.2713i 0.0352373 0.0397690i
\(385\) 5.11739 20.1998i 0.0132919 0.0524670i
\(386\) 359.656i 0.931752i
\(387\) −312.263 415.671i −0.806882 1.07409i
\(388\) 93.6797i 0.241442i
\(389\) −397.890 229.722i −1.02285 0.590545i −0.107924 0.994159i \(-0.534420\pi\)
−0.914929 + 0.403615i \(0.867754\pi\)
\(390\) −660.751 + 449.742i −1.69423 + 1.15319i
\(391\) 31.1042 + 53.8741i 0.0795505 + 0.137786i
\(392\) 4.85295 + 8.40556i 0.0123800 + 0.0214428i
\(393\) 520.141 173.607i 1.32351 0.441748i
\(394\) 476.763 825.777i 1.21006 2.09588i
\(395\) −241.767 + 68.3396i −0.612068 + 0.173012i
\(396\) 6.15954 14.4512i 0.0155544 0.0364930i
\(397\) 718.905i 1.81084i −0.424512 0.905422i \(-0.639554\pi\)
0.424512 0.905422i \(-0.360446\pi\)
\(398\) 180.671 312.932i 0.453948 0.786260i
\(399\) −11.5908 10.2700i −0.0290497 0.0257395i
\(400\) 345.051 + 186.820i 0.862627 + 0.467049i
\(401\) −65.5957 + 37.8717i −0.163580 + 0.0944431i −0.579555 0.814933i \(-0.696774\pi\)
0.415975 + 0.909376i \(0.363440\pi\)
\(402\) 55.5132 271.822i 0.138093 0.676175i
\(403\) 205.647 + 118.730i 0.510289 + 0.294616i
\(404\) 234.006i 0.579223i
\(405\) −2.73140 + 404.991i −0.00674419 + 0.999977i
\(406\) −672.422 −1.65621
\(407\) 3.12432 5.41148i 0.00767646 0.0132960i
\(408\) −1.78524 0.364592i −0.00437558 0.000893607i
\(409\) −255.035 441.733i −0.623556 1.08003i −0.988818 0.149126i \(-0.952354\pi\)
0.365262 0.930905i \(-0.380979\pi\)
\(410\) 378.928 389.441i 0.924214 0.949855i
\(411\) 11.0696 12.4932i 0.0269333 0.0303970i
\(412\) −304.156 175.604i −0.738242 0.426224i
\(413\) 613.768 1.48612
\(414\) 512.239 + 218.331i 1.23729 + 0.527370i
\(415\) 368.132 104.059i 0.887064 0.250744i
\(416\) 738.092 + 426.137i 1.77426 + 1.02437i
\(417\) 161.390 + 483.538i 0.387027 + 1.15956i
\(418\) −0.559296 + 0.322910i −0.00133803 + 0.000772511i
\(419\) 603.768 348.586i 1.44097 0.831947i 0.443060 0.896492i \(-0.353893\pi\)
0.997915 + 0.0645450i \(0.0205596\pi\)
\(420\) −491.603 + 334.611i −1.17048 + 0.796693i
\(421\) −378.410 + 655.425i −0.898836 + 1.55683i −0.0698516 + 0.997557i \(0.522253\pi\)
−0.828984 + 0.559272i \(0.811081\pi\)
\(422\) 277.672 0.657990
\(423\) −356.694 + 267.958i −0.843248 + 0.633471i
\(424\) 9.47815 0.0223541
\(425\) −1.95420 71.4027i −0.00459812 0.168006i
\(426\) 573.545 + 508.190i 1.34635 + 1.19293i
\(427\) −186.754 + 107.823i −0.437364 + 0.252512i
\(428\) −197.815 342.626i −0.462186 0.800529i
\(429\) 23.6101 + 4.82179i 0.0550351 + 0.0112396i
\(430\) 795.613 + 201.560i 1.85026 + 0.468743i
\(431\) 497.875i 1.15516i −0.816333 0.577581i \(-0.803997\pi\)
0.816333 0.577581i \(-0.196003\pi\)
\(432\) 382.894 181.585i 0.886329 0.420335i
\(433\) 421.645i 0.973775i −0.873465 0.486888i \(-0.838132\pi\)
0.873465 0.486888i \(-0.161868\pi\)
\(434\) 303.196 + 175.050i 0.698608 + 0.403341i
\(435\) −26.9814 363.827i −0.0620263 0.836385i
\(436\) −335.143 580.485i −0.768677 1.33139i
\(437\) −5.77595 10.0042i −0.0132173 0.0228930i
\(438\) −920.889 815.954i −2.10249 1.86291i
\(439\) −228.743 + 396.195i −0.521055 + 0.902494i 0.478645 + 0.878009i \(0.341128\pi\)
−0.999700 + 0.0244857i \(0.992205\pi\)
\(440\) 0.123842 + 0.438118i 0.000281458 + 0.000995724i
\(441\) 49.4738 + 407.942i 0.112185 + 0.925038i
\(442\) 152.247i 0.344450i
\(443\) −116.136 + 201.153i −0.262157 + 0.454069i −0.966815 0.255478i \(-0.917767\pi\)
0.704658 + 0.709547i \(0.251101\pi\)
\(444\) −169.151 + 56.4574i −0.380970 + 0.127156i
\(445\) −100.974 + 103.776i −0.226909 + 0.233204i
\(446\) 229.914 132.741i 0.515502 0.297625i
\(447\) −229.744 + 76.6815i −0.513969 + 0.171547i
\(448\) 559.230 + 322.871i 1.24828 + 0.720695i
\(449\) 678.345i 1.51079i −0.655269 0.755395i \(-0.727445\pi\)
0.655269 0.755395i \(-0.272555\pi\)
\(450\) −397.862 500.493i −0.884137 1.11221i
\(451\) −16.3818 −0.0363234
\(452\) 87.2105 151.053i 0.192943 0.334188i
\(453\) −175.624 + 198.210i −0.387692 + 0.437550i
\(454\) −281.306 487.236i −0.619617 1.07321i
\(455\) −653.796 636.148i −1.43691 1.39813i
\(456\) 0.331512 + 0.0677034i 0.000727000 + 0.000148472i
\(457\) 637.008 + 367.777i 1.39389 + 0.804763i 0.993743 0.111688i \(-0.0356258\pi\)
0.400147 + 0.916451i \(0.368959\pi\)
\(458\) 515.014 1.12448
\(459\) −63.4787 43.8364i −0.138298 0.0955040i
\(460\) −426.872 + 120.663i −0.927982 + 0.262310i
\(461\) 344.752 + 199.043i 0.747835 + 0.431763i 0.824911 0.565263i \(-0.191225\pi\)
−0.0770763 + 0.997025i \(0.524559\pi\)
\(462\) 34.8096 + 7.10903i 0.0753454 + 0.0153875i
\(463\) −139.076 + 80.2955i −0.300380 + 0.173424i −0.642613 0.766191i \(-0.722150\pi\)
0.342234 + 0.939615i \(0.388817\pi\)
\(464\) −330.592 + 190.867i −0.712482 + 0.411352i
\(465\) −82.5484 + 171.074i −0.177523 + 0.367901i
\(466\) −253.650 + 439.335i −0.544314 + 0.942780i
\(467\) −406.660 −0.870792 −0.435396 0.900239i \(-0.643392\pi\)
−0.435396 + 0.900239i \(0.643392\pi\)
\(468\) −413.048 549.831i −0.882581 1.17485i
\(469\) 316.630 0.675117
\(470\) 172.961 682.728i 0.368003 1.45261i
\(471\) 178.556 59.5966i 0.379100 0.126532i
\(472\) −11.6135 + 6.70507i −0.0246049 + 0.0142057i
\(473\) −12.3722 21.4293i −0.0261569 0.0453050i
\(474\) −135.618 406.322i −0.286114 0.857220i
\(475\) 0.362888 + 13.2592i 0.000763975 + 0.0279142i
\(476\) 113.273i 0.237968i
\(477\) 369.154 + 157.344i 0.773908 + 0.329862i
\(478\) 43.3635i 0.0907186i
\(479\) 731.450 + 422.303i 1.52704 + 0.881635i 0.999484 + 0.0321123i \(0.0102234\pi\)
0.527552 + 0.849523i \(0.323110\pi\)
\(480\) −296.277 + 614.006i −0.617243 + 1.27918i
\(481\) −136.772 236.896i −0.284349 0.492507i
\(482\) 453.474 + 785.440i 0.940818 + 1.62954i
\(483\) −127.161 + 622.646i −0.263272 + 1.28912i
\(484\) −246.152 + 426.348i −0.508579 + 0.880884i
\(485\) 31.2674 + 110.616i 0.0644689 + 0.228073i
\(486\) −689.964 + 27.5569i −1.41968 + 0.0567014i
\(487\) 225.518i 0.463075i −0.972826 0.231538i \(-0.925624\pi\)
0.972826 0.231538i \(-0.0743757\pi\)
\(488\) 2.35580 4.08037i 0.00482746 0.00836141i
\(489\) −144.932 + 709.663i −0.296384 + 1.45125i
\(490\) −464.952 452.401i −0.948882 0.923268i
\(491\) −662.639 + 382.575i −1.34957 + 0.779175i −0.988189 0.153243i \(-0.951028\pi\)
−0.361382 + 0.932418i \(0.617695\pi\)
\(492\) 349.911 + 310.039i 0.711202 + 0.630161i
\(493\) 60.1815 + 34.7458i 0.122072 + 0.0704783i
\(494\) 28.2718i 0.0572303i
\(495\) −2.44972 + 19.1197i −0.00494893 + 0.0386256i
\(496\) 198.752 0.400710
\(497\) −437.281 + 757.392i −0.879841 + 1.52393i
\(498\) 206.501 + 618.695i 0.414662 + 1.24236i
\(499\) 102.024 + 176.711i 0.204458 + 0.354131i 0.949960 0.312372i \(-0.101124\pi\)
−0.745502 + 0.666503i \(0.767790\pi\)
\(500\) 496.990 + 111.532i 0.993980 + 0.223063i
\(501\) −126.489 378.971i −0.252473 0.756429i
\(502\) −234.625 135.461i −0.467380 0.269842i
\(503\) −585.545 −1.16411 −0.582053 0.813151i \(-0.697750\pi\)
−0.582053 + 0.813151i \(0.697750\pi\)
\(504\) −11.1799 14.8822i −0.0221824 0.0295282i
\(505\) −78.1041 276.311i −0.154662 0.547151i
\(506\) 22.9516 + 13.2511i 0.0453588 + 0.0261879i
\(507\) 363.356 410.085i 0.716678 0.808846i
\(508\) −277.802 + 160.389i −0.546855 + 0.315727i
\(509\) 10.3361 5.96756i 0.0203067 0.0117241i −0.489812 0.871828i \(-0.662935\pi\)
0.510119 + 0.860104i \(0.329601\pi\)
\(510\) 121.452 9.00686i 0.238141 0.0176605i
\(511\) 702.102 1216.08i 1.37398 2.37980i
\(512\) 726.692 1.41932
\(513\) 11.7878 + 8.14026i 0.0229781 + 0.0158680i
\(514\) 22.5418 0.0438557
\(515\) 417.754 + 105.833i 0.811173 + 0.205502i
\(516\) −141.299 + 691.877i −0.273836 + 1.34085i
\(517\) −18.3888 + 10.6168i −0.0355683 + 0.0205354i
\(518\) −201.650 349.268i −0.389286 0.674263i
\(519\) −133.383 + 150.536i −0.256999 + 0.290050i
\(520\) 19.3205 + 4.89462i 0.0371548 + 0.00941274i
\(521\) 541.869i 1.04006i −0.854149 0.520028i \(-0.825922\pi\)
0.854149 0.520028i \(-0.174078\pi\)
\(522\) 617.495 74.8876i 1.18294 0.143463i
\(523\) 356.100i 0.680880i 0.940266 + 0.340440i \(0.110576\pi\)
−0.940266 + 0.340440i \(0.889424\pi\)
\(524\) −645.020 372.402i −1.23095 0.710692i
\(525\) 468.794 559.186i 0.892942 1.06512i
\(526\) 583.071 + 1009.91i 1.10850 + 1.91998i
\(527\) −18.0906 31.3338i −0.0343275 0.0594570i
\(528\) 19.1318 6.38560i 0.0362344 0.0120939i
\(529\) 27.4749 47.5879i 0.0519374 0.0899582i
\(530\) −609.618 + 172.319i −1.15022 + 0.325130i
\(531\) −563.632 + 68.3553i −1.06145 + 0.128729i
\(532\) 21.0344i 0.0395383i
\(533\) −358.571 + 621.062i −0.672740 + 1.16522i
\(534\) −184.773 163.718i −0.346016 0.306588i
\(535\) 347.936 + 338.544i 0.650347 + 0.632792i
\(536\) −5.99116 + 3.45900i −0.0111775 + 0.00645336i
\(537\) 22.7877 111.581i 0.0424352 0.207785i
\(538\) −494.843 285.698i −0.919783 0.531037i
\(539\) 19.5582i 0.0362862i
\(540\) 414.180 362.028i 0.767000 0.670421i
\(541\) 378.892 0.700355 0.350178 0.936683i \(-0.386121\pi\)
0.350178 + 0.936683i \(0.386121\pi\)
\(542\) −172.017 + 297.942i −0.317375 + 0.549709i
\(543\) 817.170 + 166.887i 1.50492 + 0.307343i
\(544\) −64.9294 112.461i −0.119356 0.206730i
\(545\) 589.480 + 573.568i 1.08161 + 1.05242i
\(546\) 1031.44 1164.08i 1.88908 2.13202i
\(547\) −484.407 279.673i −0.885571 0.511285i −0.0130799 0.999914i \(-0.504164\pi\)
−0.872491 + 0.488630i \(0.837497\pi\)
\(548\) −22.6719 −0.0413721
\(549\) 159.491 119.814i 0.290511 0.218240i
\(550\) −15.9306 25.9275i −0.0289647 0.0471409i
\(551\) −11.1755 6.45218i −0.0202822 0.0117099i
\(552\) −4.39596 13.1707i −0.00796370 0.0238599i
\(553\) 423.380 244.439i 0.765606 0.442023i
\(554\) −824.426 + 475.982i −1.48813 + 0.859174i
\(555\) 180.887 123.121i 0.325923 0.221840i
\(556\) 346.196 599.629i 0.622655 1.07847i
\(557\) 471.971 0.847345 0.423673 0.905815i \(-0.360741\pi\)
0.423673 + 0.905815i \(0.360741\pi\)
\(558\) −297.924 126.984i −0.533914 0.227570i
\(559\) −1083.23 −1.93779
\(560\) −740.132 187.504i −1.32167 0.334829i
\(561\) −2.74810 2.43496i −0.00489858 0.00434039i
\(562\) −341.747 + 197.308i −0.608090 + 0.351081i
\(563\) −247.289 428.316i −0.439234 0.760775i 0.558397 0.829574i \(-0.311417\pi\)
−0.997631 + 0.0687990i \(0.978083\pi\)
\(564\) 593.710 + 121.251i 1.05268 + 0.214984i
\(565\) −52.5600 + 207.469i −0.0930265 + 0.367202i
\(566\) 275.082i 0.486010i
\(567\) −188.379 765.226i −0.332237 1.34961i
\(568\) 19.1082i 0.0336412i
\(569\) 143.305 + 82.7370i 0.251853 + 0.145408i 0.620613 0.784117i \(-0.286884\pi\)
−0.368759 + 0.929525i \(0.620217\pi\)
\(570\) −22.5532 + 1.67254i −0.0395670 + 0.00293429i
\(571\) −25.5302 44.2195i −0.0447113 0.0774423i 0.842804 0.538221i \(-0.180903\pi\)
−0.887515 + 0.460779i \(0.847570\pi\)
\(572\) −16.3654 28.3457i −0.0286108 0.0495554i
\(573\) 130.919 + 116.001i 0.228480 + 0.202445i
\(574\) −528.660 + 915.665i −0.921010 + 1.59524i
\(575\) 463.770 284.953i 0.806557 0.495571i
\(576\) −549.506 234.216i −0.954004 0.406625i
\(577\) 707.833i 1.22675i −0.789793 0.613373i \(-0.789812\pi\)
0.789793 0.613373i \(-0.210188\pi\)
\(578\) 399.015 691.115i 0.690338 1.19570i
\(579\) −360.170 + 120.214i −0.622055 + 0.207623i
\(580\) −345.568 + 355.155i −0.595807 + 0.612337i
\(581\) −644.669 + 372.200i −1.10958 + 0.640619i
\(582\) −185.905 + 62.0492i −0.319424 + 0.106614i
\(583\) 16.5405 + 9.54964i 0.0283713 + 0.0163802i
\(584\) 30.6803i 0.0525347i
\(585\) 671.238 + 511.370i 1.14741 + 0.874136i
\(586\) 1094.25 1.86732
\(587\) 226.251 391.878i 0.385436 0.667594i −0.606394 0.795164i \(-0.707385\pi\)
0.991830 + 0.127570i \(0.0407179\pi\)
\(588\) 370.155 417.758i 0.629515 0.710473i
\(589\) 3.35936 + 5.81859i 0.00570350 + 0.00987875i
\(590\) 625.059 642.400i 1.05942 1.08881i
\(591\) −986.312 201.431i −1.66889 0.340830i
\(592\) −198.280 114.477i −0.334932 0.193373i
\(593\) 227.811 0.384168 0.192084 0.981379i \(-0.438475\pi\)
0.192084 + 0.981379i \(0.438475\pi\)
\(594\) −32.7578 2.65158i −0.0551479 0.00446394i
\(595\) 37.8070 + 133.751i 0.0635411 + 0.224791i
\(596\) 284.903 + 164.489i 0.478024 + 0.275988i
\(597\) −373.767 76.3330i −0.626075 0.127861i
\(598\) 1004.74 580.088i 1.68017 0.970047i
\(599\) −484.611 + 279.790i −0.809033 + 0.467096i −0.846620 0.532198i \(-0.821366\pi\)
0.0375869 + 0.999293i \(0.488033\pi\)
\(600\) −2.76159 + 15.7020i −0.00460265 + 0.0261701i
\(601\) −335.271 + 580.707i −0.557856 + 0.966235i 0.439819 + 0.898086i \(0.355043\pi\)
−0.997675 + 0.0681485i \(0.978291\pi\)
\(602\) −1597.06 −2.65292
\(603\) −290.765 + 35.2630i −0.482198 + 0.0584793i
\(604\) 359.701 0.595532
\(605\) 148.351 585.583i 0.245208 0.967906i
\(606\) 464.379 154.995i 0.766301 0.255768i
\(607\) −864.308 + 499.009i −1.42390 + 0.822090i −0.996630 0.0820329i \(-0.973859\pi\)
−0.427272 + 0.904123i \(0.640525\pi\)
\(608\) 12.0572 + 20.8836i 0.0198309 + 0.0343481i
\(609\) 224.754 + 673.382i 0.369055 + 1.10572i
\(610\) −77.3373 + 305.272i −0.126782 + 0.500446i
\(611\) 929.533i 1.52133i
\(612\) 12.6152 + 104.020i 0.0206130 + 0.169967i
\(613\) 229.314i 0.374086i 0.982352 + 0.187043i \(0.0598903\pi\)
−0.982352 + 0.187043i \(0.940110\pi\)
\(614\) −510.176 294.550i −0.830905 0.479723i
\(615\) −516.652 249.300i −0.840084 0.405366i
\(616\) −0.442960 0.767229i −0.000719091 0.00124550i
\(617\) −248.717 430.791i −0.403108 0.698203i 0.590992 0.806678i \(-0.298737\pi\)
−0.994099 + 0.108475i \(0.965403\pi\)
\(618\) −147.023 + 719.901i −0.237901 + 1.16489i
\(619\) 528.867 916.025i 0.854390 1.47985i −0.0228204 0.999740i \(-0.507265\pi\)
0.877210 0.480107i \(-0.159402\pi\)
\(620\) 248.274 70.1788i 0.400441 0.113192i
\(621\) 47.4293 585.946i 0.0763757 0.943553i
\(622\) 460.806i 0.740846i
\(623\) 140.874 244.001i 0.226122 0.391655i
\(624\) 176.673 865.087i 0.283130 1.38636i
\(625\) −624.064 + 34.1853i −0.998503 + 0.0546964i
\(626\) −558.170 + 322.259i −0.891645 + 0.514792i
\(627\) 0.510313 + 0.452163i 0.000813896 + 0.000721153i
\(628\) −221.425 127.840i −0.352588 0.203567i
\(629\) 41.6792i 0.0662626i
\(630\) 989.641 + 753.940i 1.57086 + 1.19673i
\(631\) 638.591 1.01203 0.506015 0.862524i \(-0.331118\pi\)
0.506015 + 0.862524i \(0.331118\pi\)
\(632\) −5.34071 + 9.25037i −0.00845048 + 0.0146367i
\(633\) −92.8107 278.068i −0.146620 0.439286i
\(634\) 694.458 + 1202.84i 1.09536 + 1.89722i
\(635\) 274.492 282.107i 0.432271 0.444263i
\(636\) −172.565 517.019i −0.271329 0.812923i
\(637\) 741.485 + 428.097i 1.16403 + 0.672051i
\(638\) 29.6050 0.0464028
\(639\) 317.210 744.224i 0.496417 1.16467i
\(640\) 32.7237 9.24991i 0.0511307 0.0144530i
\(641\) 765.794 + 442.131i 1.19469 + 0.689753i 0.959366 0.282165i \(-0.0910526\pi\)
0.235321 + 0.971918i \(0.424386\pi\)
\(642\) −548.908 + 619.500i −0.854997 + 0.964953i
\(643\) 884.408 510.613i 1.37544 0.794111i 0.383834 0.923402i \(-0.374604\pi\)
0.991607 + 0.129291i \(0.0412702\pi\)
\(644\) 747.534 431.589i 1.16077 0.670169i
\(645\) −64.0831 864.119i −0.0993536 1.33972i
\(646\) 2.15385 3.73057i 0.00333413 0.00577488i
\(647\) 488.043 0.754317 0.377159 0.926149i \(-0.376901\pi\)
0.377159 + 0.926149i \(0.376901\pi\)
\(648\) 11.9241 + 12.4214i 0.0184014 + 0.0191689i
\(649\) −27.0226 −0.0416373
\(650\) −1331.65 + 36.4454i −2.04869 + 0.0560699i
\(651\) 73.9581 362.138i 0.113607 0.556280i
\(652\) 852.005 491.905i 1.30676 0.754456i
\(653\) 305.648 + 529.397i 0.468067 + 0.810716i 0.999334 0.0364887i \(-0.0116173\pi\)
−0.531267 + 0.847204i \(0.678284\pi\)
\(654\) −929.971 + 1049.57i −1.42197 + 1.60485i
\(655\) 885.927 + 224.439i 1.35256 + 0.342656i
\(656\) 600.240i 0.915001i
\(657\) −509.316 + 1194.93i −0.775214 + 1.81877i
\(658\) 1370.46i 2.08276i
\(659\) 125.687 + 72.5657i 0.190724 + 0.110115i 0.592322 0.805702i \(-0.298211\pi\)
−0.401597 + 0.915816i \(0.631545\pi\)
\(660\) 21.6440 14.7320i 0.0327939 0.0223213i
\(661\) −415.128 719.023i −0.628030 1.08778i −0.987947 0.154796i \(-0.950528\pi\)
0.359916 0.932985i \(-0.382805\pi\)
\(662\) −337.650 584.827i −0.510045 0.883424i
\(663\) −152.464 + 50.8880i −0.229961 + 0.0767541i
\(664\) 8.13214 14.0853i 0.0122472 0.0212128i
\(665\) −7.02063 24.8371i −0.0105573 0.0373490i
\(666\) 224.076 + 298.280i 0.336451 + 0.447868i
\(667\) 529.550i 0.793929i
\(668\) −271.330 + 469.957i −0.406182 + 0.703529i
\(669\) −209.778 185.874i −0.313569 0.277838i
\(670\) 322.454 331.400i 0.481275 0.494627i
\(671\) 8.22230 4.74715i 0.0122538 0.00707473i
\(672\) 265.445 1299.76i 0.395007 1.93417i
\(673\) −235.054 135.708i −0.349262 0.201647i 0.315098 0.949059i \(-0.397963\pi\)
−0.664360 + 0.747412i \(0.731296\pi\)
\(674\) 801.438i 1.18908i
\(675\) −368.224 + 565.717i −0.545517 + 0.838100i
\(676\) −744.199 −1.10089
\(677\) 447.970 775.906i 0.661698 1.14609i −0.318471 0.947933i \(-0.603169\pi\)
0.980169 0.198162i \(-0.0634972\pi\)
\(678\) −357.524 73.0158i −0.527322 0.107693i
\(679\) −111.838 193.709i −0.164710 0.285286i
\(680\) −2.17652 2.11777i −0.00320077 0.00311437i
\(681\) −393.907 + 444.564i −0.578424 + 0.652811i
\(682\) −13.3489 7.70700i −0.0195732 0.0113006i
\(683\) −255.548 −0.374155 −0.187078 0.982345i \(-0.559902\pi\)
−0.187078 + 0.982345i \(0.559902\pi\)
\(684\) −2.34259 19.3161i −0.00342484 0.0282400i
\(685\) 26.7706 7.56719i 0.0390812 0.0110470i
\(686\) −79.9938 46.1844i −0.116609 0.0673242i
\(687\) −172.141 515.749i −0.250569 0.750726i
\(688\) −785.182 + 453.325i −1.14125 + 0.658902i
\(689\) 724.085 418.051i 1.05092 0.606750i
\(690\) 522.192 + 767.193i 0.756800 + 1.11187i
\(691\) −61.2973 + 106.170i −0.0887081 + 0.153647i −0.906965 0.421205i \(-0.861607\pi\)
0.818257 + 0.574852i \(0.194940\pi\)
\(692\) 273.184 0.394775
\(693\) −4.51578 37.2354i −0.00651628 0.0537308i
\(694\) −1250.23 −1.80148
\(695\) −208.646 + 823.583i −0.300209 + 1.18501i
\(696\) −11.6091 10.2862i −0.0166797 0.0147790i
\(697\) 94.6296 54.6344i 0.135767 0.0783852i
\(698\) 138.185 + 239.344i 0.197973 + 0.342900i
\(699\) 524.744 + 107.166i 0.750707 + 0.153314i
\(700\) −990.753 + 27.1156i −1.41536 + 0.0387366i
\(701\) 595.027i 0.848826i −0.905469 0.424413i \(-0.860480\pi\)
0.905469 0.424413i \(-0.139520\pi\)
\(702\) −817.539 + 1183.86i −1.16459 + 1.68642i
\(703\) 7.73968i 0.0110095i
\(704\) −24.6214 14.2152i −0.0349736 0.0201920i
\(705\) −741.514 + 54.9907i −1.05179 + 0.0780010i
\(706\) 139.517 + 241.651i 0.197617 + 0.342282i
\(707\) 279.365 + 483.874i 0.395141 + 0.684404i
\(708\) 577.194 + 511.423i 0.815246 + 0.722350i
\(709\) −280.492 + 485.826i −0.395616 + 0.685227i −0.993180 0.116594i \(-0.962802\pi\)
0.597564 + 0.801822i \(0.296136\pi\)
\(710\) 347.399 + 1229.00i 0.489295 + 1.73099i
\(711\) −361.572 + 271.623i −0.508541 + 0.382030i
\(712\) 6.15588i 0.00864589i
\(713\) 137.857 238.775i 0.193347 0.334887i
\(714\) −224.786 + 75.0268i −0.314827 + 0.105080i
\(715\) 28.7849 + 28.0079i 0.0402586 + 0.0391719i
\(716\) −133.961 + 77.3424i −0.187096 + 0.108020i
\(717\) 43.4254 14.4941i 0.0605654 0.0202149i
\(718\) −1230.63 710.502i −1.71396 0.989557i
\(719\) 1218.37i 1.69453i 0.531168 + 0.847266i \(0.321753\pi\)
−0.531168 + 0.847266i \(0.678247\pi\)
\(720\) 700.556 + 89.7592i 0.972995 + 0.124666i
\(721\) −838.570 −1.16307
\(722\) 512.513 887.698i 0.709851 1.22950i
\(723\) 634.990 716.652i 0.878271 0.991220i
\(724\) −566.423 981.074i −0.782353 1.35507i
\(725\) 289.502 534.702i 0.399313 0.737520i
\(726\) 1009.11 + 206.088i 1.38997 + 0.283867i
\(727\) 687.921 + 397.172i 0.946247 + 0.546316i 0.891913 0.452207i \(-0.149363\pi\)
0.0543338 + 0.998523i \(0.482696\pi\)
\(728\) −38.7825 −0.0532727
\(729\) 258.214 + 681.738i 0.354203 + 0.935169i
\(730\) −557.788 1973.30i −0.764093 2.70315i
\(731\) 142.936 + 82.5241i 0.195535 + 0.112892i
\(732\) −265.469 54.2158i −0.362663 0.0740652i
\(733\) −681.408 + 393.411i −0.929615 + 0.536714i −0.886690 0.462365i \(-0.847001\pi\)
−0.0429255 + 0.999078i \(0.513668\pi\)
\(734\) 841.186 485.659i 1.14603 0.661661i
\(735\) −297.639 + 616.829i −0.404951 + 0.839223i
\(736\) 494.785 856.992i 0.672262 1.16439i
\(737\) −13.9404 −0.0189150
\(738\) 383.498 899.745i 0.519645 1.21917i
\(739\) 1398.66 1.89264 0.946320 0.323231i \(-0.104769\pi\)
0.946320 + 0.323231i \(0.104769\pi\)
\(740\) −288.105 72.9882i −0.389331 0.0986327i
\(741\) 28.3121 9.44972i 0.0382080 0.0127527i
\(742\) 1067.56 616.355i 1.43876 0.830667i
\(743\) 274.315 + 475.127i 0.369199 + 0.639471i 0.989440 0.144940i \(-0.0462988\pi\)
−0.620242 + 0.784411i \(0.712965\pi\)
\(744\) 2.55675 + 7.66022i 0.00343649 + 0.0102960i
\(745\) −391.310 99.1340i −0.525248 0.133066i
\(746\) 1736.35i 2.32755i
\(747\) 550.556 413.593i 0.737023 0.553672i
\(748\) 4.98710i 0.00666725i
\(749\) −818.078 472.318i −1.09223 0.630598i
\(750\) −107.853 1060.14i −0.143804 1.41351i
\(751\) 133.681 + 231.542i 0.178003 + 0.308311i 0.941197 0.337859i \(-0.109703\pi\)
−0.763193 + 0.646170i \(0.776370\pi\)
\(752\) 389.005 + 673.777i 0.517294 + 0.895980i
\(753\) −57.2317 + 280.237i −0.0760049 + 0.372160i
\(754\) 648.003 1122.37i 0.859420 1.48856i
\(755\) −424.730 + 120.057i −0.562556 + 0.159016i
\(756\) −608.254 + 880.803i −0.804569 + 1.16508i
\(757\) 471.386i 0.622703i 0.950295 + 0.311351i \(0.100782\pi\)
−0.950295 + 0.311351i \(0.899218\pi\)
\(758\) −266.311 + 461.265i −0.351334 + 0.608529i
\(759\) 5.59855 27.4135i 0.00737621 0.0361179i
\(760\) 0.404173 + 0.393263i 0.000531806 + 0.000517451i
\(761\) 917.999 530.007i 1.20631 0.696461i 0.244356 0.969686i \(-0.421424\pi\)
0.961950 + 0.273225i \(0.0880902\pi\)
\(762\) 502.292 + 445.056i 0.659175 + 0.584063i
\(763\) −1386.00 800.210i −1.81652 1.04877i
\(764\) 237.585i 0.310975i
\(765\) −49.6145 118.615i −0.0648555 0.155052i
\(766\) −420.042 −0.548357
\(767\) −591.478 + 1024.47i −0.771158 + 1.33569i
\(768\) −233.801 700.486i −0.304428 0.912091i
\(769\) −216.513 375.012i −0.281551 0.487661i 0.690216 0.723604i \(-0.257516\pi\)
−0.971767 + 0.235942i \(0.924182\pi\)
\(770\) 42.4391 + 41.2935i 0.0551158 + 0.0536280i
\(771\) −7.53452 22.5740i −0.00977240 0.0292789i
\(772\) 446.642 + 257.869i 0.578552 + 0.334027i
\(773\) −1088.28 −1.40787 −0.703936 0.710264i \(-0.748576\pi\)
−0.703936 + 0.710264i \(0.748576\pi\)
\(774\) 1466.60 177.864i 1.89483 0.229798i
\(775\) −269.734 + 165.732i −0.348044 + 0.213848i
\(776\) 4.23232 + 2.44353i 0.00545402 + 0.00314888i
\(777\) −282.366 + 318.680i −0.363406 + 0.410141i
\(778\) 1130.65 652.782i 1.45328 0.839052i
\(779\) −17.5724 + 10.1454i −0.0225576 + 0.0130237i
\(780\) −84.7662 1143.02i −0.108675 1.46541i
\(781\) 19.2523 33.3460i 0.0246509 0.0426965i
\(782\) −176.773 −0.226052
\(783\) −281.390 593.345i −0.359374 0.757785i
\(784\) 716.626 0.914063
\(785\) 304.125 + 77.0466i 0.387420 + 0.0981485i
\(786\) −311.789 + 1526.69i −0.396678 + 1.94235i
\(787\) 279.669 161.467i 0.355361 0.205168i −0.311683 0.950186i \(-0.600893\pi\)
0.667044 + 0.745018i \(0.267559\pi\)
\(788\) 683.665 + 1184.14i 0.867595 + 1.50272i
\(789\) 816.461 921.461i 1.03480 1.16788i
\(790\) 175.327 692.065i 0.221933 0.876032i
\(791\) 416.459i 0.526497i
\(792\) 0.492222 + 0.655225i 0.000621493 + 0.000827304i
\(793\) 415.628i 0.524121i
\(794\) 1769.17 + 1021.43i 2.22817 + 1.28643i
\(795\) 376.327 + 552.891i 0.473368 + 0.695461i
\(796\) 259.078 + 448.736i 0.325474 + 0.563738i
\(797\) −722.713 1251.78i −0.906792 1.57061i −0.818494 0.574516i \(-0.805190\pi\)
−0.0882984 0.996094i \(-0.528143\pi\)
\(798\) 41.7421 13.9322i 0.0523084 0.0174589i
\(799\) 70.8152 122.656i 0.0886298 0.153511i
\(800\) −968.111 + 594.834i −1.21014 + 0.743542i
\(801\) −102.192 + 239.759i −0.127581 + 0.299324i
\(802\) 215.234i 0.268372i
\(803\) −30.9117 + 53.5406i −0.0384953 + 0.0666758i
\(804\) 297.762 + 263.832i 0.370351 + 0.328150i
\(805\) −738.626 + 759.118i −0.917548 + 0.943003i
\(806\) −584.370 + 337.386i −0.725024 + 0.418593i
\(807\) −120.706 + 591.043i −0.149574 + 0.732396i
\(808\) −10.5721 6.10380i −0.0130843 0.00755421i
\(809\) 981.839i 1.21365i 0.794837 + 0.606823i \(0.207556\pi\)
−0.794837 + 0.606823i \(0.792444\pi\)
\(810\) −992.767 582.137i −1.22564 0.718687i
\(811\) −600.049 −0.739888 −0.369944 0.929054i \(-0.620623\pi\)
−0.369944 + 0.929054i \(0.620623\pi\)
\(812\) 482.118 835.052i 0.593741 1.02839i
\(813\) 355.864 + 72.6766i 0.437717 + 0.0893932i
\(814\) 8.87812 + 15.3774i 0.0109068 + 0.0188911i
\(815\) −841.852 + 865.207i −1.03295 + 1.06160i
\(816\) −89.2183 + 100.692i −0.109336 + 0.123397i
\(817\) −26.5427 15.3244i −0.0324880 0.0187570i
\(818\) 1449.42 1.77191
\(819\) −1510.50 643.819i −1.84432 0.786104i
\(820\) 211.943 + 749.798i 0.258467 + 0.914388i
\(821\) −896.354 517.510i −1.09178 0.630342i −0.157733 0.987482i \(-0.550418\pi\)
−0.934051 + 0.357140i \(0.883752\pi\)
\(822\) 15.0169 + 44.9917i 0.0182687 + 0.0547344i
\(823\) 1219.38 704.012i 1.48163 0.855421i 0.481850 0.876254i \(-0.339965\pi\)
0.999783 + 0.0208322i \(0.00663158\pi\)
\(824\) 15.8672 9.16091i 0.0192563 0.0111176i
\(825\) −20.6398 + 24.6195i −0.0250179 + 0.0298418i
\(826\) −872.048 + 1510.43i −1.05575 + 1.82861i
\(827\) 1535.05 1.85617 0.928086 0.372367i \(-0.121454\pi\)
0.928086 + 0.372367i \(0.121454\pi\)
\(828\) −638.404 + 479.587i −0.771020 + 0.579211i
\(829\) −185.325 −0.223552 −0.111776 0.993733i \(-0.535654\pi\)
−0.111776 + 0.993733i \(0.535654\pi\)
\(830\) −266.965 + 1053.79i −0.321645 + 1.26962i
\(831\) 752.223 + 666.507i 0.905202 + 0.802055i
\(832\) −1077.84 + 622.292i −1.29548 + 0.747947i
\(833\) −65.2280 112.978i −0.0783049 0.135628i
\(834\) −1419.25 289.848i −1.70174 0.347540i
\(835\) 163.525 645.480i 0.195838 0.773030i
\(836\) 0.926087i 0.00110776i
\(837\) −27.5855 + 340.793i −0.0329575 + 0.407161i
\(838\) 1981.10i 2.36408i
\(839\) −1120.53 646.937i −1.33555 0.771081i −0.349408 0.936971i \(-0.613617\pi\)
−0.986144 + 0.165889i \(0.946951\pi\)
\(840\) −2.29436 30.9379i −0.00273138 0.0368309i
\(841\) −124.726 216.032i −0.148307 0.256875i
\(842\) −1075.30 1862.47i −1.27708 2.21196i
\(843\) 311.817 + 276.285i 0.369889 + 0.327741i
\(844\) −199.087 + 344.829i −0.235885 + 0.408565i
\(845\) 878.739 248.391i 1.03993 0.293954i
\(846\) −152.628 1258.51i −0.180411 1.48760i
\(847\) 1175.46i 1.38779i
\(848\) 349.905 606.053i 0.412623 0.714685i
\(849\) 275.474 91.9449i 0.324469 0.108298i
\(850\) 178.493 + 96.6406i 0.209991 + 0.113695i
\(851\) −275.058 + 158.805i −0.323217 + 0.186610i
\(852\) −1042.32 + 347.895i −1.22338 + 0.408328i
\(853\) −335.726 193.832i −0.393583 0.227235i 0.290128 0.956988i \(-0.406302\pi\)
−0.683711 + 0.729752i \(0.739635\pi\)
\(854\) 612.782i 0.717543i
\(855\) 9.21324 + 22.0263i 0.0107757 + 0.0257618i
\(856\) 20.6392 0.0241112
\(857\) −39.5696 + 68.5365i −0.0461722 + 0.0799726i −0.888188 0.459480i \(-0.848036\pi\)
0.842016 + 0.539453i \(0.181369\pi\)
\(858\) −45.4115 + 51.2515i −0.0529271 + 0.0597337i
\(859\) 329.529 + 570.761i 0.383620 + 0.664448i 0.991577 0.129521i \(-0.0413441\pi\)
−0.607957 + 0.793970i \(0.708011\pi\)
\(860\) −820.752 + 843.522i −0.954363 + 0.980840i
\(861\) 1093.67 + 223.357i 1.27024 + 0.259416i
\(862\) 1225.23 + 707.386i 1.42138 + 0.820633i
\(863\) −1070.61 −1.24057 −0.620286 0.784375i \(-0.712984\pi\)
−0.620286 + 0.784375i \(0.712984\pi\)
\(864\) −99.0077 + 1223.15i −0.114592 + 1.41568i
\(865\) −322.572 + 91.1805i −0.372916 + 0.105411i
\(866\) 1037.63 + 599.077i 1.19819 + 0.691775i
\(867\) −825.471 168.583i −0.952100 0.194444i
\(868\) −434.775 + 251.017i −0.500892 + 0.289190i
\(869\) −18.6403 + 10.7620i −0.0214503 + 0.0123843i
\(870\) 933.684 + 450.531i 1.07320 + 0.517851i
\(871\) −305.131 + 528.502i −0.350322 + 0.606776i
\(872\) 34.9674 0.0401002
\(873\) 124.276 + 165.430i 0.142355 + 0.189496i
\(874\) 32.8261 0.0375585
\(875\) 1160.82 362.701i 1.32665 0.414515i
\(876\) 1673.56 558.584i 1.91046 0.637653i
\(877\) 928.802 536.244i 1.05907 0.611452i 0.133893 0.990996i \(-0.457252\pi\)
0.925174 + 0.379543i \(0.123919\pi\)
\(878\) −650.002 1125.84i −0.740321 1.28227i
\(879\) −365.748 1095.81i −0.416095 1.24666i
\(880\) 32.5861 + 8.25531i 0.0370296 + 0.00938104i
\(881\) 1433.62i 1.62726i −0.581381 0.813632i \(-0.697487\pi\)
0.581381 0.813632i \(-0.302513\pi\)
\(882\) −1074.20 457.857i −1.21792 0.519112i
\(883\) 731.816i 0.828784i −0.910099 0.414392i \(-0.863994\pi\)
0.910099 0.414392i \(-0.136006\pi\)
\(884\) 189.069 + 109.159i 0.213879 + 0.123483i
\(885\) −852.240 411.232i −0.962983 0.464668i
\(886\) −330.013 571.600i −0.372475 0.645146i
\(887\) 642.482 + 1112.81i 0.724331 + 1.25458i 0.959249 + 0.282563i \(0.0911846\pi\)
−0.234918 + 0.972015i \(0.575482\pi\)
\(888\) 1.86145 9.11464i 0.00209623 0.0102642i
\(889\) −382.956 + 663.299i −0.430772 + 0.746119i
\(890\) −111.918 395.935i −0.125750 0.444871i
\(891\) 8.29381 + 33.6909i 0.00930843 + 0.0378124i
\(892\) 380.693i 0.426786i
\(893\) −13.1501 + 22.7767i −0.0147258 + 0.0255058i
\(894\) 137.716 674.331i 0.154045 0.754285i
\(895\) 132.365 136.037i 0.147894 0.151997i
\(896\) −57.3054 + 33.0853i −0.0639569 + 0.0369255i
\(897\) −916.747 812.284i −1.02201 0.905556i
\(898\) 1669.35 + 963.800i 1.85896 + 1.07327i
\(899\) 307.993i 0.342595i
\(900\) 906.802 135.241i 1.00756 0.150267i
\(901\) −127.395 −0.141392
\(902\) 23.2755 40.3143i 0.0258043 0.0446944i
\(903\) 533.810 + 1599.34i 0.591151 + 1.77114i
\(904\) 4.54958 + 7.88010i 0.00503272 + 0.00871693i
\(905\) 996.277 + 969.383i 1.10086 + 1.07114i
\(906\) −238.250 713.816i −0.262969 0.787877i
\(907\) −877.157 506.427i −0.967097 0.558353i −0.0687467 0.997634i \(-0.521900\pi\)
−0.898350 + 0.439281i \(0.855233\pi\)
\(908\) 806.770 0.888514
\(909\) −310.433 413.235i −0.341511 0.454604i
\(910\) 2494.43 705.092i 2.74113 0.774827i
\(911\) 551.233 + 318.255i 0.605086 + 0.349347i 0.771040 0.636787i \(-0.219737\pi\)
−0.165954 + 0.986134i \(0.553070\pi\)
\(912\) 16.5675 18.6982i 0.0181662 0.0205024i
\(913\) 28.3831 16.3870i 0.0310877 0.0179485i
\(914\) −1810.13 + 1045.08i −1.98045 + 1.14342i
\(915\) 331.558 24.5883i 0.362358 0.0268725i
\(916\) −369.258 + 639.573i −0.403120 + 0.698224i
\(917\) −1778.35 −1.93931
\(918\) 198.069 93.9326i 0.215761 0.102323i
\(919\) 1142.09 1.24275 0.621377 0.783511i \(-0.286573\pi\)
0.621377 + 0.783511i \(0.286573\pi\)
\(920\) 5.68311 22.4328i 0.00617729 0.0243835i
\(921\) −124.446 + 609.356i −0.135121 + 0.661625i
\(922\) −979.654 + 565.603i −1.06253 + 0.613453i
\(923\) −842.801 1459.77i −0.913110 1.58155i
\(924\) −33.7864 + 38.1314i −0.0365654 + 0.0412678i
\(925\) 364.552 9.97730i 0.394110 0.0107863i
\(926\) 456.338i 0.492806i
\(927\) 770.071 93.3915i 0.830713 0.100746i
\(928\) 1105.42i 1.19119i
\(929\) −681.162 393.269i −0.733221 0.423325i 0.0863784 0.996262i \(-0.472471\pi\)
−0.819599 + 0.572937i \(0.805804\pi\)
\(930\) −303.713 446.208i −0.326573 0.479794i
\(931\) 12.1126 + 20.9796i 0.0130103 + 0.0225345i
\(932\) −363.728 629.995i −0.390266 0.675960i
\(933\) 461.464 154.023i 0.494602 0.165083i
\(934\) 577.787 1000.76i 0.618615 1.07147i
\(935\) −1.66454 5.88870i −0.00178026 0.00629807i
\(936\) 35.6145 4.31921i 0.0380497 0.00461454i
\(937\) 811.089i 0.865623i −0.901484 0.432812i \(-0.857522\pi\)
0.901484 0.432812i \(-0.142478\pi\)
\(938\) −449.871 + 779.199i −0.479606 + 0.830702i
\(939\) 509.286 + 451.253i 0.542370 + 0.480567i
\(940\) 723.839 + 704.300i 0.770042 + 0.749255i
\(941\) −715.505 + 413.097i −0.760367 + 0.438998i −0.829428 0.558614i \(-0.811333\pi\)
0.0690604 + 0.997612i \(0.478000\pi\)
\(942\) −107.032 + 524.087i −0.113622 + 0.556356i
\(943\) 721.111 + 416.333i 0.764698 + 0.441499i
\(944\) 990.124i 1.04886i
\(945\) 424.232 1243.06i 0.448923 1.31540i
\(946\) 70.3142 0.0743279
\(947\) 458.725 794.535i 0.484398 0.839002i −0.515441 0.856925i \(-0.672372\pi\)
0.999839 + 0.0179227i \(0.00570527\pi\)
\(948\) 601.830 + 122.909i 0.634842 + 0.129651i
\(949\) 1353.21 + 2343.83i 1.42593 + 2.46979i
\(950\) −33.1455 17.9458i −0.0348900 0.0188904i
\(951\) 972.435 1097.49i 1.02254 1.15404i
\(952\) 5.11751 + 2.95460i 0.00537554 + 0.00310357i
\(953\) 192.772 0.202279 0.101140 0.994872i \(-0.467751\pi\)
0.101140 + 0.994872i \(0.467751\pi\)
\(954\) −911.709 + 684.901i −0.955670 + 0.717925i
\(955\) 79.2986 + 280.537i 0.0830352 + 0.293756i
\(956\) −53.8513 31.0910i −0.0563298 0.0325220i
\(957\) −9.89534 29.6472i −0.0103400 0.0309794i
\(958\) −2078.50 + 1200.03i −2.16963 + 1.25264i
\(959\) −46.8805 + 27.0665i −0.0488848 + 0.0282236i
\(960\) −560.184 823.009i −0.583525 0.857301i
\(961\) 400.321 693.376i 0.416567 0.721515i
\(962\) 777.308 0.808012
\(963\) 803.854 + 342.626i 0.834740 + 0.355791i
\(964\) −1300.54 −1.34911
\(965\) −613.457 155.412i −0.635707 0.161049i
\(966\) −1351.61 1197.59i −1.39918 1.23974i
\(967\) −742.787 + 428.848i −0.768136 + 0.443483i −0.832209 0.554462i \(-0.812924\pi\)
0.0640734 + 0.997945i \(0.479591\pi\)
\(968\) −12.8412 22.2416i −0.0132657 0.0229769i
\(969\) −4.45581 0.909994i −0.00459836 0.000939106i
\(970\) −316.641 80.2173i −0.326434 0.0826983i
\(971\) 546.278i 0.562594i 0.959621 + 0.281297i \(0.0907645\pi\)
−0.959621 + 0.281297i \(0.909235\pi\)
\(972\) 460.473 876.594i 0.473738 0.901846i
\(973\) 1653.20i 1.69908i
\(974\) 554.980 + 320.418i 0.569795 + 0.328971i
\(975\) 481.595 + 1321.37i 0.493943 + 1.35525i
\(976\) −173.938 301.270i −0.178215 0.308678i
\(977\) −397.664 688.774i −0.407025 0.704988i 0.587530 0.809203i \(-0.300101\pi\)
−0.994555 + 0.104214i \(0.966767\pi\)
\(978\) −1540.50 1364.96i −1.57515 1.39567i
\(979\) −6.20231 + 10.7427i −0.00633535 + 0.0109732i
\(980\) 895.182 253.039i 0.913451 0.258203i
\(981\) 1361.91 + 580.485i 1.38828 + 0.591728i
\(982\) 2174.27i 2.21412i
\(983\) −539.710 + 934.805i −0.549044 + 0.950972i 0.449297 + 0.893383i \(0.351675\pi\)
−0.998340 + 0.0575890i \(0.981659\pi\)
\(984\) −23.1342 + 7.72149i −0.0235104 + 0.00784704i
\(985\) −1202.49 1170.03i −1.22080 1.18785i
\(986\) −171.013 + 98.7344i −0.173441 + 0.100136i
\(987\) 1372.42 458.070i 1.39049 0.464104i
\(988\) −35.1095 20.2705i −0.0355359 0.0205167i
\(989\) 1257.72i 1.27171i
\(990\) −43.5713 33.1940i −0.0440114 0.0335293i
\(991\) 168.017 0.169543 0.0847716 0.996400i \(-0.472984\pi\)
0.0847716 + 0.996400i \(0.472984\pi\)
\(992\) −287.773 + 498.437i −0.290093 + 0.502457i
\(993\) −472.804 + 533.608i −0.476137 + 0.537370i
\(994\) −1242.59 2152.22i −1.25009 2.16521i
\(995\) −455.689 443.388i −0.457979 0.445616i
\(996\) −916.390 187.151i −0.920070 0.187902i
\(997\) −757.109 437.117i −0.759387 0.438432i 0.0696887 0.997569i \(-0.477799\pi\)
−0.829076 + 0.559137i \(0.811133\pi\)
\(998\) −579.829 −0.580991
\(999\) 223.809 324.095i 0.224033 0.324419i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.3.h.a.29.2 yes 20
3.2 odd 2 135.3.h.a.89.9 20
5.2 odd 4 225.3.j.e.101.2 20
5.3 odd 4 225.3.j.e.101.9 20
5.4 even 2 inner 45.3.h.a.29.9 yes 20
9.2 odd 6 405.3.d.a.404.3 20
9.4 even 3 135.3.h.a.44.2 20
9.5 odd 6 inner 45.3.h.a.14.9 yes 20
9.7 even 3 405.3.d.a.404.18 20
15.2 even 4 675.3.j.e.251.9 20
15.8 even 4 675.3.j.e.251.2 20
15.14 odd 2 135.3.h.a.89.2 20
45.4 even 6 135.3.h.a.44.9 20
45.13 odd 12 675.3.j.e.476.2 20
45.14 odd 6 inner 45.3.h.a.14.2 20
45.22 odd 12 675.3.j.e.476.9 20
45.23 even 12 225.3.j.e.176.9 20
45.29 odd 6 405.3.d.a.404.17 20
45.32 even 12 225.3.j.e.176.2 20
45.34 even 6 405.3.d.a.404.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.2 20 45.14 odd 6 inner
45.3.h.a.14.9 yes 20 9.5 odd 6 inner
45.3.h.a.29.2 yes 20 1.1 even 1 trivial
45.3.h.a.29.9 yes 20 5.4 even 2 inner
135.3.h.a.44.2 20 9.4 even 3
135.3.h.a.44.9 20 45.4 even 6
135.3.h.a.89.2 20 15.14 odd 2
135.3.h.a.89.9 20 3.2 odd 2
225.3.j.e.101.2 20 5.2 odd 4
225.3.j.e.101.9 20 5.3 odd 4
225.3.j.e.176.2 20 45.32 even 12
225.3.j.e.176.9 20 45.23 even 12
405.3.d.a.404.3 20 9.2 odd 6
405.3.d.a.404.4 20 45.34 even 6
405.3.d.a.404.17 20 45.29 odd 6
405.3.d.a.404.18 20 9.7 even 3
675.3.j.e.251.2 20 15.8 even 4
675.3.j.e.251.9 20 15.2 even 4
675.3.j.e.476.2 20 45.13 odd 12
675.3.j.e.476.9 20 45.22 odd 12