Properties

Label 225.3.j.e.101.2
Level $225$
Weight $3$
Character 225.101
Analytic conductor $6.131$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,3,Mod(101,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.101"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.j (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 3 x^{18} - 19 x^{16} - 66 x^{14} + 109 x^{12} + 813 x^{10} + 981 x^{8} - 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{10} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.2
Root \(1.69702 - 0.346576i\) of defining polynomial
Character \(\chi\) \(=\) 225.101
Dual form 225.3.j.e.176.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.46092 - 1.42081i) q^{2} +(0.600288 - 2.93933i) q^{3} +(2.03740 + 3.52889i) q^{4} +(-5.65349 + 6.38055i) q^{6} +(4.86464 - 8.42581i) q^{7} -0.212574i q^{8} +(-8.27931 - 3.52889i) q^{9} +(0.370966 + 0.214177i) q^{11} +(11.5956 - 3.87025i) q^{12} +(-9.37595 - 16.2396i) q^{13} +(-23.9429 + 13.8235i) q^{14} +(7.84759 - 13.5924i) q^{16} -2.85718i q^{17} +(15.3608 + 20.4476i) q^{18} -0.530568 q^{19} +(-21.8460 - 19.3567i) q^{21} +(-0.608611 - 1.05414i) q^{22} +(-18.8557 + 10.8863i) q^{23} +(-0.624825 - 0.127606i) q^{24} +53.2858i q^{26} +(-15.3425 + 22.2173i) q^{27} +39.6450 q^{28} +(21.0633 + 12.1609i) q^{29} +(6.33163 + 10.9667i) q^{31} +(-39.3609 + 22.7250i) q^{32} +(0.852224 - 0.961823i) q^{33} +(-4.05951 + 7.03128i) q^{34} +(-4.41525 - 36.4065i) q^{36} +14.5875 q^{37} +(1.30568 + 0.753837i) q^{38} +(-53.3619 + 17.8106i) q^{39} +(-33.1200 + 19.1218i) q^{41} +(26.2591 + 78.6743i) q^{42} +(-28.8831 + 50.0269i) q^{43} +1.74546i q^{44} +61.8697 q^{46} +(-42.9289 - 24.7850i) q^{47} +(-35.2418 - 31.2260i) q^{48} +(-22.8295 - 39.5418i) q^{49} +(-8.39819 - 1.71513i) q^{51} +(38.2052 - 66.1734i) q^{52} -44.5876i q^{53} +(69.3232 - 32.8760i) q^{54} +(-1.79111 - 1.03410i) q^{56} +(-0.318494 + 1.55951i) q^{57} +(-34.5566 - 59.8538i) q^{58} +(54.6329 - 31.5423i) q^{59} +(11.0823 - 19.1951i) q^{61} -35.9842i q^{62} +(-70.0096 + 52.5931i) q^{63} +66.3710 q^{64} +(-3.46382 + 1.15612i) q^{66} +(-16.2720 - 28.1839i) q^{67} +(10.0827 - 5.82123i) q^{68} +(20.6797 + 61.9581i) q^{69} -89.8896i q^{71} +(-0.750149 + 1.75996i) q^{72} +144.328 q^{73} +(-35.8987 - 20.7261i) q^{74} +(-1.08098 - 1.87232i) q^{76} +(3.60923 - 2.08379i) q^{77} +(156.625 + 31.9868i) q^{78} +(25.1240 - 43.5160i) q^{79} +(56.0939 + 58.4335i) q^{81} +108.674 q^{82} +(-66.2606 - 38.2556i) q^{83} +(23.7984 - 116.530i) q^{84} +(142.158 - 82.0747i) q^{86} +(48.3889 - 54.6118i) q^{87} +(0.0455285 - 0.0788577i) q^{88} -28.9588i q^{89} -182.443 q^{91} +(-76.8334 - 44.3598i) q^{92} +(36.0355 - 12.0276i) q^{93} +(70.4296 + 121.988i) q^{94} +(43.1684 + 129.336i) q^{96} +(-11.4950 + 19.9099i) q^{97} +129.746i q^{98} +(-2.31554 - 3.08234i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 18 q^{4} + 12 q^{6} + 18 q^{9} - 24 q^{11} - 30 q^{14} - 26 q^{16} + 8 q^{19} - 96 q^{21} + 102 q^{24} + 114 q^{29} + 28 q^{31} + 4 q^{34} + 432 q^{36} - 240 q^{39} + 102 q^{41} + 116 q^{46} + 40 q^{49}+ \cdots + 468 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.46092 1.42081i −1.23046 0.710405i −0.263332 0.964705i \(-0.584822\pi\)
−0.967125 + 0.254300i \(0.918155\pi\)
\(3\) 0.600288 2.93933i 0.200096 0.979776i
\(4\) 2.03740 + 3.52889i 0.509351 + 0.882222i
\(5\) 0 0
\(6\) −5.65349 + 6.38055i −0.942248 + 1.06342i
\(7\) 4.86464 8.42581i 0.694949 1.20369i −0.275249 0.961373i \(-0.588760\pi\)
0.970198 0.242314i \(-0.0779064\pi\)
\(8\) 0.212574i 0.0265717i
\(9\) −8.27931 3.52889i −0.919923 0.392099i
\(10\) 0 0
\(11\) 0.370966 + 0.214177i 0.0337242 + 0.0194707i 0.516767 0.856126i \(-0.327135\pi\)
−0.483043 + 0.875597i \(0.660469\pi\)
\(12\) 11.5956 3.87025i 0.966299 0.322521i
\(13\) −9.37595 16.2396i −0.721227 1.24920i −0.960508 0.278252i \(-0.910245\pi\)
0.239281 0.970950i \(-0.423088\pi\)
\(14\) −23.9429 + 13.8235i −1.71021 + 0.987391i
\(15\) 0 0
\(16\) 7.84759 13.5924i 0.490474 0.849526i
\(17\) 2.85718i 0.168069i −0.996463 0.0840347i \(-0.973219\pi\)
0.996463 0.0840347i \(-0.0267807\pi\)
\(18\) 15.3608 + 20.4476i 0.853378 + 1.13598i
\(19\) −0.530568 −0.0279246 −0.0139623 0.999903i \(-0.504444\pi\)
−0.0139623 + 0.999903i \(0.504444\pi\)
\(20\) 0 0
\(21\) −21.8460 19.3567i −1.04029 0.921747i
\(22\) −0.608611 1.05414i −0.0276641 0.0479157i
\(23\) −18.8557 + 10.8863i −0.819813 + 0.473319i −0.850352 0.526214i \(-0.823611\pi\)
0.0305388 + 0.999534i \(0.490278\pi\)
\(24\) −0.624825 0.127606i −0.0260344 0.00531690i
\(25\) 0 0
\(26\) 53.2858i 2.04945i
\(27\) −15.3425 + 22.2173i −0.568242 + 0.822862i
\(28\) 39.6450 1.41589
\(29\) 21.0633 + 12.1609i 0.726320 + 0.419341i 0.817074 0.576532i \(-0.195595\pi\)
−0.0907547 + 0.995873i \(0.528928\pi\)
\(30\) 0 0
\(31\) 6.33163 + 10.9667i 0.204246 + 0.353765i 0.949892 0.312577i \(-0.101192\pi\)
−0.745646 + 0.666342i \(0.767859\pi\)
\(32\) −39.3609 + 22.7250i −1.23003 + 0.710157i
\(33\) 0.852224 0.961823i 0.0258250 0.0291462i
\(34\) −4.05951 + 7.03128i −0.119397 + 0.206802i
\(35\) 0 0
\(36\) −4.41525 36.4065i −0.122646 1.01129i
\(37\) 14.5875 0.394257 0.197129 0.980378i \(-0.436838\pi\)
0.197129 + 0.980378i \(0.436838\pi\)
\(38\) 1.30568 + 0.753837i 0.0343601 + 0.0198378i
\(39\) −53.3619 + 17.8106i −1.36825 + 0.456681i
\(40\) 0 0
\(41\) −33.1200 + 19.1218i −0.807804 + 0.466386i −0.846193 0.532877i \(-0.821111\pi\)
0.0383889 + 0.999263i \(0.487777\pi\)
\(42\) 26.2591 + 78.6743i 0.625216 + 1.87320i
\(43\) −28.8831 + 50.0269i −0.671699 + 1.16342i 0.305723 + 0.952121i \(0.401102\pi\)
−0.977422 + 0.211297i \(0.932231\pi\)
\(44\) 1.74546i 0.0396696i
\(45\) 0 0
\(46\) 61.8697 1.34499
\(47\) −42.9289 24.7850i −0.913381 0.527341i −0.0318635 0.999492i \(-0.510144\pi\)
−0.881517 + 0.472152i \(0.843478\pi\)
\(48\) −35.2418 31.2260i −0.734204 0.650542i
\(49\) −22.8295 39.5418i −0.465908 0.806976i
\(50\) 0 0
\(51\) −8.39819 1.71513i −0.164670 0.0336300i
\(52\) 38.2052 66.1734i 0.734716 1.27256i
\(53\) 44.5876i 0.841275i −0.907229 0.420637i \(-0.861807\pi\)
0.907229 0.420637i \(-0.138193\pi\)
\(54\) 69.3232 32.8760i 1.28376 0.608815i
\(55\) 0 0
\(56\) −1.79111 1.03410i −0.0319840 0.0184660i
\(57\) −0.318494 + 1.55951i −0.00558761 + 0.0273599i
\(58\) −34.5566 59.8538i −0.595804 1.03196i
\(59\) 54.6329 31.5423i 0.925981 0.534615i 0.0404426 0.999182i \(-0.487123\pi\)
0.885538 + 0.464567i \(0.153790\pi\)
\(60\) 0 0
\(61\) 11.0823 19.1951i 0.181677 0.314673i −0.760775 0.649016i \(-0.775181\pi\)
0.942452 + 0.334343i \(0.108514\pi\)
\(62\) 35.9842i 0.580390i
\(63\) −70.0096 + 52.5931i −1.11126 + 0.834811i
\(64\) 66.3710 1.03705
\(65\) 0 0
\(66\) −3.46382 + 1.15612i −0.0524821 + 0.0175169i
\(67\) −16.2720 28.1839i −0.242866 0.420655i 0.718664 0.695358i \(-0.244754\pi\)
−0.961529 + 0.274702i \(0.911421\pi\)
\(68\) 10.0827 5.82123i 0.148274 0.0856063i
\(69\) 20.6797 + 61.9581i 0.299706 + 0.897943i
\(70\) 0 0
\(71\) 89.8896i 1.26605i −0.774131 0.633025i \(-0.781813\pi\)
0.774131 0.633025i \(-0.218187\pi\)
\(72\) −0.750149 + 1.75996i −0.0104187 + 0.0244440i
\(73\) 144.328 1.97709 0.988545 0.150926i \(-0.0482254\pi\)
0.988545 + 0.150926i \(0.0482254\pi\)
\(74\) −35.8987 20.7261i −0.485117 0.280082i
\(75\) 0 0
\(76\) −1.08098 1.87232i −0.0142234 0.0246357i
\(77\) 3.60923 2.08379i 0.0468732 0.0270622i
\(78\) 156.625 + 31.9868i 2.00801 + 0.410087i
\(79\) 25.1240 43.5160i 0.318025 0.550836i −0.662051 0.749459i \(-0.730314\pi\)
0.980076 + 0.198623i \(0.0636470\pi\)
\(80\) 0 0
\(81\) 56.0939 + 58.4335i 0.692518 + 0.721401i
\(82\) 108.674 1.32529
\(83\) −66.2606 38.2556i −0.798321 0.460911i 0.0445628 0.999007i \(-0.485811\pi\)
−0.842884 + 0.538096i \(0.819144\pi\)
\(84\) 23.7984 116.530i 0.283314 1.38726i
\(85\) 0 0
\(86\) 142.158 82.0747i 1.65300 0.954357i
\(87\) 48.3889 54.6118i 0.556194 0.627722i
\(88\) 0.0455285 0.0788577i 0.000517369 0.000896110i
\(89\) 28.9588i 0.325379i −0.986677 0.162690i \(-0.947983\pi\)
0.986677 0.162690i \(-0.0520169\pi\)
\(90\) 0 0
\(91\) −182.443 −2.00486
\(92\) −76.8334 44.3598i −0.835145 0.482171i
\(93\) 36.0355 12.0276i 0.387479 0.129329i
\(94\) 70.4296 + 121.988i 0.749251 + 1.29774i
\(95\) 0 0
\(96\) 43.1684 + 129.336i 0.449671 + 1.34725i
\(97\) −11.4950 + 19.9099i −0.118505 + 0.205257i −0.919175 0.393848i \(-0.871143\pi\)
0.800670 + 0.599105i \(0.204477\pi\)
\(98\) 129.746i 1.32393i
\(99\) −2.31554 3.08234i −0.0233892 0.0311347i
\(100\) 0 0
\(101\) −49.7337 28.7138i −0.492413 0.284295i 0.233162 0.972438i \(-0.425093\pi\)
−0.725575 + 0.688143i \(0.758426\pi\)
\(102\) 18.2304 + 16.1530i 0.178729 + 0.158363i
\(103\) −43.0952 74.6430i −0.418400 0.724689i 0.577379 0.816476i \(-0.304076\pi\)
−0.995779 + 0.0917868i \(0.970742\pi\)
\(104\) −3.45212 + 1.99308i −0.0331935 + 0.0191643i
\(105\) 0 0
\(106\) −63.3504 + 109.726i −0.597646 + 1.03515i
\(107\) 97.0919i 0.907401i 0.891154 + 0.453701i \(0.149896\pi\)
−0.891154 + 0.453701i \(0.850104\pi\)
\(108\) −109.661 8.87650i −1.01538 0.0821898i
\(109\) −164.495 −1.50913 −0.754565 0.656225i \(-0.772152\pi\)
−0.754565 + 0.656225i \(0.772152\pi\)
\(110\) 0 0
\(111\) 8.75671 42.8775i 0.0788893 0.386284i
\(112\) −76.3514 132.245i −0.681709 1.18075i
\(113\) 37.0700 21.4024i 0.328053 0.189401i −0.326924 0.945051i \(-0.606012\pi\)
0.654976 + 0.755649i \(0.272679\pi\)
\(114\) 2.99956 3.38532i 0.0263119 0.0296957i
\(115\) 0 0
\(116\) 99.1065i 0.854366i
\(117\) 20.3186 + 167.540i 0.173663 + 1.43196i
\(118\) −179.262 −1.51917
\(119\) −24.0740 13.8992i −0.202303 0.116800i
\(120\) 0 0
\(121\) −60.4083 104.630i −0.499242 0.864712i
\(122\) −54.5451 + 31.4916i −0.447091 + 0.258128i
\(123\) 36.3238 + 108.829i 0.295315 + 0.884789i
\(124\) −25.8002 + 44.6872i −0.208066 + 0.360381i
\(125\) 0 0
\(126\) 247.013 29.9568i 1.96042 0.237752i
\(127\) 78.7223 0.619861 0.309931 0.950759i \(-0.399694\pi\)
0.309931 + 0.950759i \(0.399694\pi\)
\(128\) −5.88999 3.40059i −0.0460155 0.0265671i
\(129\) 129.707 + 114.927i 1.00548 + 0.890910i
\(130\) 0 0
\(131\) 158.295 91.3914i 1.20836 0.697644i 0.245956 0.969281i \(-0.420898\pi\)
0.962400 + 0.271637i \(0.0875649\pi\)
\(132\) 5.13049 + 1.04778i 0.0388673 + 0.00793773i
\(133\) −2.58103 + 4.47047i −0.0194062 + 0.0336125i
\(134\) 92.4776i 0.690132i
\(135\) 0 0
\(136\) −0.607362 −0.00446589
\(137\) 4.81850 + 2.78196i 0.0351715 + 0.0203063i 0.517483 0.855694i \(-0.326869\pi\)
−0.482311 + 0.876000i \(0.660203\pi\)
\(138\) 37.1396 181.856i 0.269128 1.31779i
\(139\) −84.9601 147.155i −0.611224 1.05867i −0.991034 0.133607i \(-0.957344\pi\)
0.379810 0.925064i \(-0.375989\pi\)
\(140\) 0 0
\(141\) −98.6210 + 111.304i −0.699440 + 0.789390i
\(142\) −127.716 + 221.211i −0.899409 + 1.55782i
\(143\) 8.03247i 0.0561711i
\(144\) −112.939 + 84.8426i −0.784297 + 0.589185i
\(145\) 0 0
\(146\) −355.178 205.062i −2.43273 1.40454i
\(147\) −129.931 + 43.3669i −0.883883 + 0.295013i
\(148\) 29.7207 + 51.4777i 0.200815 + 0.347822i
\(149\) 69.9180 40.3672i 0.469249 0.270921i −0.246677 0.969098i \(-0.579339\pi\)
0.715925 + 0.698177i \(0.246005\pi\)
\(150\) 0 0
\(151\) −44.1372 + 76.4478i −0.292299 + 0.506277i −0.974353 0.225025i \(-0.927754\pi\)
0.682054 + 0.731302i \(0.261087\pi\)
\(152\) 0.112785i 0.000742006i
\(153\) −10.0827 + 23.6555i −0.0658998 + 0.154611i
\(154\) −11.8427 −0.0769006
\(155\) 0 0
\(156\) −171.571 152.021i −1.09982 0.974492i
\(157\) 31.3732 + 54.3401i 0.199830 + 0.346115i 0.948473 0.316858i \(-0.102628\pi\)
−0.748643 + 0.662973i \(0.769294\pi\)
\(158\) −123.656 + 71.3929i −0.782633 + 0.451854i
\(159\) −131.057 26.7654i −0.824261 0.168336i
\(160\) 0 0
\(161\) 211.833i 1.31573i
\(162\) −55.0195 223.499i −0.339627 1.37962i
\(163\) 241.437 1.48121 0.740605 0.671941i \(-0.234539\pi\)
0.740605 + 0.671941i \(0.234539\pi\)
\(164\) −134.957 77.9177i −0.822911 0.475108i
\(165\) 0 0
\(166\) 108.708 + 188.288i 0.654867 + 1.13426i
\(167\) 115.332 66.5872i 0.690613 0.398726i −0.113229 0.993569i \(-0.536119\pi\)
0.803842 + 0.594843i \(0.202786\pi\)
\(168\) −4.11473 + 4.64390i −0.0244924 + 0.0276422i
\(169\) −91.3170 + 158.166i −0.540338 + 0.935892i
\(170\) 0 0
\(171\) 4.39274 + 1.87232i 0.0256885 + 0.0109492i
\(172\) −235.386 −1.36852
\(173\) 58.0603 + 33.5211i 0.335609 + 0.193764i 0.658328 0.752731i \(-0.271264\pi\)
−0.322720 + 0.946495i \(0.604597\pi\)
\(174\) −196.674 + 65.6437i −1.13031 + 0.377263i
\(175\) 0 0
\(176\) 5.82238 3.36155i 0.0330817 0.0190997i
\(177\) −59.9177 179.518i −0.338518 1.01423i
\(178\) −41.1449 + 71.2651i −0.231151 + 0.400366i
\(179\) 37.9613i 0.212074i 0.994362 + 0.106037i \(0.0338162\pi\)
−0.994362 + 0.106037i \(0.966184\pi\)
\(180\) 0 0
\(181\) 278.012 1.53598 0.767990 0.640462i \(-0.221257\pi\)
0.767990 + 0.640462i \(0.221257\pi\)
\(182\) 448.976 + 259.216i 2.46690 + 1.42427i
\(183\) −49.7681 44.0970i −0.271957 0.240967i
\(184\) 2.31415 + 4.00823i 0.0125769 + 0.0217839i
\(185\) 0 0
\(186\) −105.769 21.6009i −0.568652 0.116134i
\(187\) 0.611943 1.05992i 0.00327242 0.00566800i
\(188\) 201.988i 1.07441i
\(189\) 112.563 + 237.352i 0.595569 + 1.25583i
\(190\) 0 0
\(191\) 50.4943 + 29.1529i 0.264368 + 0.152633i 0.626326 0.779562i \(-0.284558\pi\)
−0.361957 + 0.932195i \(0.617891\pi\)
\(192\) 39.8417 195.086i 0.207509 1.01607i
\(193\) 63.2837 + 109.611i 0.327895 + 0.567930i 0.982094 0.188392i \(-0.0603276\pi\)
−0.654199 + 0.756322i \(0.726994\pi\)
\(194\) 56.5764 32.6644i 0.291631 0.168373i
\(195\) 0 0
\(196\) 93.0258 161.125i 0.474621 0.822068i
\(197\) 335.557i 1.70333i −0.524083 0.851667i \(-0.675592\pi\)
0.524083 0.851667i \(-0.324408\pi\)
\(198\) 1.31892 + 10.8753i 0.00666121 + 0.0549258i
\(199\) 127.161 0.638998 0.319499 0.947587i \(-0.396485\pi\)
0.319499 + 0.947587i \(0.396485\pi\)
\(200\) 0 0
\(201\) −92.6097 + 30.9103i −0.460745 + 0.153782i
\(202\) 81.5937 + 141.324i 0.403929 + 0.699626i
\(203\) 204.931 118.317i 1.00951 0.582841i
\(204\) −11.0580 33.1307i −0.0542059 0.162405i
\(205\) 0 0
\(206\) 244.920i 1.18893i
\(207\) 194.529 23.5918i 0.939753 0.113970i
\(208\) −294.314 −1.41497
\(209\) −0.196823 0.113636i −0.000941736 0.000543712i
\(210\) 0 0
\(211\) −48.8580 84.6246i −0.231555 0.401064i 0.726711 0.686943i \(-0.241048\pi\)
−0.958266 + 0.285879i \(0.907715\pi\)
\(212\) 157.344 90.8428i 0.742191 0.428504i
\(213\) −264.215 53.9596i −1.24045 0.253332i
\(214\) 137.949 238.935i 0.644623 1.11652i
\(215\) 0 0
\(216\) 4.72281 + 3.26142i 0.0218649 + 0.0150992i
\(217\) 123.204 0.567762
\(218\) 404.809 + 233.716i 1.85692 + 1.07209i
\(219\) 86.6381 424.226i 0.395608 1.93711i
\(220\) 0 0
\(221\) −46.3995 + 26.7888i −0.209953 + 0.121216i
\(222\) −82.4704 + 93.0763i −0.371488 + 0.419263i
\(223\) −46.7130 + 80.9094i −0.209476 + 0.362822i −0.951549 0.307496i \(-0.900509\pi\)
0.742074 + 0.670318i \(0.233842\pi\)
\(224\) 442.196i 1.97409i
\(225\) 0 0
\(226\) −121.635 −0.538207
\(227\) −171.464 98.9949i −0.755349 0.436101i 0.0722743 0.997385i \(-0.476974\pi\)
−0.827623 + 0.561284i \(0.810308\pi\)
\(228\) −6.15225 + 2.05343i −0.0269836 + 0.00900629i
\(229\) 90.6197 + 156.958i 0.395719 + 0.685406i 0.993193 0.116483i \(-0.0371620\pi\)
−0.597473 + 0.801889i \(0.703829\pi\)
\(230\) 0 0
\(231\) −3.95837 11.8596i −0.0171358 0.0513403i
\(232\) 2.58509 4.47750i 0.0111426 0.0192996i
\(233\) 178.525i 0.766202i −0.923706 0.383101i \(-0.874856\pi\)
0.923706 0.383101i \(-0.125144\pi\)
\(234\) 188.040 441.170i 0.803588 1.88534i
\(235\) 0 0
\(236\) 222.618 + 128.529i 0.943298 + 0.544613i
\(237\) −112.826 99.9698i −0.476060 0.421814i
\(238\) 39.4961 + 68.4093i 0.165950 + 0.287434i
\(239\) −13.2157 + 7.63006i −0.0552956 + 0.0319250i −0.527393 0.849621i \(-0.676830\pi\)
0.472097 + 0.881546i \(0.343497\pi\)
\(240\) 0 0
\(241\) 159.583 276.406i 0.662170 1.14691i −0.317874 0.948133i \(-0.602969\pi\)
0.980044 0.198779i \(-0.0636976\pi\)
\(242\) 343.315i 1.41866i
\(243\) 205.428 129.802i 0.845382 0.534163i
\(244\) 90.3163 0.370149
\(245\) 0 0
\(246\) 65.2356 319.428i 0.265185 1.29849i
\(247\) 4.97458 + 8.61623i 0.0201400 + 0.0348835i
\(248\) 2.33123 1.34594i 0.00940014 0.00542717i
\(249\) −152.221 + 171.797i −0.611330 + 0.689950i
\(250\) 0 0
\(251\) 95.3404i 0.379842i 0.981799 + 0.189921i \(0.0608232\pi\)
−0.981799 + 0.189921i \(0.939177\pi\)
\(252\) −328.233 139.903i −1.30251 0.555169i
\(253\) −9.32644 −0.0368634
\(254\) −193.729 111.850i −0.762713 0.440352i
\(255\) 0 0
\(256\) −123.079 213.179i −0.480777 0.832730i
\(257\) 6.86996 3.96637i 0.0267313 0.0154334i −0.486575 0.873639i \(-0.661754\pi\)
0.513306 + 0.858206i \(0.328421\pi\)
\(258\) −155.909 467.116i −0.604299 1.81053i
\(259\) 70.9631 122.912i 0.273989 0.474562i
\(260\) 0 0
\(261\) −131.475 175.014i −0.503735 0.670550i
\(262\) −519.399 −1.98244
\(263\) −355.399 205.189i −1.35133 0.780188i −0.362890 0.931832i \(-0.618210\pi\)
−0.988435 + 0.151644i \(0.951543\pi\)
\(264\) −0.204459 0.181161i −0.000774464 0.000686214i
\(265\) 0 0
\(266\) 12.7034 7.33429i 0.0477570 0.0275725i
\(267\) −85.1193 17.3836i −0.318799 0.0651071i
\(268\) 66.3052 114.844i 0.247408 0.428522i
\(269\) 201.081i 0.747513i −0.927527 0.373757i \(-0.878070\pi\)
0.927527 0.373757i \(-0.121930\pi\)
\(270\) 0 0
\(271\) 121.070 0.446751 0.223376 0.974732i \(-0.428292\pi\)
0.223376 + 0.974732i \(0.428292\pi\)
\(272\) −38.8360 22.4220i −0.142779 0.0824337i
\(273\) −109.518 + 536.259i −0.401165 + 1.96432i
\(274\) −7.90527 13.6923i −0.0288514 0.0499720i
\(275\) 0 0
\(276\) −176.510 + 199.210i −0.639529 + 0.721775i
\(277\) −167.504 + 290.125i −0.604707 + 1.04738i 0.387391 + 0.921916i \(0.373376\pi\)
−0.992098 + 0.125468i \(0.959957\pi\)
\(278\) 482.849i 1.73687i
\(279\) −13.7213 113.140i −0.0491802 0.405521i
\(280\) 0 0
\(281\) 120.265 + 69.4349i 0.427989 + 0.247099i 0.698489 0.715620i \(-0.253856\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(282\) 400.840 133.788i 1.42142 0.474426i
\(283\) −48.4023 83.8352i −0.171033 0.296237i 0.767748 0.640751i \(-0.221377\pi\)
−0.938781 + 0.344514i \(0.888044\pi\)
\(284\) 317.210 183.141i 1.11694 0.644864i
\(285\) 0 0
\(286\) −11.4126 + 19.7672i −0.0399042 + 0.0691162i
\(287\) 372.083i 1.29646i
\(288\) 406.075 49.2473i 1.40998 0.170998i
\(289\) 280.837 0.971753
\(290\) 0 0
\(291\) 51.6214 + 45.7392i 0.177393 + 0.157179i
\(292\) 294.054 + 509.316i 1.00703 + 1.74423i
\(293\) −333.488 + 192.539i −1.13818 + 0.657131i −0.945980 0.324224i \(-0.894897\pi\)
−0.192204 + 0.981355i \(0.561563\pi\)
\(294\) 381.365 + 77.8846i 1.29716 + 0.264914i
\(295\) 0 0
\(296\) 3.10093i 0.0104761i
\(297\) −10.4500 + 4.95583i −0.0351852 + 0.0166863i
\(298\) −229.417 −0.769854
\(299\) 353.580 + 204.140i 1.18254 + 0.682742i
\(300\) 0 0
\(301\) 281.012 + 486.726i 0.933593 + 1.61703i
\(302\) 217.236 125.421i 0.719324 0.415302i
\(303\) −114.254 + 128.947i −0.377075 + 0.425569i
\(304\) −4.16368 + 7.21171i −0.0136963 + 0.0237227i
\(305\) 0 0
\(306\) 58.4225 43.8886i 0.190923 0.143427i
\(307\) −207.311 −0.675281 −0.337641 0.941275i \(-0.609629\pi\)
−0.337641 + 0.941275i \(0.609629\pi\)
\(308\) 14.7069 + 8.49105i 0.0477498 + 0.0275684i
\(309\) −245.270 + 81.8636i −0.793754 + 0.264931i
\(310\) 0 0
\(311\) 140.437 81.0816i 0.451567 0.260712i −0.256925 0.966431i \(-0.582709\pi\)
0.708492 + 0.705719i \(0.249376\pi\)
\(312\) 3.78606 + 11.3433i 0.0121348 + 0.0363569i
\(313\) 113.407 196.427i 0.362322 0.627561i −0.626020 0.779807i \(-0.715317\pi\)
0.988343 + 0.152246i \(0.0486506\pi\)
\(314\) 178.302i 0.567840i
\(315\) 0 0
\(316\) 204.751 0.647946
\(317\) 423.293 + 244.388i 1.33531 + 0.770941i 0.986108 0.166108i \(-0.0531199\pi\)
0.349200 + 0.937048i \(0.386453\pi\)
\(318\) 284.493 + 252.075i 0.894632 + 0.792689i
\(319\) 5.20917 + 9.02255i 0.0163297 + 0.0282839i
\(320\) 0 0
\(321\) 285.385 + 58.2831i 0.889050 + 0.181567i
\(322\) 300.974 521.302i 0.934702 1.61895i
\(323\) 1.51593i 0.00469328i
\(324\) −91.9192 + 317.002i −0.283701 + 0.978400i
\(325\) 0 0
\(326\) −594.157 343.036i −1.82257 1.05226i
\(327\) −98.7444 + 483.505i −0.301971 + 1.47861i
\(328\) 4.06480 + 7.04044i 0.0123927 + 0.0214647i
\(329\) −417.667 + 241.140i −1.26951 + 0.732950i
\(330\) 0 0
\(331\) −118.823 + 205.808i −0.358982 + 0.621775i −0.987791 0.155785i \(-0.950209\pi\)
0.628809 + 0.777560i \(0.283543\pi\)
\(332\) 311.768i 0.939061i
\(333\) −120.775 51.4777i −0.362687 0.154588i
\(334\) −378.431 −1.13303
\(335\) 0 0
\(336\) −434.543 + 145.037i −1.29328 + 0.431658i
\(337\) −141.018 244.250i −0.418450 0.724777i 0.577334 0.816508i \(-0.304093\pi\)
−0.995784 + 0.0917314i \(0.970760\pi\)
\(338\) 449.447 259.488i 1.32973 0.767717i
\(339\) −40.6559 121.808i −0.119929 0.359317i
\(340\) 0 0
\(341\) 5.42437i 0.0159072i
\(342\) −8.14996 10.8489i −0.0238303 0.0317218i
\(343\) 32.5057 0.0947688
\(344\) 10.6344 + 6.13979i 0.0309140 + 0.0178482i
\(345\) 0 0
\(346\) −95.2543 164.985i −0.275302 0.476836i
\(347\) −381.026 + 219.985i −1.09806 + 0.633963i −0.935710 0.352771i \(-0.885240\pi\)
−0.162347 + 0.986734i \(0.551906\pi\)
\(348\) 291.307 + 59.4924i 0.837088 + 0.170955i
\(349\) −48.6291 + 84.2280i −0.139338 + 0.241341i −0.927246 0.374452i \(-0.877831\pi\)
0.787908 + 0.615793i \(0.211164\pi\)
\(350\) 0 0
\(351\) 504.651 + 40.8489i 1.43775 + 0.116379i
\(352\) −19.4687 −0.0553089
\(353\) −85.0399 49.0978i −0.240906 0.139087i 0.374687 0.927151i \(-0.377750\pi\)
−0.615593 + 0.788064i \(0.711084\pi\)
\(354\) −107.609 + 526.911i −0.303980 + 1.48845i
\(355\) 0 0
\(356\) 102.192 59.0007i 0.287057 0.165732i
\(357\) −55.3055 + 62.4180i −0.154917 + 0.174840i
\(358\) 53.9358 93.4195i 0.150659 0.260948i
\(359\) 500.068i 1.39295i −0.717582 0.696474i \(-0.754751\pi\)
0.717582 0.696474i \(-0.245249\pi\)
\(360\) 0 0
\(361\) −360.718 −0.999220
\(362\) −684.165 395.003i −1.88996 1.09117i
\(363\) −343.805 + 114.752i −0.947121 + 0.316120i
\(364\) −371.709 643.819i −1.02118 1.76873i
\(365\) 0 0
\(366\) 59.8215 + 179.230i 0.163447 + 0.489699i
\(367\) 170.909 296.023i 0.465692 0.806603i −0.533540 0.845775i \(-0.679139\pi\)
0.999232 + 0.0391718i \(0.0124720\pi\)
\(368\) 341.726i 0.928604i
\(369\) 341.689 41.4388i 0.925987 0.112300i
\(370\) 0 0
\(371\) −375.686 216.902i −1.01263 0.584643i
\(372\) 115.863 + 102.660i 0.311459 + 0.275969i
\(373\) 305.522 + 529.179i 0.819093 + 1.41871i 0.906351 + 0.422525i \(0.138856\pi\)
−0.0872584 + 0.996186i \(0.527811\pi\)
\(374\) −3.01188 + 1.73891i −0.00805316 + 0.00464949i
\(375\) 0 0
\(376\) −5.26865 + 9.12556i −0.0140124 + 0.0242701i
\(377\) 456.080i 1.20976i
\(378\) 60.2257 744.034i 0.159327 1.96834i
\(379\) −187.436 −0.494555 −0.247277 0.968945i \(-0.579536\pi\)
−0.247277 + 0.968945i \(0.579536\pi\)
\(380\) 0 0
\(381\) 47.2561 231.391i 0.124032 0.607325i
\(382\) −82.8415 143.486i −0.216863 0.375617i
\(383\) 128.014 73.9088i 0.334240 0.192973i −0.323482 0.946234i \(-0.604854\pi\)
0.657722 + 0.753261i \(0.271520\pi\)
\(384\) −13.5311 + 15.2713i −0.0352373 + 0.0397690i
\(385\) 0 0
\(386\) 359.656i 0.931752i
\(387\) 415.671 312.263i 1.07409 0.806882i
\(388\) −93.6797 −0.241442
\(389\) 397.890 + 229.722i 1.02285 + 0.590545i 0.914929 0.403615i \(-0.132246\pi\)
0.107924 + 0.994159i \(0.465580\pi\)
\(390\) 0 0
\(391\) 31.1042 + 53.8741i 0.0795505 + 0.137786i
\(392\) −8.40556 + 4.85295i −0.0214428 + 0.0123800i
\(393\) −173.607 520.141i −0.441748 1.32351i
\(394\) −476.763 + 825.777i −1.21006 + 2.09588i
\(395\) 0 0
\(396\) 6.15954 14.4512i 0.0155544 0.0364930i
\(397\) 718.905 1.81084 0.905422 0.424512i \(-0.139554\pi\)
0.905422 + 0.424512i \(0.139554\pi\)
\(398\) −312.932 180.671i −0.786260 0.453948i
\(399\) 11.5908 + 10.2700i 0.0290497 + 0.0257395i
\(400\) 0 0
\(401\) −65.5957 + 37.8717i −0.163580 + 0.0944431i −0.579555 0.814933i \(-0.696774\pi\)
0.415975 + 0.909376i \(0.363440\pi\)
\(402\) 271.822 + 55.5132i 0.676175 + 0.138093i
\(403\) 118.730 205.647i 0.294616 0.510289i
\(404\) 234.006i 0.579223i
\(405\) 0 0
\(406\) −672.422 −1.65621
\(407\) 5.41148 + 3.12432i 0.0132960 + 0.00767646i
\(408\) −0.364592 + 1.78524i −0.000893607 + 0.00437558i
\(409\) 255.035 + 441.733i 0.623556 + 1.08003i 0.988818 + 0.149126i \(0.0476461\pi\)
−0.365262 + 0.930905i \(0.619021\pi\)
\(410\) 0 0
\(411\) 11.0696 12.4932i 0.0269333 0.0303970i
\(412\) 175.604 304.156i 0.426224 0.738242i
\(413\) 613.768i 1.48612i
\(414\) −512.239 218.331i −1.23729 0.527370i
\(415\) 0 0
\(416\) 738.092 + 426.137i 1.77426 + 1.02437i
\(417\) −483.538 + 161.390i −1.15956 + 0.387027i
\(418\) 0.322910 + 0.559296i 0.000772511 + 0.00133803i
\(419\) −603.768 + 348.586i −1.44097 + 0.831947i −0.997915 0.0645450i \(-0.979440\pi\)
−0.443060 + 0.896492i \(0.646107\pi\)
\(420\) 0 0
\(421\) −378.410 + 655.425i −0.898836 + 1.55683i −0.0698516 + 0.997557i \(0.522253\pi\)
−0.828984 + 0.559272i \(0.811081\pi\)
\(422\) 277.672i 0.657990i
\(423\) 267.958 + 356.694i 0.633471 + 0.843248i
\(424\) −9.47815 −0.0223541
\(425\) 0 0
\(426\) 573.545 + 508.190i 1.34635 + 1.19293i
\(427\) −107.823 186.754i −0.252512 0.437364i
\(428\) −342.626 + 197.815i −0.800529 + 0.462186i
\(429\) −23.6101 4.82179i −0.0550351 0.0112396i
\(430\) 0 0
\(431\) 497.875i 1.15516i −0.816333 0.577581i \(-0.803997\pi\)
0.816333 0.577581i \(-0.196003\pi\)
\(432\) 181.585 + 382.894i 0.420335 + 0.886329i
\(433\) −421.645 −0.973775 −0.486888 0.873465i \(-0.661868\pi\)
−0.486888 + 0.873465i \(0.661868\pi\)
\(434\) −303.196 175.050i −0.698608 0.403341i
\(435\) 0 0
\(436\) −335.143 580.485i −0.768677 1.33139i
\(437\) 10.0042 5.77595i 0.0228930 0.0132173i
\(438\) −815.954 + 920.889i −1.86291 + 2.10249i
\(439\) 228.743 396.195i 0.521055 0.902494i −0.478645 0.878009i \(-0.658872\pi\)
0.999700 0.0244857i \(-0.00779481\pi\)
\(440\) 0 0
\(441\) 49.4738 + 407.942i 0.112185 + 0.925038i
\(442\) 152.247 0.344450
\(443\) 201.153 + 116.136i 0.454069 + 0.262157i 0.709547 0.704658i \(-0.248899\pi\)
−0.255478 + 0.966815i \(0.582233\pi\)
\(444\) 169.151 56.4574i 0.380970 0.127156i
\(445\) 0 0
\(446\) 229.914 132.741i 0.515502 0.297625i
\(447\) −76.6815 229.744i −0.171547 0.513969i
\(448\) 322.871 559.230i 0.720695 1.24828i
\(449\) 678.345i 1.51079i 0.655269 + 0.755395i \(0.272555\pi\)
−0.655269 + 0.755395i \(0.727445\pi\)
\(450\) 0 0
\(451\) −16.3818 −0.0363234
\(452\) 151.053 + 87.2105i 0.334188 + 0.192943i
\(453\) 198.210 + 175.624i 0.437550 + 0.387692i
\(454\) 281.306 + 487.236i 0.619617 + 1.07321i
\(455\) 0 0
\(456\) 0.331512 + 0.0677034i 0.000727000 + 0.000148472i
\(457\) −367.777 + 637.008i −0.804763 + 1.39389i 0.111688 + 0.993743i \(0.464374\pi\)
−0.916451 + 0.400147i \(0.868959\pi\)
\(458\) 515.014i 1.12448i
\(459\) 63.4787 + 43.8364i 0.138298 + 0.0955040i
\(460\) 0 0
\(461\) 344.752 + 199.043i 0.747835 + 0.431763i 0.824911 0.565263i \(-0.191225\pi\)
−0.0770763 + 0.997025i \(0.524559\pi\)
\(462\) −7.10903 + 34.8096i −0.0153875 + 0.0753454i
\(463\) 80.2955 + 139.076i 0.173424 + 0.300380i 0.939615 0.342234i \(-0.111183\pi\)
−0.766191 + 0.642613i \(0.777850\pi\)
\(464\) 330.592 190.867i 0.712482 0.411352i
\(465\) 0 0
\(466\) −253.650 + 439.335i −0.544314 + 0.942780i
\(467\) 406.660i 0.870792i −0.900239 0.435396i \(-0.856608\pi\)
0.900239 0.435396i \(-0.143392\pi\)
\(468\) −549.831 + 413.048i −1.17485 + 0.882581i
\(469\) −316.630 −0.675117
\(470\) 0 0
\(471\) 178.556 59.5966i 0.379100 0.126532i
\(472\) −6.70507 11.6135i −0.0142057 0.0246049i
\(473\) −21.4293 + 12.3722i −0.0453050 + 0.0261569i
\(474\) 135.618 + 406.322i 0.286114 + 0.857220i
\(475\) 0 0
\(476\) 113.273i 0.237968i
\(477\) −157.344 + 369.154i −0.329862 + 0.773908i
\(478\) 43.3635 0.0907186
\(479\) −731.450 422.303i −1.52704 0.881635i −0.999484 0.0321123i \(-0.989777\pi\)
−0.527552 0.849523i \(-0.676890\pi\)
\(480\) 0 0
\(481\) −136.772 236.896i −0.284349 0.492507i
\(482\) −785.440 + 453.474i −1.62954 + 0.940818i
\(483\) 622.646 + 127.161i 1.28912 + 0.263272i
\(484\) 246.152 426.348i 0.508579 0.880884i
\(485\) 0 0
\(486\) −689.964 + 27.5569i −1.41968 + 0.0567014i
\(487\) 225.518 0.463075 0.231538 0.972826i \(-0.425624\pi\)
0.231538 + 0.972826i \(0.425624\pi\)
\(488\) −4.08037 2.35580i −0.00836141 0.00482746i
\(489\) 144.932 709.663i 0.296384 1.45125i
\(490\) 0 0
\(491\) −662.639 + 382.575i −1.34957 + 0.779175i −0.988189 0.153243i \(-0.951028\pi\)
−0.361382 + 0.932418i \(0.617695\pi\)
\(492\) −310.039 + 349.911i −0.630161 + 0.711202i
\(493\) 34.7458 60.1815i 0.0704783 0.122072i
\(494\) 28.2718i 0.0572303i
\(495\) 0 0
\(496\) 198.752 0.400710
\(497\) −757.392 437.281i −1.52393 0.879841i
\(498\) 618.695 206.501i 1.24236 0.414662i
\(499\) −102.024 176.711i −0.204458 0.354131i 0.745502 0.666503i \(-0.232210\pi\)
−0.949960 + 0.312372i \(0.898876\pi\)
\(500\) 0 0
\(501\) −126.489 378.971i −0.252473 0.756429i
\(502\) 135.461 234.625i 0.269842 0.467380i
\(503\) 585.545i 1.16411i 0.813151 + 0.582053i \(0.197750\pi\)
−0.813151 + 0.582053i \(0.802250\pi\)
\(504\) 11.1799 + 14.8822i 0.0221824 + 0.0295282i
\(505\) 0 0
\(506\) 22.9516 + 13.2511i 0.0453588 + 0.0261879i
\(507\) 410.085 + 363.356i 0.808846 + 0.716678i
\(508\) 160.389 + 277.802i 0.315727 + 0.546855i
\(509\) −10.3361 + 5.96756i −0.0203067 + 0.0117241i −0.510119 0.860104i \(-0.670399\pi\)
0.489812 + 0.871828i \(0.337065\pi\)
\(510\) 0 0
\(511\) 702.102 1216.08i 1.37398 2.37980i
\(512\) 726.692i 1.41932i
\(513\) 8.14026 11.7878i 0.0158680 0.0229781i
\(514\) −22.5418 −0.0438557
\(515\) 0 0
\(516\) −141.299 + 691.877i −0.273836 + 1.34085i
\(517\) −10.6168 18.3888i −0.0205354 0.0355683i
\(518\) −349.268 + 201.650i −0.674263 + 0.389286i
\(519\) 133.383 150.536i 0.256999 0.290050i
\(520\) 0 0
\(521\) 541.869i 1.04006i −0.854149 0.520028i \(-0.825922\pi\)
0.854149 0.520028i \(-0.174078\pi\)
\(522\) 74.8876 + 617.495i 0.143463 + 1.18294i
\(523\) 356.100 0.680880 0.340440 0.940266i \(-0.389424\pi\)
0.340440 + 0.940266i \(0.389424\pi\)
\(524\) 645.020 + 372.402i 1.23095 + 0.710692i
\(525\) 0 0
\(526\) 583.071 + 1009.91i 1.10850 + 1.91998i
\(527\) 31.3338 18.0906i 0.0594570 0.0343275i
\(528\) −6.38560 19.1318i −0.0120939 0.0362344i
\(529\) −27.4749 + 47.5879i −0.0519374 + 0.0899582i
\(530\) 0 0
\(531\) −563.632 + 68.3553i −1.06145 + 0.128729i
\(532\) −21.0344 −0.0395383
\(533\) 621.062 + 358.571i 1.16522 + 0.672740i
\(534\) 184.773 + 163.718i 0.346016 + 0.306588i
\(535\) 0 0
\(536\) −5.99116 + 3.45900i −0.0111775 + 0.00645336i
\(537\) 111.581 + 22.7877i 0.207785 + 0.0424352i
\(538\) −285.698 + 494.843i −0.531037 + 0.919783i
\(539\) 19.5582i 0.0362862i
\(540\) 0 0
\(541\) 378.892 0.700355 0.350178 0.936683i \(-0.386121\pi\)
0.350178 + 0.936683i \(0.386121\pi\)
\(542\) −297.942 172.017i −0.549709 0.317375i
\(543\) 166.887 817.170i 0.307343 1.50492i
\(544\) 64.9294 + 112.461i 0.119356 + 0.206730i
\(545\) 0 0
\(546\) 1031.44 1164.08i 1.88908 2.13202i
\(547\) 279.673 484.407i 0.511285 0.885571i −0.488630 0.872491i \(-0.662503\pi\)
0.999914 0.0130799i \(-0.00416359\pi\)
\(548\) 22.6719i 0.0413721i
\(549\) −159.491 + 119.814i −0.290511 + 0.218240i
\(550\) 0 0
\(551\) −11.1755 6.45218i −0.0202822 0.0117099i
\(552\) 13.1707 4.39596i 0.0238599 0.00796370i
\(553\) −244.439 423.380i −0.442023 0.765606i
\(554\) 824.426 475.982i 1.48813 0.859174i
\(555\) 0 0
\(556\) 346.196 599.629i 0.622655 1.07847i
\(557\) 471.971i 0.847345i 0.905815 + 0.423673i \(0.139259\pi\)
−0.905815 + 0.423673i \(0.860741\pi\)
\(558\) −126.984 + 297.924i −0.227570 + 0.533914i
\(559\) 1083.23 1.93779
\(560\) 0 0
\(561\) −2.74810 2.43496i −0.00489858 0.00434039i
\(562\) −197.308 341.747i −0.351081 0.608090i
\(563\) −428.316 + 247.289i −0.760775 + 0.439234i −0.829574 0.558397i \(-0.811417\pi\)
0.0687990 + 0.997631i \(0.478083\pi\)
\(564\) −593.710 121.251i −1.05268 0.214984i
\(565\) 0 0
\(566\) 275.082i 0.486010i
\(567\) 765.226 188.379i 1.34961 0.332237i
\(568\) −19.1082 −0.0336412
\(569\) −143.305 82.7370i −0.251853 0.145408i 0.368759 0.929525i \(-0.379783\pi\)
−0.620613 + 0.784117i \(0.713116\pi\)
\(570\) 0 0
\(571\) −25.5302 44.2195i −0.0447113 0.0774423i 0.842804 0.538221i \(-0.180903\pi\)
−0.887515 + 0.460779i \(0.847570\pi\)
\(572\) 28.3457 16.3654i 0.0495554 0.0286108i
\(573\) 116.001 130.919i 0.202445 0.228480i
\(574\) 528.660 915.665i 0.921010 1.59524i
\(575\) 0 0
\(576\) −549.506 234.216i −0.954004 0.406625i
\(577\) 707.833 1.22675 0.613373 0.789793i \(-0.289812\pi\)
0.613373 + 0.789793i \(0.289812\pi\)
\(578\) −691.115 399.015i −1.19570 0.690338i
\(579\) 360.170 120.214i 0.622055 0.207623i
\(580\) 0 0
\(581\) −644.669 + 372.200i −1.10958 + 0.640619i
\(582\) −62.0492 185.905i −0.106614 0.319424i
\(583\) 9.54964 16.5405i 0.0163802 0.0283713i
\(584\) 30.6803i 0.0525347i
\(585\) 0 0
\(586\) 1094.25 1.86732
\(587\) 391.878 + 226.251i 0.667594 + 0.385436i 0.795164 0.606394i \(-0.207385\pi\)
−0.127570 + 0.991830i \(0.540718\pi\)
\(588\) −417.758 370.155i −0.710473 0.629515i
\(589\) −3.35936 5.81859i −0.00570350 0.00987875i
\(590\) 0 0
\(591\) −986.312 201.431i −1.66889 0.340830i
\(592\) 114.477 198.280i 0.193373 0.334932i
\(593\) 227.811i 0.384168i −0.981379 0.192084i \(-0.938475\pi\)
0.981379 0.192084i \(-0.0615245\pi\)
\(594\) 32.7578 + 2.65158i 0.0551479 + 0.00446394i
\(595\) 0 0
\(596\) 284.903 + 164.489i 0.478024 + 0.275988i
\(597\) 76.3330 373.767i 0.127861 0.626075i
\(598\) −580.088 1004.74i −0.970047 1.68017i
\(599\) 484.611 279.790i 0.809033 0.467096i −0.0375869 0.999293i \(-0.511967\pi\)
0.846620 + 0.532198i \(0.178634\pi\)
\(600\) 0 0
\(601\) −335.271 + 580.707i −0.557856 + 0.966235i 0.439819 + 0.898086i \(0.355043\pi\)
−0.997675 + 0.0681485i \(0.978291\pi\)
\(602\) 1597.06i 2.65292i
\(603\) 35.2630 + 290.765i 0.0584793 + 0.482198i
\(604\) −359.701 −0.595532
\(605\) 0 0
\(606\) 464.379 154.995i 0.766301 0.255768i
\(607\) −499.009 864.308i −0.822090 1.42390i −0.904123 0.427272i \(-0.859475\pi\)
0.0820329 0.996630i \(-0.473859\pi\)
\(608\) 20.8836 12.0572i 0.0343481 0.0198309i
\(609\) −224.754 673.382i −0.369055 1.10572i
\(610\) 0 0
\(611\) 929.533i 1.52133i
\(612\) −104.020 + 12.6152i −0.169967 + 0.0206130i
\(613\) 229.314 0.374086 0.187043 0.982352i \(-0.440110\pi\)
0.187043 + 0.982352i \(0.440110\pi\)
\(614\) 510.176 + 294.550i 0.830905 + 0.479723i
\(615\) 0 0
\(616\) −0.442960 0.767229i −0.000719091 0.00124550i
\(617\) 430.791 248.717i 0.698203 0.403108i −0.108475 0.994099i \(-0.534597\pi\)
0.806678 + 0.590992i \(0.201263\pi\)
\(618\) 719.901 + 147.023i 1.16489 + 0.237901i
\(619\) −528.867 + 916.025i −0.854390 + 1.47985i 0.0228204 + 0.999740i \(0.492735\pi\)
−0.877210 + 0.480107i \(0.840598\pi\)
\(620\) 0 0
\(621\) 47.4293 585.946i 0.0763757 0.943553i
\(622\) −460.806 −0.740846
\(623\) −244.001 140.874i −0.391655 0.226122i
\(624\) −176.673 + 865.087i −0.283130 + 1.38636i
\(625\) 0 0
\(626\) −558.170 + 322.259i −0.891645 + 0.514792i
\(627\) −0.452163 + 0.510313i −0.000721153 + 0.000813896i
\(628\) −127.840 + 221.425i −0.203567 + 0.352588i
\(629\) 41.6792i 0.0662626i
\(630\) 0 0
\(631\) 638.591 1.01203 0.506015 0.862524i \(-0.331118\pi\)
0.506015 + 0.862524i \(0.331118\pi\)
\(632\) −9.25037 5.34071i −0.0146367 0.00845048i
\(633\) −278.068 + 92.8107i −0.439286 + 0.146620i
\(634\) −694.458 1202.84i −1.09536 1.89722i
\(635\) 0 0
\(636\) −172.565 517.019i −0.271329 0.812923i
\(637\) −428.097 + 741.485i −0.672051 + 1.16403i
\(638\) 29.6050i 0.0464028i
\(639\) −317.210 + 744.224i −0.496417 + 1.16467i
\(640\) 0 0
\(641\) 765.794 + 442.131i 1.19469 + 0.689753i 0.959366 0.282165i \(-0.0910526\pi\)
0.235321 + 0.971918i \(0.424386\pi\)
\(642\) −619.500 548.908i −0.964953 0.854997i
\(643\) −510.613 884.408i −0.794111 1.37544i −0.923402 0.383834i \(-0.874604\pi\)
0.129291 0.991607i \(-0.458730\pi\)
\(644\) −747.534 + 431.589i −1.16077 + 0.670169i
\(645\) 0 0
\(646\) 2.15385 3.73057i 0.00333413 0.00577488i
\(647\) 488.043i 0.754317i 0.926149 + 0.377159i \(0.123099\pi\)
−0.926149 + 0.377159i \(0.876901\pi\)
\(648\) 12.4214 11.9241i 0.0191689 0.0184014i
\(649\) 27.0226 0.0416373
\(650\) 0 0
\(651\) 73.9581 362.138i 0.113607 0.556280i
\(652\) 491.905 + 852.005i 0.754456 + 1.30676i
\(653\) 529.397 305.648i 0.810716 0.468067i −0.0364887 0.999334i \(-0.511617\pi\)
0.847204 + 0.531267i \(0.178284\pi\)
\(654\) 929.971 1049.57i 1.42197 1.60485i
\(655\) 0 0
\(656\) 600.240i 0.915001i
\(657\) −1194.93 509.316i −1.81877 0.775214i
\(658\) 1370.46 2.08276
\(659\) −125.687 72.5657i −0.190724 0.110115i 0.401597 0.915816i \(-0.368455\pi\)
−0.592322 + 0.805702i \(0.701789\pi\)
\(660\) 0 0
\(661\) −415.128 719.023i −0.628030 1.08778i −0.987947 0.154796i \(-0.950528\pi\)
0.359916 0.932985i \(-0.382805\pi\)
\(662\) 584.827 337.650i 0.883424 0.510045i
\(663\) 50.8880 + 152.464i 0.0767541 + 0.229961i
\(664\) −8.13214 + 14.0853i −0.0122472 + 0.0212128i
\(665\) 0 0
\(666\) 224.076 + 298.280i 0.336451 + 0.447868i
\(667\) −529.550 −0.793929
\(668\) 469.957 + 271.330i 0.703529 + 0.406182i
\(669\) 209.778 + 185.874i 0.313569 + 0.277838i
\(670\) 0 0
\(671\) 8.22230 4.74715i 0.0122538 0.00707473i
\(672\) 1299.76 + 265.445i 1.93417 + 0.395007i
\(673\) −135.708 + 235.054i −0.201647 + 0.349262i −0.949059 0.315098i \(-0.897963\pi\)
0.747412 + 0.664360i \(0.231296\pi\)
\(674\) 801.438i 1.18908i
\(675\) 0 0
\(676\) −744.199 −1.10089
\(677\) 775.906 + 447.970i 1.14609 + 0.661698i 0.947933 0.318471i \(-0.103169\pi\)
0.198162 + 0.980169i \(0.436503\pi\)
\(678\) −73.0158 + 357.524i −0.107693 + 0.527322i
\(679\) 111.838 + 193.709i 0.164710 + 0.285286i
\(680\) 0 0
\(681\) −393.907 + 444.564i −0.578424 + 0.652811i
\(682\) 7.70700 13.3489i 0.0113006 0.0195732i
\(683\) 255.548i 0.374155i 0.982345 + 0.187078i \(0.0599016\pi\)
−0.982345 + 0.187078i \(0.940098\pi\)
\(684\) 2.34259 + 19.3161i 0.00342484 + 0.0282400i
\(685\) 0 0
\(686\) −79.9938 46.1844i −0.116609 0.0673242i
\(687\) 515.749 172.141i 0.750726 0.250569i
\(688\) 453.325 + 785.182i 0.658902 + 1.14125i
\(689\) −724.085 + 418.051i −1.05092 + 0.606750i
\(690\) 0 0
\(691\) −61.2973 + 106.170i −0.0887081 + 0.153647i −0.906965 0.421205i \(-0.861607\pi\)
0.818257 + 0.574852i \(0.194940\pi\)
\(692\) 273.184i 0.394775i
\(693\) −37.2354 + 4.51578i −0.0537308 + 0.00651628i
\(694\) 1250.23 1.80148
\(695\) 0 0
\(696\) −11.6091 10.2862i −0.0166797 0.0147790i
\(697\) 54.6344 + 94.6296i 0.0783852 + 0.135767i
\(698\) 239.344 138.185i 0.342900 0.197973i
\(699\) −524.744 107.166i −0.750707 0.153314i
\(700\) 0 0
\(701\) 595.027i 0.848826i −0.905469 0.424413i \(-0.860480\pi\)
0.905469 0.424413i \(-0.139520\pi\)
\(702\) −1183.86 817.539i −1.68642 1.16459i
\(703\) −7.73968 −0.0110095
\(704\) 24.6214 + 14.2152i 0.0349736 + 0.0201920i
\(705\) 0 0
\(706\) 139.517 + 241.651i 0.197617 + 0.342282i
\(707\) −483.874 + 279.365i −0.684404 + 0.395141i
\(708\) 511.423 577.194i 0.722350 0.815246i
\(709\) 280.492 485.826i 0.395616 0.685227i −0.597564 0.801822i \(-0.703864\pi\)
0.993180 + 0.116594i \(0.0371978\pi\)
\(710\) 0 0
\(711\) −361.572 + 271.623i −0.508541 + 0.382030i
\(712\) −6.15588 −0.00864589
\(713\) −238.775 137.857i −0.334887 0.193347i
\(714\) 224.786 75.0268i 0.314827 0.105080i
\(715\) 0 0
\(716\) −133.961 + 77.3424i −0.187096 + 0.108020i
\(717\) 14.4941 + 43.4254i 0.0202149 + 0.0605654i
\(718\) −710.502 + 1230.63i −0.989557 + 1.71396i
\(719\) 1218.37i 1.69453i −0.531168 0.847266i \(-0.678247\pi\)
0.531168 0.847266i \(-0.321753\pi\)
\(720\) 0 0
\(721\) −838.570 −1.16307
\(722\) 887.698 + 512.513i 1.22950 + 0.709851i
\(723\) −716.652 634.990i −0.991220 0.878271i
\(724\) 566.423 + 981.074i 0.782353 + 1.35507i
\(725\) 0 0
\(726\) 1009.11 + 206.088i 1.38997 + 0.283867i
\(727\) −397.172 + 687.921i −0.546316 + 0.946247i 0.452207 + 0.891913i \(0.350637\pi\)
−0.998523 + 0.0543338i \(0.982696\pi\)
\(728\) 38.7825i 0.0532727i
\(729\) −258.214 681.738i −0.354203 0.935169i
\(730\) 0 0
\(731\) 142.936 + 82.5241i 0.195535 + 0.112892i
\(732\) 54.2158 265.469i 0.0740652 0.362663i
\(733\) 393.411 + 681.408i 0.536714 + 0.929615i 0.999078 + 0.0429255i \(0.0136678\pi\)
−0.462365 + 0.886690i \(0.652999\pi\)
\(734\) −841.186 + 485.659i −1.14603 + 0.661661i
\(735\) 0 0
\(736\) 494.785 856.992i 0.672262 1.16439i
\(737\) 13.9404i 0.0189150i
\(738\) −899.745 383.498i −1.21917 0.519645i
\(739\) −1398.66 −1.89264 −0.946320 0.323231i \(-0.895231\pi\)
−0.946320 + 0.323231i \(0.895231\pi\)
\(740\) 0 0
\(741\) 28.3121 9.44972i 0.0382080 0.0127527i
\(742\) 616.355 + 1067.56i 0.830667 + 1.43876i
\(743\) 475.127 274.315i 0.639471 0.369199i −0.144940 0.989440i \(-0.546299\pi\)
0.784411 + 0.620242i \(0.212965\pi\)
\(744\) −2.55675 7.66022i −0.00343649 0.0102960i
\(745\) 0 0
\(746\) 1736.35i 2.32755i
\(747\) 413.593 + 550.556i 0.553672 + 0.737023i
\(748\) 4.98710 0.00666725
\(749\) 818.078 + 472.318i 1.09223 + 0.630598i
\(750\) 0 0
\(751\) 133.681 + 231.542i 0.178003 + 0.308311i 0.941197 0.337859i \(-0.109703\pi\)
−0.763193 + 0.646170i \(0.776370\pi\)
\(752\) −673.777 + 389.005i −0.895980 + 0.517294i
\(753\) 280.237 + 57.2317i 0.372160 + 0.0760049i
\(754\) −648.003 + 1122.37i −0.859420 + 1.48856i
\(755\) 0 0
\(756\) −608.254 + 880.803i −0.804569 + 1.16508i
\(757\) −471.386 −0.622703 −0.311351 0.950295i \(-0.600782\pi\)
−0.311351 + 0.950295i \(0.600782\pi\)
\(758\) 461.265 + 266.311i 0.608529 + 0.351334i
\(759\) −5.59855 + 27.4135i −0.00737621 + 0.0361179i
\(760\) 0 0
\(761\) 917.999 530.007i 1.20631 0.696461i 0.244356 0.969686i \(-0.421424\pi\)
0.961950 + 0.273225i \(0.0880902\pi\)
\(762\) −445.056 + 502.292i −0.584063 + 0.659175i
\(763\) −800.210 + 1386.00i −1.04877 + 1.81652i
\(764\) 237.585i 0.310975i
\(765\) 0 0
\(766\) −420.042 −0.548357
\(767\) −1024.47 591.478i −1.33569 0.771158i
\(768\) −700.486 + 233.801i −0.912091 + 0.304428i
\(769\) 216.513 + 375.012i 0.281551 + 0.487661i 0.971767 0.235942i \(-0.0758176\pi\)
−0.690216 + 0.723604i \(0.742484\pi\)
\(770\) 0 0
\(771\) −7.53452 22.5740i −0.00977240 0.0292789i
\(772\) −257.869 + 446.642i −0.334027 + 0.578552i
\(773\) 1088.28i 1.40787i 0.710264 + 0.703936i \(0.248576\pi\)
−0.710264 + 0.703936i \(0.751424\pi\)
\(774\) −1466.60 + 177.864i −1.89483 + 0.229798i
\(775\) 0 0
\(776\) 4.23232 + 2.44353i 0.00545402 + 0.00314888i
\(777\) −318.680 282.366i −0.410141 0.363406i
\(778\) −652.782 1130.65i −0.839052 1.45328i
\(779\) 17.5724 10.1454i 0.0225576 0.0130237i
\(780\) 0 0
\(781\) 19.2523 33.3460i 0.0246509 0.0426965i
\(782\) 176.773i 0.226052i
\(783\) −593.345 + 281.390i −0.757785 + 0.359374i
\(784\) −716.626 −0.914063
\(785\) 0 0
\(786\) −311.789 + 1526.69i −0.396678 + 1.94235i
\(787\) 161.467 + 279.669i 0.205168 + 0.355361i 0.950186 0.311683i \(-0.100893\pi\)
−0.745018 + 0.667044i \(0.767559\pi\)
\(788\) 1184.14 683.665i 1.50272 0.867595i
\(789\) −816.461 + 921.461i −1.03480 + 1.16788i
\(790\) 0 0
\(791\) 416.459i 0.526497i
\(792\) −0.655225 + 0.492222i −0.000827304 + 0.000621493i
\(793\) −415.628 −0.524121
\(794\) −1769.17 1021.43i −2.22817 1.28643i
\(795\) 0 0
\(796\) 259.078 + 448.736i 0.325474 + 0.563738i
\(797\) 1251.78 722.713i 1.57061 0.906792i 0.574516 0.818494i \(-0.305190\pi\)
0.996094 0.0882984i \(-0.0281429\pi\)
\(798\) −13.9322 41.7421i −0.0174589 0.0523084i
\(799\) −70.8152 + 122.656i −0.0886298 + 0.153511i
\(800\) 0 0
\(801\) −102.192 + 239.759i −0.127581 + 0.299324i
\(802\) 215.234 0.268372
\(803\) 53.5406 + 30.9117i 0.0666758 + 0.0384953i
\(804\) −297.762 263.832i −0.370351 0.328150i
\(805\) 0 0
\(806\) −584.370 + 337.386i −0.725024 + 0.418593i
\(807\) −591.043 120.706i −0.732396 0.149574i
\(808\) −6.10380 + 10.5721i −0.00755421 + 0.0130843i
\(809\) 981.839i 1.21365i −0.794837 0.606823i \(-0.792444\pi\)
0.794837 0.606823i \(-0.207556\pi\)
\(810\) 0 0
\(811\) −600.049 −0.739888 −0.369944 0.929054i \(-0.620623\pi\)
−0.369944 + 0.929054i \(0.620623\pi\)
\(812\) 835.052 + 482.118i 1.02839 + 0.593741i
\(813\) 72.6766 355.864i 0.0893932 0.437717i
\(814\) −8.87812 15.3774i −0.0109068 0.0188911i
\(815\) 0 0
\(816\) −89.2183 + 100.692i −0.109336 + 0.123397i
\(817\) 15.3244 26.5427i 0.0187570 0.0324880i
\(818\) 1449.42i 1.77191i
\(819\) 1510.50 + 643.819i 1.84432 + 0.786104i
\(820\) 0 0
\(821\) −896.354 517.510i −1.09178 0.630342i −0.157733 0.987482i \(-0.550418\pi\)
−0.934051 + 0.357140i \(0.883752\pi\)
\(822\) −44.9917 + 15.0169i −0.0547344 + 0.0182687i
\(823\) −704.012 1219.38i −0.855421 1.48163i −0.876254 0.481850i \(-0.839965\pi\)
0.0208322 0.999783i \(-0.493368\pi\)
\(824\) −15.8672 + 9.16091i −0.0192563 + 0.0111176i
\(825\) 0 0
\(826\) −872.048 + 1510.43i −1.05575 + 1.82861i
\(827\) 1535.05i 1.85617i 0.372367 + 0.928086i \(0.378546\pi\)
−0.372367 + 0.928086i \(0.621454\pi\)
\(828\) 479.587 + 638.404i 0.579211 + 0.771020i
\(829\) 185.325 0.223552 0.111776 0.993733i \(-0.464346\pi\)
0.111776 + 0.993733i \(0.464346\pi\)
\(830\) 0 0
\(831\) 752.223 + 666.507i 0.905202 + 0.802055i
\(832\) −622.292 1077.84i −0.747947 1.29548i
\(833\) −112.978 + 65.2280i −0.135628 + 0.0783049i
\(834\) 1419.25 + 289.848i 1.70174 + 0.347540i
\(835\) 0 0
\(836\) 0.926087i 0.00110776i
\(837\) −340.793 27.5855i −0.407161 0.0329575i
\(838\) 1981.10 2.36408
\(839\) 1120.53 + 646.937i 1.33555 + 0.771081i 0.986144 0.165889i \(-0.0530494\pi\)
0.349408 + 0.936971i \(0.386383\pi\)
\(840\) 0 0
\(841\) −124.726 216.032i −0.148307 0.256875i
\(842\) 1862.47 1075.30i 2.21196 1.27708i
\(843\) 276.285 311.817i 0.327741 0.369889i
\(844\) 199.087 344.829i 0.235885 0.408565i
\(845\) 0 0
\(846\) −152.628 1258.51i −0.180411 1.48760i
\(847\) −1175.46 −1.38779
\(848\) −606.053 349.905i −0.714685 0.412623i
\(849\) −275.474 + 91.9449i −0.324469 + 0.108298i
\(850\) 0 0
\(851\) −275.058 + 158.805i −0.323217 + 0.186610i
\(852\) −347.895 1042.32i −0.408328 1.22338i
\(853\) −193.832 + 335.726i −0.227235 + 0.393583i −0.956988 0.290128i \(-0.906302\pi\)
0.729752 + 0.683711i \(0.239635\pi\)
\(854\) 612.782i 0.717543i
\(855\) 0 0
\(856\) 20.6392 0.0241112
\(857\) −68.5365 39.5696i −0.0799726 0.0461722i 0.459480 0.888188i \(-0.348036\pi\)
−0.539453 + 0.842016i \(0.681369\pi\)
\(858\) 51.2515 + 45.4115i 0.0597337 + 0.0529271i
\(859\) −329.529 570.761i −0.383620 0.664448i 0.607957 0.793970i \(-0.291989\pi\)
−0.991577 + 0.129521i \(0.958656\pi\)
\(860\) 0 0
\(861\) 1093.67 + 223.357i 1.27024 + 0.259416i
\(862\) −707.386 + 1225.23i −0.820633 + 1.42138i
\(863\) 1070.61i 1.24057i 0.784375 + 0.620286i \(0.212984\pi\)
−0.784375 + 0.620286i \(0.787016\pi\)
\(864\) 99.0077 1223.15i 0.114592 1.41568i
\(865\) 0 0
\(866\) 1037.63 + 599.077i 1.19819 + 0.691775i
\(867\) 168.583 825.471i 0.194444 0.952100i
\(868\) 251.017 + 434.775i 0.289190 + 0.500892i
\(869\) 18.6403 10.7620i 0.0214503 0.0123843i
\(870\) 0 0
\(871\) −305.131 + 528.502i −0.350322 + 0.606776i
\(872\) 34.9674i 0.0401002i
\(873\) 165.430 124.276i 0.189496 0.142355i
\(874\) −32.8261 −0.0375585
\(875\) 0 0
\(876\) 1673.56 558.584i 1.91046 0.637653i
\(877\) 536.244 + 928.802i 0.611452 + 1.05907i 0.990996 + 0.133893i \(0.0427478\pi\)
−0.379543 + 0.925174i \(0.623919\pi\)
\(878\) −1125.84 + 650.002i −1.28227 + 0.740321i
\(879\) 365.748 + 1095.81i 0.416095 + 1.24666i
\(880\) 0 0
\(881\) 1433.62i 1.62726i −0.581381 0.813632i \(-0.697487\pi\)
0.581381 0.813632i \(-0.302513\pi\)
\(882\) 457.857 1074.20i 0.519112 1.21792i
\(883\) −731.816 −0.828784 −0.414392 0.910099i \(-0.636006\pi\)
−0.414392 + 0.910099i \(0.636006\pi\)
\(884\) −189.069 109.159i −0.213879 0.123483i
\(885\) 0 0
\(886\) −330.013 571.600i −0.372475 0.645146i
\(887\) −1112.81 + 642.482i −1.25458 + 0.724331i −0.972015 0.234918i \(-0.924518\pi\)
−0.282563 + 0.959249i \(0.591185\pi\)
\(888\) −9.11464 1.86145i −0.0102642 0.00209623i
\(889\) 382.956 663.299i 0.430772 0.746119i
\(890\) 0 0
\(891\) 8.29381 + 33.6909i 0.00930843 + 0.0378124i
\(892\) −380.693 −0.426786
\(893\) 22.7767 + 13.1501i 0.0255058 + 0.0147258i
\(894\) −137.716 + 674.331i −0.154045 + 0.754285i
\(895\) 0 0
\(896\) −57.3054 + 33.0853i −0.0639569 + 0.0369255i
\(897\) 812.284 916.747i 0.905556 1.02201i
\(898\) 963.800 1669.35i 1.07327 1.85896i
\(899\) 307.993i 0.342595i
\(900\) 0 0
\(901\) −127.395 −0.141392
\(902\) 40.3143 + 23.2755i 0.0446944 + 0.0258043i
\(903\) 1599.34 533.810i 1.77114 0.591151i
\(904\) −4.54958 7.88010i −0.00503272 0.00871693i
\(905\) 0 0
\(906\) −238.250 713.816i −0.262969 0.787877i
\(907\) 506.427 877.157i 0.558353 0.967097i −0.439281 0.898350i \(-0.644767\pi\)
0.997634 0.0687467i \(-0.0219000\pi\)
\(908\) 806.770i 0.888514i
\(909\) 310.433 + 413.235i 0.341511 + 0.454604i
\(910\) 0 0
\(911\) 551.233 + 318.255i 0.605086 + 0.349347i 0.771040 0.636787i \(-0.219737\pi\)
−0.165954 + 0.986134i \(0.553070\pi\)
\(912\) 18.6982 + 16.5675i 0.0205024 + 0.0181662i
\(913\) −16.3870 28.3831i −0.0179485 0.0310877i
\(914\) 1810.13 1045.08i 1.98045 1.14342i
\(915\) 0 0
\(916\) −369.258 + 639.573i −0.403120 + 0.698224i
\(917\) 1778.35i 1.93931i
\(918\) −93.9326 198.069i −0.102323 0.215761i
\(919\) −1142.09 −1.24275 −0.621377 0.783511i \(-0.713427\pi\)
−0.621377 + 0.783511i \(0.713427\pi\)
\(920\) 0 0
\(921\) −124.446 + 609.356i −0.135121 + 0.661625i
\(922\) −565.603 979.654i −0.613453 1.06253i
\(923\) −1459.77 + 842.801i −1.58155 + 0.913110i
\(924\) 33.7864 38.1314i 0.0365654 0.0412678i
\(925\) 0 0
\(926\) 456.338i 0.492806i
\(927\) 93.3915 + 770.071i 0.100746 + 0.830713i
\(928\) −1105.42 −1.19119
\(929\) 681.162 + 393.269i 0.733221 + 0.423325i 0.819599 0.572937i \(-0.194196\pi\)
−0.0863784 + 0.996262i \(0.527529\pi\)
\(930\) 0 0
\(931\) 12.1126 + 20.9796i 0.0130103 + 0.0225345i
\(932\) 629.995 363.728i 0.675960 0.390266i
\(933\) −154.023 461.464i −0.165083 0.494602i
\(934\) −577.787 + 1000.76i −0.618615 + 1.07147i
\(935\) 0 0
\(936\) 35.6145 4.31921i 0.0380497 0.00461454i
\(937\) 811.089 0.865623 0.432812 0.901484i \(-0.357522\pi\)
0.432812 + 0.901484i \(0.357522\pi\)
\(938\) 779.199 + 449.871i 0.830702 + 0.479606i
\(939\) −509.286 451.253i −0.542370 0.480567i
\(940\) 0 0
\(941\) −715.505 + 413.097i −0.760367 + 0.438998i −0.829428 0.558614i \(-0.811333\pi\)
0.0690604 + 0.997612i \(0.478000\pi\)
\(942\) −524.087 107.032i −0.556356 0.113622i
\(943\) 416.333 721.111i 0.441499 0.764698i
\(944\) 990.124i 1.04886i
\(945\) 0 0
\(946\) 70.3142 0.0743279
\(947\) 794.535 + 458.725i 0.839002 + 0.484398i 0.856925 0.515441i \(-0.172372\pi\)
−0.0179227 + 0.999839i \(0.505705\pi\)
\(948\) 122.909 601.830i 0.129651 0.634842i
\(949\) −1353.21 2343.83i −1.42593 2.46979i
\(950\) 0 0
\(951\) 972.435 1097.49i 1.02254 1.15404i
\(952\) −2.95460 + 5.11751i −0.00310357 + 0.00537554i
\(953\) 192.772i 0.202279i −0.994872 0.101140i \(-0.967751\pi\)
0.994872 0.101140i \(-0.0322489\pi\)
\(954\) 911.709 684.901i 0.955670 0.717925i
\(955\) 0 0
\(956\) −53.8513 31.0910i −0.0563298 0.0325220i
\(957\) 29.6472 9.89534i 0.0309794 0.0103400i
\(958\) 1200.03 + 2078.50i 1.25264 + 2.16963i
\(959\) 46.8805 27.0665i 0.0488848 0.0282236i
\(960\) 0 0
\(961\) 400.321 693.376i 0.416567 0.721515i
\(962\) 777.308i 0.808012i
\(963\) 342.626 803.854i 0.355791 0.834740i
\(964\) 1300.54 1.34911
\(965\) 0 0
\(966\) −1351.61 1197.59i −1.39918 1.23974i
\(967\) −428.848 742.787i −0.443483 0.768136i 0.554462 0.832209i \(-0.312924\pi\)
−0.997945 + 0.0640734i \(0.979591\pi\)
\(968\) −22.2416 + 12.8412i −0.0229769 + 0.0132657i
\(969\) 4.45581 + 0.909994i 0.00459836 + 0.000939106i
\(970\) 0 0
\(971\) 546.278i 0.562594i 0.959621 + 0.281297i \(0.0907645\pi\)
−0.959621 + 0.281297i \(0.909235\pi\)
\(972\) 876.594 + 460.473i 0.901846 + 0.473738i
\(973\) −1653.20 −1.69908
\(974\) −554.980 320.418i −0.569795 0.328971i
\(975\) 0 0
\(976\) −173.938 301.270i −0.178215 0.308678i
\(977\) 688.774 397.664i 0.704988 0.407025i −0.104214 0.994555i \(-0.533233\pi\)
0.809203 + 0.587530i \(0.199899\pi\)
\(978\) −1364.96 + 1540.50i −1.39567 + 1.57515i
\(979\) 6.20231 10.7427i 0.00633535 0.0109732i
\(980\) 0 0
\(981\) 1361.91 + 580.485i 1.38828 + 0.591728i
\(982\) 2174.27 2.21412
\(983\) 934.805 + 539.710i 0.950972 + 0.549044i 0.893383 0.449297i \(-0.148325\pi\)
0.0575890 + 0.998340i \(0.481659\pi\)
\(984\) 23.1342 7.72149i 0.0235104 0.00784704i
\(985\) 0 0
\(986\) −171.013 + 98.7344i −0.173441 + 0.100136i
\(987\) 458.070 + 1372.42i 0.464104 + 1.39049i
\(988\) −20.2705 + 35.1095i −0.0205167 + 0.0355359i
\(989\) 1257.72i 1.27171i
\(990\) 0 0
\(991\) 168.017 0.169543 0.0847716 0.996400i \(-0.472984\pi\)
0.0847716 + 0.996400i \(0.472984\pi\)
\(992\) −498.437 287.773i −0.502457 0.290093i
\(993\) 533.608 + 472.804i 0.537370 + 0.476137i
\(994\) 1242.59 + 2152.22i 1.25009 + 2.16521i
\(995\) 0 0
\(996\) −916.390 187.151i −0.920070 0.187902i
\(997\) 437.117 757.109i 0.438432 0.759387i −0.559137 0.829076i \(-0.688867\pi\)
0.997569 + 0.0696887i \(0.0222006\pi\)
\(998\) 579.829i 0.580991i
\(999\) −223.809 + 324.095i −0.224033 + 0.324419i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.3.j.e.101.2 20
3.2 odd 2 675.3.j.e.251.9 20
5.2 odd 4 45.3.h.a.29.9 yes 20
5.3 odd 4 45.3.h.a.29.2 yes 20
5.4 even 2 inner 225.3.j.e.101.9 20
9.4 even 3 675.3.j.e.476.9 20
9.5 odd 6 inner 225.3.j.e.176.2 20
15.2 even 4 135.3.h.a.89.2 20
15.8 even 4 135.3.h.a.89.9 20
15.14 odd 2 675.3.j.e.251.2 20
45.2 even 12 405.3.d.a.404.17 20
45.4 even 6 675.3.j.e.476.2 20
45.7 odd 12 405.3.d.a.404.4 20
45.13 odd 12 135.3.h.a.44.2 20
45.14 odd 6 inner 225.3.j.e.176.9 20
45.22 odd 12 135.3.h.a.44.9 20
45.23 even 12 45.3.h.a.14.9 yes 20
45.32 even 12 45.3.h.a.14.2 20
45.38 even 12 405.3.d.a.404.3 20
45.43 odd 12 405.3.d.a.404.18 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.2 20 45.32 even 12
45.3.h.a.14.9 yes 20 45.23 even 12
45.3.h.a.29.2 yes 20 5.3 odd 4
45.3.h.a.29.9 yes 20 5.2 odd 4
135.3.h.a.44.2 20 45.13 odd 12
135.3.h.a.44.9 20 45.22 odd 12
135.3.h.a.89.2 20 15.2 even 4
135.3.h.a.89.9 20 15.8 even 4
225.3.j.e.101.2 20 1.1 even 1 trivial
225.3.j.e.101.9 20 5.4 even 2 inner
225.3.j.e.176.2 20 9.5 odd 6 inner
225.3.j.e.176.9 20 45.14 odd 6 inner
405.3.d.a.404.3 20 45.38 even 12
405.3.d.a.404.4 20 45.7 odd 12
405.3.d.a.404.17 20 45.2 even 12
405.3.d.a.404.18 20 45.43 odd 12
675.3.j.e.251.2 20 15.14 odd 2
675.3.j.e.251.9 20 3.2 odd 2
675.3.j.e.476.2 20 45.4 even 6
675.3.j.e.476.9 20 9.4 even 3