Properties

Label 135.3.h.a.44.9
Level $135$
Weight $3$
Character 135.44
Analytic conductor $3.678$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,3,Mod(44,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.44"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{18} - 19 x^{16} + 66 x^{14} + 109 x^{12} - 813 x^{10} + 981 x^{8} + 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{12} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 44.9
Root \(0.346576 + 1.69702i\) of defining polynomial
Character \(\chi\) \(=\) 135.44
Dual form 135.3.h.a.89.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.42081 + 2.46092i) q^{2} +(-2.03740 + 3.52889i) q^{4} +(-3.58357 + 3.48684i) q^{5} +(-8.42581 + 4.86464i) q^{7} -0.212574 q^{8} +(-13.6724 - 3.86473i) q^{10} +(-0.370966 + 0.214177i) q^{11} +(16.2396 + 9.37595i) q^{13} +(-23.9429 - 13.8235i) q^{14} +(7.84759 + 13.5924i) q^{16} +2.85718 q^{17} +0.530568 q^{19} +(-5.00347 - 19.7501i) q^{20} +(-1.05414 - 0.608611i) q^{22} +(10.8863 - 18.8557i) q^{23} +(0.683961 - 24.9906i) q^{25} +53.2858i q^{26} -39.6450i q^{28} +(21.0633 - 12.1609i) q^{29} +(6.33163 - 10.9667i) q^{31} +(-22.7250 + 39.3609i) q^{32} +(4.05951 + 7.03128i) q^{34} +(13.2323 - 46.8122i) q^{35} +14.5875i q^{37} +(0.753837 + 1.30568i) q^{38} +(0.761774 - 0.741210i) q^{40} +(33.1200 + 19.1218i) q^{41} +(-50.0269 + 28.8831i) q^{43} -1.74546i q^{44} +61.8697 q^{46} +(24.7850 + 42.9289i) q^{47} +(22.8295 - 39.5418i) q^{49} +(62.4716 - 33.8238i) q^{50} +(-66.1734 + 38.2052i) q^{52} -44.5876 q^{53} +(0.582582 - 2.06102i) q^{55} +(1.79111 - 1.03410i) q^{56} +(59.8538 + 34.5566i) q^{58} +(54.6329 + 31.5423i) q^{59} +(11.0823 + 19.1951i) q^{61} +35.9842 q^{62} -66.3710 q^{64} +(-90.8883 + 23.0255i) q^{65} +(-28.1839 - 16.2720i) q^{67} +(-5.82123 + 10.0827i) q^{68} +(134.001 - 33.9477i) q^{70} -89.8896i q^{71} -144.328i q^{73} +(-35.8987 + 20.7261i) q^{74} +(-1.08098 + 1.87232i) q^{76} +(2.08379 - 3.60923i) q^{77} +(-25.1240 - 43.5160i) q^{79} +(-75.5169 - 21.3462i) q^{80} +108.674i q^{82} +(-38.2556 - 66.2606i) q^{83} +(-10.2389 + 9.96251i) q^{85} +(-142.158 - 82.0747i) q^{86} +(0.0788577 - 0.0455285i) q^{88} +28.9588i q^{89} -182.443 q^{91} +(44.3598 + 76.8334i) q^{92} +(-70.4296 + 121.988i) q^{94} +(-1.90133 + 1.85000i) q^{95} +(19.9099 - 11.4950i) q^{97} +129.746 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 18 q^{4} + 12 q^{5} + 4 q^{10} + 24 q^{11} - 30 q^{14} - 26 q^{16} - 8 q^{19} - 144 q^{20} + 2 q^{25} + 114 q^{29} + 28 q^{31} - 4 q^{34} - 34 q^{40} - 102 q^{41} + 116 q^{46} - 40 q^{49} + 408 q^{50}+ \cdots + 762 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.42081 + 2.46092i 0.710405 + 1.23046i 0.964705 + 0.263332i \(0.0848216\pi\)
−0.254300 + 0.967125i \(0.581845\pi\)
\(3\) 0 0
\(4\) −2.03740 + 3.52889i −0.509351 + 0.882222i
\(5\) −3.58357 + 3.48684i −0.716714 + 0.697367i
\(6\) 0 0
\(7\) −8.42581 + 4.86464i −1.20369 + 0.694949i −0.961373 0.275249i \(-0.911240\pi\)
−0.242314 + 0.970198i \(0.577906\pi\)
\(8\) −0.212574 −0.0265717
\(9\) 0 0
\(10\) −13.6724 3.86473i −1.36724 0.386473i
\(11\) −0.370966 + 0.214177i −0.0337242 + 0.0194707i −0.516767 0.856126i \(-0.672865\pi\)
0.483043 + 0.875597i \(0.339531\pi\)
\(12\) 0 0
\(13\) 16.2396 + 9.37595i 1.24920 + 0.721227i 0.970950 0.239281i \(-0.0769117\pi\)
0.278252 + 0.960508i \(0.410245\pi\)
\(14\) −23.9429 13.8235i −1.71021 0.987391i
\(15\) 0 0
\(16\) 7.84759 + 13.5924i 0.490474 + 0.849526i
\(17\) 2.85718 0.168069 0.0840347 0.996463i \(-0.473219\pi\)
0.0840347 + 0.996463i \(0.473219\pi\)
\(18\) 0 0
\(19\) 0.530568 0.0279246 0.0139623 0.999903i \(-0.495556\pi\)
0.0139623 + 0.999903i \(0.495556\pi\)
\(20\) −5.00347 19.7501i −0.250173 0.987505i
\(21\) 0 0
\(22\) −1.05414 0.608611i −0.0479157 0.0276641i
\(23\) 10.8863 18.8557i 0.473319 0.819813i −0.526214 0.850352i \(-0.676389\pi\)
0.999534 + 0.0305388i \(0.00972230\pi\)
\(24\) 0 0
\(25\) 0.683961 24.9906i 0.0273584 0.999626i
\(26\) 53.2858i 2.04945i
\(27\) 0 0
\(28\) 39.6450i 1.41589i
\(29\) 21.0633 12.1609i 0.726320 0.419341i −0.0907547 0.995873i \(-0.528928\pi\)
0.817074 + 0.576532i \(0.195595\pi\)
\(30\) 0 0
\(31\) 6.33163 10.9667i 0.204246 0.353765i −0.745646 0.666342i \(-0.767859\pi\)
0.949892 + 0.312577i \(0.101192\pi\)
\(32\) −22.7250 + 39.3609i −0.710157 + 1.23003i
\(33\) 0 0
\(34\) 4.05951 + 7.03128i 0.119397 + 0.206802i
\(35\) 13.2323 46.8122i 0.378065 1.33749i
\(36\) 0 0
\(37\) 14.5875i 0.394257i 0.980378 + 0.197129i \(0.0631617\pi\)
−0.980378 + 0.197129i \(0.936838\pi\)
\(38\) 0.753837 + 1.30568i 0.0198378 + 0.0343601i
\(39\) 0 0
\(40\) 0.761774 0.741210i 0.0190443 0.0185303i
\(41\) 33.1200 + 19.1218i 0.807804 + 0.466386i 0.846193 0.532877i \(-0.178889\pi\)
−0.0383889 + 0.999263i \(0.512223\pi\)
\(42\) 0 0
\(43\) −50.0269 + 28.8831i −1.16342 + 0.671699i −0.952121 0.305723i \(-0.901102\pi\)
−0.211297 + 0.977422i \(0.567769\pi\)
\(44\) 1.74546i 0.0396696i
\(45\) 0 0
\(46\) 61.8697 1.34499
\(47\) 24.7850 + 42.9289i 0.527341 + 0.913381i 0.999492 + 0.0318635i \(0.0101442\pi\)
−0.472152 + 0.881517i \(0.656522\pi\)
\(48\) 0 0
\(49\) 22.8295 39.5418i 0.465908 0.806976i
\(50\) 62.4716 33.8238i 1.24943 0.676476i
\(51\) 0 0
\(52\) −66.1734 + 38.2052i −1.27256 + 0.734716i
\(53\) −44.5876 −0.841275 −0.420637 0.907229i \(-0.638193\pi\)
−0.420637 + 0.907229i \(0.638193\pi\)
\(54\) 0 0
\(55\) 0.582582 2.06102i 0.0105924 0.0374730i
\(56\) 1.79111 1.03410i 0.0319840 0.0184660i
\(57\) 0 0
\(58\) 59.8538 + 34.5566i 1.03196 + 0.595804i
\(59\) 54.6329 + 31.5423i 0.925981 + 0.534615i 0.885538 0.464567i \(-0.153790\pi\)
0.0404426 + 0.999182i \(0.487123\pi\)
\(60\) 0 0
\(61\) 11.0823 + 19.1951i 0.181677 + 0.314673i 0.942452 0.334343i \(-0.108514\pi\)
−0.760775 + 0.649016i \(0.775181\pi\)
\(62\) 35.9842 0.580390
\(63\) 0 0
\(64\) −66.3710 −1.03705
\(65\) −90.8883 + 23.0255i −1.39828 + 0.354239i
\(66\) 0 0
\(67\) −28.1839 16.2720i −0.420655 0.242866i 0.274702 0.961529i \(-0.411421\pi\)
−0.695358 + 0.718664i \(0.744754\pi\)
\(68\) −5.82123 + 10.0827i −0.0856063 + 0.148274i
\(69\) 0 0
\(70\) 134.001 33.9477i 1.91431 0.484968i
\(71\) 89.8896i 1.26605i −0.774131 0.633025i \(-0.781813\pi\)
0.774131 0.633025i \(-0.218187\pi\)
\(72\) 0 0
\(73\) 144.328i 1.97709i −0.150926 0.988545i \(-0.548225\pi\)
0.150926 0.988545i \(-0.451775\pi\)
\(74\) −35.8987 + 20.7261i −0.485117 + 0.280082i
\(75\) 0 0
\(76\) −1.08098 + 1.87232i −0.0142234 + 0.0246357i
\(77\) 2.08379 3.60923i 0.0270622 0.0468732i
\(78\) 0 0
\(79\) −25.1240 43.5160i −0.318025 0.550836i 0.662051 0.749459i \(-0.269686\pi\)
−0.980076 + 0.198623i \(0.936353\pi\)
\(80\) −75.5169 21.3462i −0.943961 0.266827i
\(81\) 0 0
\(82\) 108.674i 1.32529i
\(83\) −38.2556 66.2606i −0.460911 0.798321i 0.538096 0.842884i \(-0.319144\pi\)
−0.999007 + 0.0445628i \(0.985811\pi\)
\(84\) 0 0
\(85\) −10.2389 + 9.96251i −0.120458 + 0.117206i
\(86\) −142.158 82.0747i −1.65300 0.954357i
\(87\) 0 0
\(88\) 0.0788577 0.0455285i 0.000896110 0.000517369i
\(89\) 28.9588i 0.325379i 0.986677 + 0.162690i \(0.0520169\pi\)
−0.986677 + 0.162690i \(0.947983\pi\)
\(90\) 0 0
\(91\) −182.443 −2.00486
\(92\) 44.3598 + 76.8334i 0.482171 + 0.835145i
\(93\) 0 0
\(94\) −70.4296 + 121.988i −0.749251 + 1.29774i
\(95\) −1.90133 + 1.85000i −0.0200140 + 0.0194737i
\(96\) 0 0
\(97\) 19.9099 11.4950i 0.205257 0.118505i −0.393848 0.919175i \(-0.628857\pi\)
0.599105 + 0.800670i \(0.295523\pi\)
\(98\) 129.746 1.32393
\(99\) 0 0
\(100\) 86.7956 + 53.3296i 0.867956 + 0.533296i
\(101\) 49.7337 28.7138i 0.492413 0.284295i −0.233162 0.972438i \(-0.574907\pi\)
0.725575 + 0.688143i \(0.241574\pi\)
\(102\) 0 0
\(103\) 74.6430 + 43.0952i 0.724689 + 0.418400i 0.816476 0.577379i \(-0.195924\pi\)
−0.0917868 + 0.995779i \(0.529258\pi\)
\(104\) −3.45212 1.99308i −0.0331935 0.0191643i
\(105\) 0 0
\(106\) −63.3504 109.726i −0.597646 1.03515i
\(107\) −97.0919 −0.907401 −0.453701 0.891154i \(-0.649896\pi\)
−0.453701 + 0.891154i \(0.649896\pi\)
\(108\) 0 0
\(109\) 164.495 1.50913 0.754565 0.656225i \(-0.227848\pi\)
0.754565 + 0.656225i \(0.227848\pi\)
\(110\) 5.89973 1.49463i 0.0536339 0.0135875i
\(111\) 0 0
\(112\) −132.245 76.3514i −1.18075 0.681709i
\(113\) −21.4024 + 37.0700i −0.189401 + 0.328053i −0.945051 0.326924i \(-0.893988\pi\)
0.755649 + 0.654976i \(0.227321\pi\)
\(114\) 0 0
\(115\) 26.7347 + 105.530i 0.232476 + 0.917649i
\(116\) 99.1065i 0.854366i
\(117\) 0 0
\(118\) 179.262i 1.51917i
\(119\) −24.0740 + 13.8992i −0.202303 + 0.116800i
\(120\) 0 0
\(121\) −60.4083 + 104.630i −0.499242 + 0.864712i
\(122\) −31.4916 + 54.5451i −0.258128 + 0.447091i
\(123\) 0 0
\(124\) 25.8002 + 44.6872i 0.208066 + 0.360381i
\(125\) 84.6872 + 91.9406i 0.677498 + 0.735525i
\(126\) 0 0
\(127\) 78.7223i 0.619861i 0.950759 + 0.309931i \(0.100306\pi\)
−0.950759 + 0.309931i \(0.899694\pi\)
\(128\) −3.40059 5.88999i −0.0265671 0.0460155i
\(129\) 0 0
\(130\) −185.799 190.953i −1.42922 1.46887i
\(131\) −158.295 91.3914i −1.20836 0.697644i −0.245956 0.969281i \(-0.579102\pi\)
−0.962400 + 0.271637i \(0.912435\pi\)
\(132\) 0 0
\(133\) −4.47047 + 2.58103i −0.0336125 + 0.0194062i
\(134\) 92.4776i 0.690132i
\(135\) 0 0
\(136\) −0.607362 −0.00446589
\(137\) −2.78196 4.81850i −0.0203063 0.0351715i 0.855694 0.517483i \(-0.173131\pi\)
−0.876000 + 0.482311i \(0.839797\pi\)
\(138\) 0 0
\(139\) 84.9601 147.155i 0.611224 1.05867i −0.379810 0.925064i \(-0.624011\pi\)
0.991034 0.133607i \(-0.0426559\pi\)
\(140\) 138.235 + 142.071i 0.987396 + 1.01479i
\(141\) 0 0
\(142\) 221.211 127.716i 1.55782 0.899409i
\(143\) −8.03247 −0.0561711
\(144\) 0 0
\(145\) −33.0787 + 117.024i −0.228129 + 0.807059i
\(146\) 355.178 205.062i 2.43273 1.40454i
\(147\) 0 0
\(148\) −51.4777 29.7207i −0.347822 0.200815i
\(149\) 69.9180 + 40.3672i 0.469249 + 0.270921i 0.715925 0.698177i \(-0.246005\pi\)
−0.246677 + 0.969098i \(0.579339\pi\)
\(150\) 0 0
\(151\) −44.1372 76.4478i −0.292299 0.506277i 0.682054 0.731302i \(-0.261087\pi\)
−0.974353 + 0.225025i \(0.927754\pi\)
\(152\) −0.112785 −0.000742006
\(153\) 0 0
\(154\) 11.8427 0.0769006
\(155\) 15.5492 + 61.3773i 0.100318 + 0.395983i
\(156\) 0 0
\(157\) 54.3401 + 31.3732i 0.346115 + 0.199830i 0.662973 0.748643i \(-0.269294\pi\)
−0.316858 + 0.948473i \(0.602628\pi\)
\(158\) 71.3929 123.656i 0.451854 0.782633i
\(159\) 0 0
\(160\) −55.8082 220.291i −0.348801 1.37682i
\(161\) 211.833i 1.31573i
\(162\) 0 0
\(163\) 241.437i 1.48121i −0.671941 0.740605i \(-0.734539\pi\)
0.671941 0.740605i \(-0.265461\pi\)
\(164\) −134.957 + 77.9177i −0.822911 + 0.475108i
\(165\) 0 0
\(166\) 108.708 188.288i 0.654867 1.13426i
\(167\) 66.5872 115.332i 0.398726 0.690613i −0.594843 0.803842i \(-0.702786\pi\)
0.993569 + 0.113229i \(0.0361193\pi\)
\(168\) 0 0
\(169\) 91.3170 + 158.166i 0.540338 + 0.935892i
\(170\) −39.0644 11.0422i −0.229791 0.0649543i
\(171\) 0 0
\(172\) 235.386i 1.36852i
\(173\) 33.5211 + 58.0603i 0.193764 + 0.335609i 0.946495 0.322720i \(-0.104597\pi\)
−0.752731 + 0.658328i \(0.771264\pi\)
\(174\) 0 0
\(175\) 115.808 + 213.894i 0.661758 + 1.22225i
\(176\) −5.82238 3.36155i −0.0330817 0.0190997i
\(177\) 0 0
\(178\) −71.2651 + 41.1449i −0.400366 + 0.231151i
\(179\) 37.9613i 0.212074i −0.994362 0.106037i \(-0.966184\pi\)
0.994362 0.106037i \(-0.0338162\pi\)
\(180\) 0 0
\(181\) 278.012 1.53598 0.767990 0.640462i \(-0.221257\pi\)
0.767990 + 0.640462i \(0.221257\pi\)
\(182\) −259.216 448.976i −1.42427 2.46690i
\(183\) 0 0
\(184\) −2.31415 + 4.00823i −0.0125769 + 0.0217839i
\(185\) −50.8643 52.2754i −0.274942 0.282570i
\(186\) 0 0
\(187\) −1.05992 + 0.611943i −0.00566800 + 0.00327242i
\(188\) −201.988 −1.07441
\(189\) 0 0
\(190\) −7.25413 2.05051i −0.0381796 0.0107921i
\(191\) −50.4943 + 29.1529i −0.264368 + 0.152633i −0.626326 0.779562i \(-0.715442\pi\)
0.361957 + 0.932195i \(0.382109\pi\)
\(192\) 0 0
\(193\) −109.611 63.2837i −0.567930 0.327895i 0.188392 0.982094i \(-0.439672\pi\)
−0.756322 + 0.654199i \(0.773006\pi\)
\(194\) 56.5764 + 32.6644i 0.291631 + 0.168373i
\(195\) 0 0
\(196\) 93.0258 + 161.125i 0.474621 + 0.822068i
\(197\) 335.557 1.70333 0.851667 0.524083i \(-0.175592\pi\)
0.851667 + 0.524083i \(0.175592\pi\)
\(198\) 0 0
\(199\) −127.161 −0.638998 −0.319499 0.947587i \(-0.603515\pi\)
−0.319499 + 0.947587i \(0.603515\pi\)
\(200\) −0.145392 + 5.31236i −0.000726961 + 0.0265618i
\(201\) 0 0
\(202\) 141.324 + 81.5937i 0.699626 + 0.403929i
\(203\) −118.317 + 204.931i −0.582841 + 1.00951i
\(204\) 0 0
\(205\) −185.362 + 46.9594i −0.904206 + 0.229070i
\(206\) 244.920i 1.18893i
\(207\) 0 0
\(208\) 294.314i 1.41497i
\(209\) −0.196823 + 0.113636i −0.000941736 + 0.000543712i
\(210\) 0 0
\(211\) −48.8580 + 84.6246i −0.231555 + 0.401064i −0.958266 0.285879i \(-0.907715\pi\)
0.726711 + 0.686943i \(0.241048\pi\)
\(212\) 90.8428 157.344i 0.428504 0.742191i
\(213\) 0 0
\(214\) −137.949 238.935i −0.644623 1.11652i
\(215\) 78.5646 277.940i 0.365417 1.29275i
\(216\) 0 0
\(217\) 123.204i 0.567762i
\(218\) 233.716 + 404.809i 1.07209 + 1.85692i
\(219\) 0 0
\(220\) 6.08614 + 6.25499i 0.0276643 + 0.0284318i
\(221\) 46.3995 + 26.7888i 0.209953 + 0.121216i
\(222\) 0 0
\(223\) −80.9094 + 46.7130i −0.362822 + 0.209476i −0.670318 0.742074i \(-0.733842\pi\)
0.307496 + 0.951549i \(0.400509\pi\)
\(224\) 442.196i 1.97409i
\(225\) 0 0
\(226\) −121.635 −0.538207
\(227\) 98.9949 + 171.464i 0.436101 + 0.755349i 0.997385 0.0722743i \(-0.0230257\pi\)
−0.561284 + 0.827623i \(0.689692\pi\)
\(228\) 0 0
\(229\) −90.6197 + 156.958i −0.395719 + 0.685406i −0.993193 0.116483i \(-0.962838\pi\)
0.597473 + 0.801889i \(0.296171\pi\)
\(230\) −221.715 + 215.730i −0.963976 + 0.937955i
\(231\) 0 0
\(232\) −4.47750 + 2.58509i −0.0192996 + 0.0111426i
\(233\) −178.525 −0.766202 −0.383101 0.923706i \(-0.625144\pi\)
−0.383101 + 0.923706i \(0.625144\pi\)
\(234\) 0 0
\(235\) −238.505 67.4175i −1.01491 0.286883i
\(236\) −222.618 + 128.529i −0.943298 + 0.544613i
\(237\) 0 0
\(238\) −68.4093 39.4961i −0.287434 0.165950i
\(239\) −13.2157 7.63006i −0.0552956 0.0319250i 0.472097 0.881546i \(-0.343497\pi\)
−0.527393 + 0.849621i \(0.676830\pi\)
\(240\) 0 0
\(241\) 159.583 + 276.406i 0.662170 + 1.14691i 0.980044 + 0.198779i \(0.0636976\pi\)
−0.317874 + 0.948133i \(0.602969\pi\)
\(242\) −343.315 −1.41866
\(243\) 0 0
\(244\) −90.3163 −0.370149
\(245\) 56.0648 + 221.304i 0.228836 + 0.903280i
\(246\) 0 0
\(247\) 8.61623 + 4.97458i 0.0348835 + 0.0201400i
\(248\) −1.34594 + 2.33123i −0.00542717 + 0.00940014i
\(249\) 0 0
\(250\) −105.934 + 339.038i −0.423734 + 1.35615i
\(251\) 95.3404i 0.379842i 0.981799 + 0.189921i \(0.0608232\pi\)
−0.981799 + 0.189921i \(0.939177\pi\)
\(252\) 0 0
\(253\) 9.32644i 0.0368634i
\(254\) −193.729 + 111.850i −0.762713 + 0.440352i
\(255\) 0 0
\(256\) −123.079 + 213.179i −0.480777 + 0.832730i
\(257\) 3.96637 6.86996i 0.0154334 0.0267313i −0.858206 0.513306i \(-0.828421\pi\)
0.873639 + 0.486575i \(0.161754\pi\)
\(258\) 0 0
\(259\) −70.9631 122.912i −0.273989 0.474562i
\(260\) 103.922 367.647i 0.399699 1.41403i
\(261\) 0 0
\(262\) 519.399i 1.98244i
\(263\) −205.189 355.399i −0.780188 1.35133i −0.931832 0.362890i \(-0.881790\pi\)
0.151644 0.988435i \(-0.451543\pi\)
\(264\) 0 0
\(265\) 159.783 155.469i 0.602953 0.586677i
\(266\) −12.7034 7.33429i −0.0477570 0.0275725i
\(267\) 0 0
\(268\) 114.844 66.3052i 0.428522 0.247408i
\(269\) 201.081i 0.747513i 0.927527 + 0.373757i \(0.121930\pi\)
−0.927527 + 0.373757i \(0.878070\pi\)
\(270\) 0 0
\(271\) 121.070 0.446751 0.223376 0.974732i \(-0.428292\pi\)
0.223376 + 0.974732i \(0.428292\pi\)
\(272\) 22.4220 + 38.8360i 0.0824337 + 0.142779i
\(273\) 0 0
\(274\) 7.90527 13.6923i 0.0288514 0.0499720i
\(275\) 5.09870 + 9.41717i 0.0185407 + 0.0342443i
\(276\) 0 0
\(277\) 290.125 167.504i 1.04738 0.604707i 0.125468 0.992098i \(-0.459957\pi\)
0.921916 + 0.387391i \(0.126624\pi\)
\(278\) 482.849 1.73687
\(279\) 0 0
\(280\) −2.81284 + 9.95105i −0.0100458 + 0.0355395i
\(281\) −120.265 + 69.4349i −0.427989 + 0.247099i −0.698489 0.715620i \(-0.746144\pi\)
0.270501 + 0.962720i \(0.412811\pi\)
\(282\) 0 0
\(283\) 83.8352 + 48.4023i 0.296237 + 0.171033i 0.640751 0.767748i \(-0.278623\pi\)
−0.344514 + 0.938781i \(0.611956\pi\)
\(284\) 317.210 + 183.141i 1.11694 + 0.644864i
\(285\) 0 0
\(286\) −11.4126 19.7672i −0.0399042 0.0691162i
\(287\) −372.083 −1.29646
\(288\) 0 0
\(289\) −280.837 −0.971753
\(290\) −334.984 + 84.8643i −1.15512 + 0.292636i
\(291\) 0 0
\(292\) 509.316 + 294.054i 1.74423 + 1.00703i
\(293\) 192.539 333.488i 0.657131 1.13818i −0.324224 0.945980i \(-0.605103\pi\)
0.981355 0.192204i \(-0.0615635\pi\)
\(294\) 0 0
\(295\) −305.764 + 77.4617i −1.03649 + 0.262582i
\(296\) 3.10093i 0.0104761i
\(297\) 0 0
\(298\) 229.417i 0.769854i
\(299\) 353.580 204.140i 1.18254 0.682742i
\(300\) 0 0
\(301\) 281.012 486.726i 0.933593 1.61703i
\(302\) 125.421 217.236i 0.415302 0.719324i
\(303\) 0 0
\(304\) 4.16368 + 7.21171i 0.0136963 + 0.0237227i
\(305\) −106.644 30.1448i −0.349653 0.0988354i
\(306\) 0 0
\(307\) 207.311i 0.675281i −0.941275 0.337641i \(-0.890371\pi\)
0.941275 0.337641i \(-0.109629\pi\)
\(308\) 8.49105 + 14.7069i 0.0275684 + 0.0477498i
\(309\) 0 0
\(310\) −128.952 + 125.471i −0.415974 + 0.404745i
\(311\) −140.437 81.0816i −0.451567 0.260712i 0.256925 0.966431i \(-0.417291\pi\)
−0.708492 + 0.705719i \(0.750624\pi\)
\(312\) 0 0
\(313\) 196.427 113.407i 0.627561 0.362322i −0.152246 0.988343i \(-0.548651\pi\)
0.779807 + 0.626020i \(0.215317\pi\)
\(314\) 178.302i 0.567840i
\(315\) 0 0
\(316\) 204.751 0.647946
\(317\) −244.388 423.293i −0.770941 1.33531i −0.937048 0.349200i \(-0.886453\pi\)
0.166108 0.986108i \(-0.446880\pi\)
\(318\) 0 0
\(319\) −5.20917 + 9.02255i −0.0163297 + 0.0282839i
\(320\) 237.845 231.425i 0.743267 0.723203i
\(321\) 0 0
\(322\) −521.302 + 300.974i −1.61895 + 0.934702i
\(323\) 1.51593 0.00469328
\(324\) 0 0
\(325\) 245.418 399.426i 0.755134 1.22900i
\(326\) 594.157 343.036i 1.82257 1.05226i
\(327\) 0 0
\(328\) −7.04044 4.06480i −0.0214647 0.0123927i
\(329\) −417.667 241.140i −1.26951 0.732950i
\(330\) 0 0
\(331\) −118.823 205.808i −0.358982 0.621775i 0.628809 0.777560i \(-0.283543\pi\)
−0.987791 + 0.155785i \(0.950209\pi\)
\(332\) 311.768 0.939061
\(333\) 0 0
\(334\) 378.431 1.13303
\(335\) 157.737 39.9608i 0.470856 0.119286i
\(336\) 0 0
\(337\) −244.250 141.018i −0.724777 0.418450i 0.0917314 0.995784i \(-0.470760\pi\)
−0.816508 + 0.577334i \(0.804093\pi\)
\(338\) −259.488 + 449.447i −0.767717 + 1.32973i
\(339\) 0 0
\(340\) −14.2958 56.4296i −0.0420465 0.165969i
\(341\) 5.42437i 0.0159072i
\(342\) 0 0
\(343\) 32.5057i 0.0947688i
\(344\) 10.6344 6.13979i 0.0309140 0.0178482i
\(345\) 0 0
\(346\) −95.2543 + 164.985i −0.275302 + 0.476836i
\(347\) −219.985 + 381.026i −0.633963 + 1.09806i 0.352771 + 0.935710i \(0.385240\pi\)
−0.986734 + 0.162347i \(0.948094\pi\)
\(348\) 0 0
\(349\) 48.6291 + 84.2280i 0.139338 + 0.241341i 0.927246 0.374452i \(-0.122169\pi\)
−0.787908 + 0.615793i \(0.788836\pi\)
\(350\) −361.833 + 588.895i −1.03381 + 1.68256i
\(351\) 0 0
\(352\) 19.4687i 0.0553089i
\(353\) −49.0978 85.0399i −0.139087 0.240906i 0.788064 0.615593i \(-0.211084\pi\)
−0.927151 + 0.374687i \(0.877750\pi\)
\(354\) 0 0
\(355\) 313.430 + 322.126i 0.882902 + 0.907396i
\(356\) −102.192 59.0007i −0.287057 0.165732i
\(357\) 0 0
\(358\) 93.4195 53.9358i 0.260948 0.150659i
\(359\) 500.068i 1.39295i 0.717582 + 0.696474i \(0.245249\pi\)
−0.717582 + 0.696474i \(0.754751\pi\)
\(360\) 0 0
\(361\) −360.718 −0.999220
\(362\) 395.003 + 684.165i 1.09117 + 1.88996i
\(363\) 0 0
\(364\) 371.709 643.819i 1.02118 1.76873i
\(365\) 503.246 + 517.208i 1.37876 + 1.41701i
\(366\) 0 0
\(367\) −296.023 + 170.909i −0.806603 + 0.465692i −0.845775 0.533540i \(-0.820861\pi\)
0.0391718 + 0.999232i \(0.487528\pi\)
\(368\) 341.726 0.928604
\(369\) 0 0
\(370\) 56.3769 199.446i 0.152370 0.539044i
\(371\) 375.686 216.902i 1.01263 0.584643i
\(372\) 0 0
\(373\) −529.179 305.522i −1.41871 0.819093i −0.422525 0.906351i \(-0.638856\pi\)
−0.996186 + 0.0872584i \(0.972189\pi\)
\(374\) −3.01188 1.73891i −0.00805316 0.00464949i
\(375\) 0 0
\(376\) −5.26865 9.12556i −0.0140124 0.0242701i
\(377\) 456.080 1.20976
\(378\) 0 0
\(379\) 187.436 0.494555 0.247277 0.968945i \(-0.420464\pi\)
0.247277 + 0.968945i \(0.420464\pi\)
\(380\) −2.65468 10.4788i −0.00698600 0.0275757i
\(381\) 0 0
\(382\) −143.486 82.8415i −0.375617 0.216863i
\(383\) −73.9088 + 128.014i −0.192973 + 0.334240i −0.946234 0.323482i \(-0.895146\pi\)
0.753261 + 0.657722i \(0.228480\pi\)
\(384\) 0 0
\(385\) 5.11739 + 20.1998i 0.0132919 + 0.0524670i
\(386\) 359.656i 0.931752i
\(387\) 0 0
\(388\) 93.6797i 0.241442i
\(389\) 397.890 229.722i 1.02285 0.590545i 0.107924 0.994159i \(-0.465580\pi\)
0.914929 + 0.403615i \(0.132246\pi\)
\(390\) 0 0
\(391\) 31.1042 53.8741i 0.0795505 0.137786i
\(392\) −4.85295 + 8.40556i −0.0123800 + 0.0214428i
\(393\) 0 0
\(394\) 476.763 + 825.777i 1.21006 + 2.09588i
\(395\) 241.767 + 68.3396i 0.612068 + 0.173012i
\(396\) 0 0
\(397\) 718.905i 1.81084i 0.424512 + 0.905422i \(0.360446\pi\)
−0.424512 + 0.905422i \(0.639554\pi\)
\(398\) −180.671 312.932i −0.453948 0.786260i
\(399\) 0 0
\(400\) 345.051 186.820i 0.862627 0.467049i
\(401\) 65.5957 + 37.8717i 0.163580 + 0.0944431i 0.579555 0.814933i \(-0.303226\pi\)
−0.415975 + 0.909376i \(0.636560\pi\)
\(402\) 0 0
\(403\) 205.647 118.730i 0.510289 0.294616i
\(404\) 234.006i 0.579223i
\(405\) 0 0
\(406\) −672.422 −1.65621
\(407\) −3.12432 5.41148i −0.00767646 0.0132960i
\(408\) 0 0
\(409\) −255.035 + 441.733i −0.623556 + 1.08003i 0.365262 + 0.930905i \(0.380979\pi\)
−0.988818 + 0.149126i \(0.952354\pi\)
\(410\) −378.928 389.441i −0.924214 0.949855i
\(411\) 0 0
\(412\) −304.156 + 175.604i −0.738242 + 0.426224i
\(413\) −613.768 −1.48612
\(414\) 0 0
\(415\) 368.132 + 104.059i 0.887064 + 0.250744i
\(416\) −738.092 + 426.137i −1.77426 + 1.02437i
\(417\) 0 0
\(418\) −0.559296 0.322910i −0.00133803 0.000772511i
\(419\) −603.768 348.586i −1.44097 0.831947i −0.443060 0.896492i \(-0.646107\pi\)
−0.997915 + 0.0645450i \(0.979440\pi\)
\(420\) 0 0
\(421\) −378.410 655.425i −0.898836 1.55683i −0.828984 0.559272i \(-0.811081\pi\)
−0.0698516 0.997557i \(-0.522253\pi\)
\(422\) −277.672 −0.657990
\(423\) 0 0
\(424\) 9.47815 0.0223541
\(425\) 1.95420 71.4027i 0.00459812 0.168006i
\(426\) 0 0
\(427\) −186.754 107.823i −0.437364 0.252512i
\(428\) 197.815 342.626i 0.462186 0.800529i
\(429\) 0 0
\(430\) 795.613 201.560i 1.85026 0.468743i
\(431\) 497.875i 1.15516i −0.816333 0.577581i \(-0.803997\pi\)
0.816333 0.577581i \(-0.196003\pi\)
\(432\) 0 0
\(433\) 421.645i 0.973775i 0.873465 + 0.486888i \(0.161868\pi\)
−0.873465 + 0.486888i \(0.838132\pi\)
\(434\) −303.196 + 175.050i −0.698608 + 0.403341i
\(435\) 0 0
\(436\) −335.143 + 580.485i −0.768677 + 1.33139i
\(437\) 5.77595 10.0042i 0.0132173 0.0228930i
\(438\) 0 0
\(439\) −228.743 396.195i −0.521055 0.902494i −0.999700 0.0244857i \(-0.992205\pi\)
0.478645 0.878009i \(-0.341128\pi\)
\(440\) −0.123842 + 0.438118i −0.000281458 + 0.000995724i
\(441\) 0 0
\(442\) 152.247i 0.344450i
\(443\) 116.136 + 201.153i 0.262157 + 0.454069i 0.966815 0.255478i \(-0.0822328\pi\)
−0.704658 + 0.709547i \(0.748899\pi\)
\(444\) 0 0
\(445\) −100.974 103.776i −0.226909 0.233204i
\(446\) −229.914 132.741i −0.515502 0.297625i
\(447\) 0 0
\(448\) 559.230 322.871i 1.24828 0.720695i
\(449\) 678.345i 1.51079i −0.655269 0.755395i \(-0.727445\pi\)
0.655269 0.755395i \(-0.272555\pi\)
\(450\) 0 0
\(451\) −16.3818 −0.0363234
\(452\) −87.2105 151.053i −0.192943 0.334188i
\(453\) 0 0
\(454\) −281.306 + 487.236i −0.619617 + 1.07321i
\(455\) 653.796 636.148i 1.43691 1.39813i
\(456\) 0 0
\(457\) 637.008 367.777i 1.39389 0.804763i 0.400147 0.916451i \(-0.368959\pi\)
0.993743 + 0.111688i \(0.0356258\pi\)
\(458\) −515.014 −1.12448
\(459\) 0 0
\(460\) −426.872 120.663i −0.927982 0.262310i
\(461\) −344.752 + 199.043i −0.747835 + 0.431763i −0.824911 0.565263i \(-0.808775\pi\)
0.0770763 + 0.997025i \(0.475441\pi\)
\(462\) 0 0
\(463\) −139.076 80.2955i −0.300380 0.173424i 0.342234 0.939615i \(-0.388817\pi\)
−0.642613 + 0.766191i \(0.722150\pi\)
\(464\) 330.592 + 190.867i 0.712482 + 0.411352i
\(465\) 0 0
\(466\) −253.650 439.335i −0.544314 0.942780i
\(467\) 406.660 0.870792 0.435396 0.900239i \(-0.356608\pi\)
0.435396 + 0.900239i \(0.356608\pi\)
\(468\) 0 0
\(469\) 316.630 0.675117
\(470\) −172.961 682.728i −0.368003 1.45261i
\(471\) 0 0
\(472\) −11.6135 6.70507i −0.0246049 0.0142057i
\(473\) 12.3722 21.4293i 0.0261569 0.0453050i
\(474\) 0 0
\(475\) 0.362888 13.2592i 0.000763975 0.0279142i
\(476\) 113.273i 0.237968i
\(477\) 0 0
\(478\) 43.3635i 0.0907186i
\(479\) −731.450 + 422.303i −1.52704 + 0.881635i −0.527552 + 0.849523i \(0.676890\pi\)
−0.999484 + 0.0321123i \(0.989777\pi\)
\(480\) 0 0
\(481\) −136.772 + 236.896i −0.284349 + 0.492507i
\(482\) −453.474 + 785.440i −0.940818 + 1.62954i
\(483\) 0 0
\(484\) −246.152 426.348i −0.508579 0.880884i
\(485\) −31.2674 + 110.616i −0.0644689 + 0.228073i
\(486\) 0 0
\(487\) 225.518i 0.463075i 0.972826 + 0.231538i \(0.0743757\pi\)
−0.972826 + 0.231538i \(0.925624\pi\)
\(488\) −2.35580 4.08037i −0.00482746 0.00836141i
\(489\) 0 0
\(490\) −464.952 + 452.401i −0.948882 + 0.923268i
\(491\) 662.639 + 382.575i 1.34957 + 0.779175i 0.988189 0.153243i \(-0.0489717\pi\)
0.361382 + 0.932418i \(0.382305\pi\)
\(492\) 0 0
\(493\) 60.1815 34.7458i 0.122072 0.0704783i
\(494\) 28.2718i 0.0572303i
\(495\) 0 0
\(496\) 198.752 0.400710
\(497\) 437.281 + 757.392i 0.879841 + 1.52393i
\(498\) 0 0
\(499\) 102.024 176.711i 0.204458 0.354131i −0.745502 0.666503i \(-0.767790\pi\)
0.949960 + 0.312372i \(0.101124\pi\)
\(500\) −496.990 + 111.532i −0.993980 + 0.223063i
\(501\) 0 0
\(502\) −234.625 + 135.461i −0.467380 + 0.269842i
\(503\) 585.545 1.16411 0.582053 0.813151i \(-0.302250\pi\)
0.582053 + 0.813151i \(0.302250\pi\)
\(504\) 0 0
\(505\) −78.1041 + 276.311i −0.154662 + 0.547151i
\(506\) −22.9516 + 13.2511i −0.0453588 + 0.0261879i
\(507\) 0 0
\(508\) −277.802 160.389i −0.546855 0.315727i
\(509\) −10.3361 5.96756i −0.0203067 0.0117241i 0.489812 0.871828i \(-0.337065\pi\)
−0.510119 + 0.860104i \(0.670399\pi\)
\(510\) 0 0
\(511\) 702.102 + 1216.08i 1.37398 + 2.37980i
\(512\) −726.692 −1.41932
\(513\) 0 0
\(514\) 22.5418 0.0438557
\(515\) −417.754 + 105.833i −0.811173 + 0.205502i
\(516\) 0 0
\(517\) −18.3888 10.6168i −0.0355683 0.0205354i
\(518\) 201.650 349.268i 0.389286 0.674263i
\(519\) 0 0
\(520\) 19.3205 4.89462i 0.0371548 0.00941274i
\(521\) 541.869i 1.04006i −0.854149 0.520028i \(-0.825922\pi\)
0.854149 0.520028i \(-0.174078\pi\)
\(522\) 0 0
\(523\) 356.100i 0.680880i −0.940266 0.340440i \(-0.889424\pi\)
0.940266 0.340440i \(-0.110576\pi\)
\(524\) 645.020 372.402i 1.23095 0.710692i
\(525\) 0 0
\(526\) 583.071 1009.91i 1.10850 1.91998i
\(527\) 18.0906 31.3338i 0.0343275 0.0594570i
\(528\) 0 0
\(529\) 27.4749 + 47.5879i 0.0519374 + 0.0899582i
\(530\) 609.618 + 172.319i 1.15022 + 0.325130i
\(531\) 0 0
\(532\) 21.0344i 0.0395383i
\(533\) 358.571 + 621.062i 0.672740 + 1.16522i
\(534\) 0 0
\(535\) 347.936 338.544i 0.650347 0.632792i
\(536\) 5.99116 + 3.45900i 0.0111775 + 0.00645336i
\(537\) 0 0
\(538\) −494.843 + 285.698i −0.919783 + 0.531037i
\(539\) 19.5582i 0.0362862i
\(540\) 0 0
\(541\) 378.892 0.700355 0.350178 0.936683i \(-0.386121\pi\)
0.350178 + 0.936683i \(0.386121\pi\)
\(542\) 172.017 + 297.942i 0.317375 + 0.549709i
\(543\) 0 0
\(544\) −64.9294 + 112.461i −0.119356 + 0.206730i
\(545\) −589.480 + 573.568i −1.08161 + 1.05242i
\(546\) 0 0
\(547\) −484.407 + 279.673i −0.885571 + 0.511285i −0.872491 0.488630i \(-0.837497\pi\)
−0.0130799 + 0.999914i \(0.504164\pi\)
\(548\) 22.6719 0.0413721
\(549\) 0 0
\(550\) −15.9306 + 25.9275i −0.0289647 + 0.0471409i
\(551\) 11.1755 6.45218i 0.0202822 0.0117099i
\(552\) 0 0
\(553\) 423.380 + 244.439i 0.765606 + 0.442023i
\(554\) 824.426 + 475.982i 1.48813 + 0.859174i
\(555\) 0 0
\(556\) 346.196 + 599.629i 0.622655 + 1.07847i
\(557\) −471.971 −0.847345 −0.423673 0.905815i \(-0.639259\pi\)
−0.423673 + 0.905815i \(0.639259\pi\)
\(558\) 0 0
\(559\) −1083.23 −1.93779
\(560\) 740.132 187.504i 1.32167 0.334829i
\(561\) 0 0
\(562\) −341.747 197.308i −0.608090 0.351081i
\(563\) 247.289 428.316i 0.439234 0.760775i −0.558397 0.829574i \(-0.688583\pi\)
0.997631 + 0.0687990i \(0.0219167\pi\)
\(564\) 0 0
\(565\) −52.5600 207.469i −0.0930265 0.367202i
\(566\) 275.082i 0.486010i
\(567\) 0 0
\(568\) 19.1082i 0.0336412i
\(569\) −143.305 + 82.7370i −0.251853 + 0.145408i −0.620613 0.784117i \(-0.713116\pi\)
0.368759 + 0.929525i \(0.379783\pi\)
\(570\) 0 0
\(571\) −25.5302 + 44.2195i −0.0447113 + 0.0774423i −0.887515 0.460779i \(-0.847570\pi\)
0.842804 + 0.538221i \(0.180903\pi\)
\(572\) 16.3654 28.3457i 0.0286108 0.0495554i
\(573\) 0 0
\(574\) −528.660 915.665i −0.921010 1.59524i
\(575\) −463.770 284.953i −0.806557 0.495571i
\(576\) 0 0
\(577\) 707.833i 1.22675i 0.789793 + 0.613373i \(0.210188\pi\)
−0.789793 + 0.613373i \(0.789812\pi\)
\(578\) −399.015 691.115i −0.690338 1.19570i
\(579\) 0 0
\(580\) −345.568 355.155i −0.595807 0.612337i
\(581\) 644.669 + 372.200i 1.10958 + 0.640619i
\(582\) 0 0
\(583\) 16.5405 9.54964i 0.0283713 0.0163802i
\(584\) 30.6803i 0.0525347i
\(585\) 0 0
\(586\) 1094.25 1.86732
\(587\) −226.251 391.878i −0.385436 0.667594i 0.606394 0.795164i \(-0.292615\pi\)
−0.991830 + 0.127570i \(0.959282\pi\)
\(588\) 0 0
\(589\) 3.35936 5.81859i 0.00570350 0.00987875i
\(590\) −625.059 642.400i −1.05942 1.08881i
\(591\) 0 0
\(592\) −198.280 + 114.477i −0.334932 + 0.193373i
\(593\) −227.811 −0.384168 −0.192084 0.981379i \(-0.561525\pi\)
−0.192084 + 0.981379i \(0.561525\pi\)
\(594\) 0 0
\(595\) 37.8070 133.751i 0.0635411 0.224791i
\(596\) −284.903 + 164.489i −0.478024 + 0.275988i
\(597\) 0 0
\(598\) 1004.74 + 580.088i 1.68017 + 0.970047i
\(599\) 484.611 + 279.790i 0.809033 + 0.467096i 0.846620 0.532198i \(-0.178634\pi\)
−0.0375869 + 0.999293i \(0.511967\pi\)
\(600\) 0 0
\(601\) −335.271 580.707i −0.557856 0.966235i −0.997675 0.0681485i \(-0.978291\pi\)
0.439819 0.898086i \(-0.355043\pi\)
\(602\) 1597.06 2.65292
\(603\) 0 0
\(604\) 359.701 0.595532
\(605\) −148.351 585.583i −0.245208 0.967906i
\(606\) 0 0
\(607\) −864.308 499.009i −1.42390 0.822090i −0.427272 0.904123i \(-0.640525\pi\)
−0.996630 + 0.0820329i \(0.973859\pi\)
\(608\) −12.0572 + 20.8836i −0.0198309 + 0.0343481i
\(609\) 0 0
\(610\) −77.3373 305.272i −0.126782 0.500446i
\(611\) 929.533i 1.52133i
\(612\) 0 0
\(613\) 229.314i 0.374086i −0.982352 0.187043i \(-0.940110\pi\)
0.982352 0.187043i \(-0.0598903\pi\)
\(614\) 510.176 294.550i 0.830905 0.479723i
\(615\) 0 0
\(616\) −0.442960 + 0.767229i −0.000719091 + 0.00124550i
\(617\) 248.717 430.791i 0.403108 0.698203i −0.590992 0.806678i \(-0.701263\pi\)
0.994099 + 0.108475i \(0.0345967\pi\)
\(618\) 0 0
\(619\) 528.867 + 916.025i 0.854390 + 1.47985i 0.877210 + 0.480107i \(0.159402\pi\)
−0.0228204 + 0.999740i \(0.507265\pi\)
\(620\) −248.274 70.1788i −0.400441 0.113192i
\(621\) 0 0
\(622\) 460.806i 0.740846i
\(623\) −140.874 244.001i −0.226122 0.391655i
\(624\) 0 0
\(625\) −624.064 34.1853i −0.998503 0.0546964i
\(626\) 558.170 + 322.259i 0.891645 + 0.514792i
\(627\) 0 0
\(628\) −221.425 + 127.840i −0.352588 + 0.203567i
\(629\) 41.6792i 0.0662626i
\(630\) 0 0
\(631\) 638.591 1.01203 0.506015 0.862524i \(-0.331118\pi\)
0.506015 + 0.862524i \(0.331118\pi\)
\(632\) 5.34071 + 9.25037i 0.00845048 + 0.0146367i
\(633\) 0 0
\(634\) 694.458 1202.84i 1.09536 1.89722i
\(635\) −274.492 282.107i −0.432271 0.444263i
\(636\) 0 0
\(637\) 741.485 428.097i 1.16403 0.672051i
\(638\) −29.6050 −0.0464028
\(639\) 0 0
\(640\) 32.7237 + 9.24991i 0.0511307 + 0.0144530i
\(641\) −765.794 + 442.131i −1.19469 + 0.689753i −0.959366 0.282165i \(-0.908947\pi\)
−0.235321 + 0.971918i \(0.575614\pi\)
\(642\) 0 0
\(643\) 884.408 + 510.613i 1.37544 + 0.794111i 0.991607 0.129291i \(-0.0412702\pi\)
0.383834 + 0.923402i \(0.374604\pi\)
\(644\) −747.534 431.589i −1.16077 0.670169i
\(645\) 0 0
\(646\) 2.15385 + 3.73057i 0.00333413 + 0.00577488i
\(647\) −488.043 −0.754317 −0.377159 0.926149i \(-0.623099\pi\)
−0.377159 + 0.926149i \(0.623099\pi\)
\(648\) 0 0
\(649\) −27.0226 −0.0416373
\(650\) 1331.65 + 36.4454i 2.04869 + 0.0560699i
\(651\) 0 0
\(652\) 852.005 + 491.905i 1.30676 + 0.754456i
\(653\) −305.648 + 529.397i −0.468067 + 0.810716i −0.999334 0.0364887i \(-0.988383\pi\)
0.531267 + 0.847204i \(0.321716\pi\)
\(654\) 0 0
\(655\) 885.927 224.439i 1.35256 0.342656i
\(656\) 600.240i 0.915001i
\(657\) 0 0
\(658\) 1370.46i 2.08276i
\(659\) −125.687 + 72.5657i −0.190724 + 0.110115i −0.592322 0.805702i \(-0.701789\pi\)
0.401597 + 0.915816i \(0.368455\pi\)
\(660\) 0 0
\(661\) −415.128 + 719.023i −0.628030 + 1.08778i 0.359916 + 0.932985i \(0.382805\pi\)
−0.987947 + 0.154796i \(0.950528\pi\)
\(662\) 337.650 584.827i 0.510045 0.883424i
\(663\) 0 0
\(664\) 8.13214 + 14.0853i 0.0122472 + 0.0212128i
\(665\) 7.02063 24.8371i 0.0105573 0.0373490i
\(666\) 0 0
\(667\) 529.550i 0.793929i
\(668\) 271.330 + 469.957i 0.406182 + 0.703529i
\(669\) 0 0
\(670\) 322.454 + 331.400i 0.481275 + 0.494627i
\(671\) −8.22230 4.74715i −0.0122538 0.00707473i
\(672\) 0 0
\(673\) −235.054 + 135.708i −0.349262 + 0.201647i −0.664360 0.747412i \(-0.731296\pi\)
0.315098 + 0.949059i \(0.397963\pi\)
\(674\) 801.438i 1.18908i
\(675\) 0 0
\(676\) −744.199 −1.10089
\(677\) −447.970 775.906i −0.661698 1.14609i −0.980169 0.198162i \(-0.936503\pi\)
0.318471 0.947933i \(-0.396831\pi\)
\(678\) 0 0
\(679\) −111.838 + 193.709i −0.164710 + 0.285286i
\(680\) 2.17652 2.11777i 0.00320077 0.00311437i
\(681\) 0 0
\(682\) −13.3489 + 7.70700i −0.0195732 + 0.0113006i
\(683\) 255.548 0.374155 0.187078 0.982345i \(-0.440098\pi\)
0.187078 + 0.982345i \(0.440098\pi\)
\(684\) 0 0
\(685\) 26.7706 + 7.56719i 0.0390812 + 0.0110470i
\(686\) 79.9938 46.1844i 0.116609 0.0673242i
\(687\) 0 0
\(688\) −785.182 453.325i −1.14125 0.658902i
\(689\) −724.085 418.051i −1.05092 0.606750i
\(690\) 0 0
\(691\) −61.2973 106.170i −0.0887081 0.153647i 0.818257 0.574852i \(-0.194940\pi\)
−0.906965 + 0.421205i \(0.861607\pi\)
\(692\) −273.184 −0.394775
\(693\) 0 0
\(694\) −1250.23 −1.80148
\(695\) 208.646 + 823.583i 0.300209 + 1.18501i
\(696\) 0 0
\(697\) 94.6296 + 54.6344i 0.135767 + 0.0783852i
\(698\) −138.185 + 239.344i −0.197973 + 0.342900i
\(699\) 0 0
\(700\) −990.753 27.1156i −1.41536 0.0387366i
\(701\) 595.027i 0.848826i −0.905469 0.424413i \(-0.860480\pi\)
0.905469 0.424413i \(-0.139520\pi\)
\(702\) 0 0
\(703\) 7.73968i 0.0110095i
\(704\) 24.6214 14.2152i 0.0349736 0.0201920i
\(705\) 0 0
\(706\) 139.517 241.651i 0.197617 0.342282i
\(707\) −279.365 + 483.874i −0.395141 + 0.684404i
\(708\) 0 0
\(709\) −280.492 485.826i −0.395616 0.685227i 0.597564 0.801822i \(-0.296136\pi\)
−0.993180 + 0.116594i \(0.962802\pi\)
\(710\) −347.399 + 1229.00i −0.489295 + 1.73099i
\(711\) 0 0
\(712\) 6.15588i 0.00864589i
\(713\) −137.857 238.775i −0.193347 0.334887i
\(714\) 0 0
\(715\) 28.7849 28.0079i 0.0402586 0.0391719i
\(716\) 133.961 + 77.3424i 0.187096 + 0.108020i
\(717\) 0 0
\(718\) −1230.63 + 710.502i −1.71396 + 0.989557i
\(719\) 1218.37i 1.69453i 0.531168 + 0.847266i \(0.321753\pi\)
−0.531168 + 0.847266i \(0.678247\pi\)
\(720\) 0 0
\(721\) −838.570 −1.16307
\(722\) −512.513 887.698i −0.709851 1.22950i
\(723\) 0 0
\(724\) −566.423 + 981.074i −0.782353 + 1.35507i
\(725\) −289.502 534.702i −0.399313 0.737520i
\(726\) 0 0
\(727\) 687.921 397.172i 0.946247 0.546316i 0.0543338 0.998523i \(-0.482696\pi\)
0.891913 + 0.452207i \(0.149363\pi\)
\(728\) 38.7825 0.0532727
\(729\) 0 0
\(730\) −557.788 + 1973.30i −0.764093 + 2.70315i
\(731\) −142.936 + 82.5241i −0.195535 + 0.112892i
\(732\) 0 0
\(733\) −681.408 393.411i −0.929615 0.536714i −0.0429255 0.999078i \(-0.513668\pi\)
−0.886690 + 0.462365i \(0.847001\pi\)
\(734\) −841.186 485.659i −1.14603 0.661661i
\(735\) 0 0
\(736\) 494.785 + 856.992i 0.672262 + 1.16439i
\(737\) 13.9404 0.0189150
\(738\) 0 0
\(739\) 1398.66 1.89264 0.946320 0.323231i \(-0.104769\pi\)
0.946320 + 0.323231i \(0.104769\pi\)
\(740\) 288.105 72.9882i 0.389331 0.0986327i
\(741\) 0 0
\(742\) 1067.56 + 616.355i 1.43876 + 0.830667i
\(743\) −274.315 + 475.127i −0.369199 + 0.639471i −0.989440 0.144940i \(-0.953701\pi\)
0.620242 + 0.784411i \(0.287035\pi\)
\(744\) 0 0
\(745\) −391.310 + 99.1340i −0.525248 + 0.133066i
\(746\) 1736.35i 2.32755i
\(747\) 0 0
\(748\) 4.98710i 0.00666725i
\(749\) 818.078 472.318i 1.09223 0.630598i
\(750\) 0 0
\(751\) 133.681 231.542i 0.178003 0.308311i −0.763193 0.646170i \(-0.776370\pi\)
0.941197 + 0.337859i \(0.109703\pi\)
\(752\) −389.005 + 673.777i −0.517294 + 0.895980i
\(753\) 0 0
\(754\) 648.003 + 1122.37i 0.859420 + 1.48856i
\(755\) 424.730 + 120.057i 0.562556 + 0.159016i
\(756\) 0 0
\(757\) 471.386i 0.622703i −0.950295 0.311351i \(-0.899218\pi\)
0.950295 0.311351i \(-0.100782\pi\)
\(758\) 266.311 + 461.265i 0.351334 + 0.608529i
\(759\) 0 0
\(760\) 0.404173 0.393263i 0.000531806 0.000517451i
\(761\) −917.999 530.007i −1.20631 0.696461i −0.244356 0.969686i \(-0.578576\pi\)
−0.961950 + 0.273225i \(0.911910\pi\)
\(762\) 0 0
\(763\) −1386.00 + 800.210i −1.81652 + 1.04877i
\(764\) 237.585i 0.310975i
\(765\) 0 0
\(766\) −420.042 −0.548357
\(767\) 591.478 + 1024.47i 0.771158 + 1.33569i
\(768\) 0 0
\(769\) −216.513 + 375.012i −0.281551 + 0.487661i −0.971767 0.235942i \(-0.924182\pi\)
0.690216 + 0.723604i \(0.257516\pi\)
\(770\) −42.4391 + 41.2935i −0.0551158 + 0.0536280i
\(771\) 0 0
\(772\) 446.642 257.869i 0.578552 0.334027i
\(773\) 1088.28 1.40787 0.703936 0.710264i \(-0.251424\pi\)
0.703936 + 0.710264i \(0.251424\pi\)
\(774\) 0 0
\(775\) −269.734 165.732i −0.348044 0.213848i
\(776\) −4.23232 + 2.44353i −0.00545402 + 0.00314888i
\(777\) 0 0
\(778\) 1130.65 + 652.782i 1.45328 + 0.839052i
\(779\) 17.5724 + 10.1454i 0.0225576 + 0.0130237i
\(780\) 0 0
\(781\) 19.2523 + 33.3460i 0.0246509 + 0.0426965i
\(782\) 176.773 0.226052
\(783\) 0 0
\(784\) 716.626 0.914063
\(785\) −304.125 + 77.0466i −0.387420 + 0.0981485i
\(786\) 0 0
\(787\) 279.669 + 161.467i 0.355361 + 0.205168i 0.667044 0.745018i \(-0.267559\pi\)
−0.311683 + 0.950186i \(0.600893\pi\)
\(788\) −683.665 + 1184.14i −0.867595 + 1.50272i
\(789\) 0 0
\(790\) 175.327 + 692.065i 0.221933 + 0.876032i
\(791\) 416.459i 0.526497i
\(792\) 0 0
\(793\) 415.628i 0.524121i
\(794\) −1769.17 + 1021.43i −2.22817 + 1.28643i
\(795\) 0 0
\(796\) 259.078 448.736i 0.325474 0.563738i
\(797\) 722.713 1251.78i 0.906792 1.57061i 0.0882984 0.996094i \(-0.471857\pi\)
0.818494 0.574516i \(-0.194810\pi\)
\(798\) 0 0
\(799\) 70.8152 + 122.656i 0.0886298 + 0.153511i
\(800\) 968.111 + 594.834i 1.21014 + 0.743542i
\(801\) 0 0
\(802\) 215.234i 0.268372i
\(803\) 30.9117 + 53.5406i 0.0384953 + 0.0666758i
\(804\) 0 0
\(805\) −738.626 759.118i −0.917548 0.943003i
\(806\) 584.370 + 337.386i 0.725024 + 0.418593i
\(807\) 0 0
\(808\) −10.5721 + 6.10380i −0.0130843 + 0.00755421i
\(809\) 981.839i 1.21365i 0.794837 + 0.606823i \(0.207556\pi\)
−0.794837 + 0.606823i \(0.792444\pi\)
\(810\) 0 0
\(811\) −600.049 −0.739888 −0.369944 0.929054i \(-0.620623\pi\)
−0.369944 + 0.929054i \(0.620623\pi\)
\(812\) −482.118 835.052i −0.593741 1.02839i
\(813\) 0 0
\(814\) 8.87812 15.3774i 0.0109068 0.0188911i
\(815\) 841.852 + 865.207i 1.03295 + 1.06160i
\(816\) 0 0
\(817\) −26.5427 + 15.3244i −0.0324880 + 0.0187570i
\(818\) −1449.42 −1.77191
\(819\) 0 0
\(820\) 211.943 749.798i 0.258467 0.914388i
\(821\) 896.354 517.510i 1.09178 0.630342i 0.157733 0.987482i \(-0.449582\pi\)
0.934051 + 0.357140i \(0.116248\pi\)
\(822\) 0 0
\(823\) 1219.38 + 704.012i 1.48163 + 0.855421i 0.999783 0.0208322i \(-0.00663158\pi\)
0.481850 + 0.876254i \(0.339965\pi\)
\(824\) −15.8672 9.16091i −0.0192563 0.0111176i
\(825\) 0 0
\(826\) −872.048 1510.43i −1.05575 1.82861i
\(827\) −1535.05 −1.85617 −0.928086 0.372367i \(-0.878546\pi\)
−0.928086 + 0.372367i \(0.878546\pi\)
\(828\) 0 0
\(829\) −185.325 −0.223552 −0.111776 0.993733i \(-0.535654\pi\)
−0.111776 + 0.993733i \(0.535654\pi\)
\(830\) 266.965 + 1053.79i 0.321645 + 1.26962i
\(831\) 0 0
\(832\) −1077.84 622.292i −1.29548 0.747947i
\(833\) 65.2280 112.978i 0.0783049 0.135628i
\(834\) 0 0
\(835\) 163.525 + 645.480i 0.195838 + 0.773030i
\(836\) 0.926087i 0.00110776i
\(837\) 0 0
\(838\) 1981.10i 2.36408i
\(839\) 1120.53 646.937i 1.33555 0.771081i 0.349408 0.936971i \(-0.386383\pi\)
0.986144 + 0.165889i \(0.0530494\pi\)
\(840\) 0 0
\(841\) −124.726 + 216.032i −0.148307 + 0.256875i
\(842\) 1075.30 1862.47i 1.27708 2.21196i
\(843\) 0 0
\(844\) −199.087 344.829i −0.235885 0.408565i
\(845\) −878.739 248.391i −1.03993 0.293954i
\(846\) 0 0
\(847\) 1175.46i 1.38779i
\(848\) −349.905 606.053i −0.412623 0.714685i
\(849\) 0 0
\(850\) 178.493 96.6406i 0.209991 0.113695i
\(851\) 275.058 + 158.805i 0.323217 + 0.186610i
\(852\) 0 0
\(853\) −335.726 + 193.832i −0.393583 + 0.227235i −0.683711 0.729752i \(-0.739635\pi\)
0.290128 + 0.956988i \(0.406302\pi\)
\(854\) 612.782i 0.717543i
\(855\) 0 0
\(856\) 20.6392 0.0241112
\(857\) 39.5696 + 68.5365i 0.0461722 + 0.0799726i 0.888188 0.459480i \(-0.151964\pi\)
−0.842016 + 0.539453i \(0.818631\pi\)
\(858\) 0 0
\(859\) 329.529 570.761i 0.383620 0.664448i −0.607957 0.793970i \(-0.708011\pi\)
0.991577 + 0.129521i \(0.0413441\pi\)
\(860\) 820.752 + 843.522i 0.954363 + 0.980840i
\(861\) 0 0
\(862\) 1225.23 707.386i 1.42138 0.820633i
\(863\) 1070.61 1.24057 0.620286 0.784375i \(-0.287016\pi\)
0.620286 + 0.784375i \(0.287016\pi\)
\(864\) 0 0
\(865\) −322.572 91.1805i −0.372916 0.105411i
\(866\) −1037.63 + 599.077i −1.19819 + 0.691775i
\(867\) 0 0
\(868\) −434.775 251.017i −0.500892 0.289190i
\(869\) 18.6403 + 10.7620i 0.0214503 + 0.0123843i
\(870\) 0 0
\(871\) −305.131 528.502i −0.350322 0.606776i
\(872\) −34.9674 −0.0401002
\(873\) 0 0
\(874\) 32.8261 0.0375585
\(875\) −1160.82 362.701i −1.32665 0.414515i
\(876\) 0 0
\(877\) 928.802 + 536.244i 1.05907 + 0.611452i 0.925174 0.379543i \(-0.123919\pi\)
0.133893 + 0.990996i \(0.457252\pi\)
\(878\) 650.002 1125.84i 0.740321 1.28227i
\(879\) 0 0
\(880\) 32.5861 8.25531i 0.0370296 0.00938104i
\(881\) 1433.62i 1.62726i −0.581381 0.813632i \(-0.697487\pi\)
0.581381 0.813632i \(-0.302513\pi\)
\(882\) 0 0
\(883\) 731.816i 0.828784i 0.910099 + 0.414392i \(0.136006\pi\)
−0.910099 + 0.414392i \(0.863994\pi\)
\(884\) −189.069 + 109.159i −0.213879 + 0.123483i
\(885\) 0 0
\(886\) −330.013 + 571.600i −0.372475 + 0.645146i
\(887\) −642.482 + 1112.81i −0.724331 + 1.25458i 0.234918 + 0.972015i \(0.424518\pi\)
−0.959249 + 0.282563i \(0.908815\pi\)
\(888\) 0 0
\(889\) −382.956 663.299i −0.430772 0.746119i
\(890\) 111.918 395.935i 0.125750 0.444871i
\(891\) 0 0
\(892\) 380.693i 0.426786i
\(893\) 13.1501 + 22.7767i 0.0147258 + 0.0255058i
\(894\) 0 0
\(895\) 132.365 + 136.037i 0.147894 + 0.151997i
\(896\) 57.3054 + 33.0853i 0.0639569 + 0.0369255i
\(897\) 0 0
\(898\) 1669.35 963.800i 1.85896 1.07327i
\(899\) 307.993i 0.342595i
\(900\) 0 0
\(901\) −127.395 −0.141392
\(902\) −23.2755 40.3143i −0.0258043 0.0446944i
\(903\) 0 0
\(904\) 4.54958 7.88010i 0.00503272 0.00871693i
\(905\) −996.277 + 969.383i −1.10086 + 1.07114i
\(906\) 0 0
\(907\) −877.157 + 506.427i −0.967097 + 0.558353i −0.898350 0.439281i \(-0.855233\pi\)
−0.0687467 + 0.997634i \(0.521900\pi\)
\(908\) −806.770 −0.888514
\(909\) 0 0
\(910\) 2494.43 + 705.092i 2.74113 + 0.774827i
\(911\) −551.233 + 318.255i −0.605086 + 0.349347i −0.771040 0.636787i \(-0.780263\pi\)
0.165954 + 0.986134i \(0.446930\pi\)
\(912\) 0 0
\(913\) 28.3831 + 16.3870i 0.0310877 + 0.0179485i
\(914\) 1810.13 + 1045.08i 1.98045 + 1.14342i
\(915\) 0 0
\(916\) −369.258 639.573i −0.403120 0.698224i
\(917\) 1778.35 1.93931
\(918\) 0 0
\(919\) 1142.09 1.24275 0.621377 0.783511i \(-0.286573\pi\)
0.621377 + 0.783511i \(0.286573\pi\)
\(920\) −5.68311 22.4328i −0.00617729 0.0243835i
\(921\) 0 0
\(922\) −979.654 565.603i −1.06253 0.613453i
\(923\) 842.801 1459.77i 0.913110 1.58155i
\(924\) 0 0
\(925\) 364.552 + 9.97730i 0.394110 + 0.0107863i
\(926\) 456.338i 0.492806i
\(927\) 0 0
\(928\) 1105.42i 1.19119i
\(929\) 681.162 393.269i 0.733221 0.423325i −0.0863784 0.996262i \(-0.527529\pi\)
0.819599 + 0.572937i \(0.194196\pi\)
\(930\) 0 0
\(931\) 12.1126 20.9796i 0.0130103 0.0225345i
\(932\) 363.728 629.995i 0.390266 0.675960i
\(933\) 0 0
\(934\) 577.787 + 1000.76i 0.618615 + 1.07147i
\(935\) 1.66454 5.88870i 0.00178026 0.00629807i
\(936\) 0 0
\(937\) 811.089i 0.865623i 0.901484 + 0.432812i \(0.142478\pi\)
−0.901484 + 0.432812i \(0.857522\pi\)
\(938\) 449.871 + 779.199i 0.479606 + 0.830702i
\(939\) 0 0
\(940\) 723.839 704.300i 0.770042 0.749255i
\(941\) 715.505 + 413.097i 0.760367 + 0.438998i 0.829428 0.558614i \(-0.188667\pi\)
−0.0690604 + 0.997612i \(0.522000\pi\)
\(942\) 0 0
\(943\) 721.111 416.333i 0.764698 0.441499i
\(944\) 990.124i 1.04886i
\(945\) 0 0
\(946\) 70.3142 0.0743279
\(947\) −458.725 794.535i −0.484398 0.839002i 0.515441 0.856925i \(-0.327628\pi\)
−0.999839 + 0.0179227i \(0.994295\pi\)
\(948\) 0 0
\(949\) 1353.21 2343.83i 1.42593 2.46979i
\(950\) 33.1455 17.9458i 0.0348900 0.0188904i
\(951\) 0 0
\(952\) 5.11751 2.95460i 0.00537554 0.00310357i
\(953\) −192.772 −0.202279 −0.101140 0.994872i \(-0.532249\pi\)
−0.101140 + 0.994872i \(0.532249\pi\)
\(954\) 0 0
\(955\) 79.2986 280.537i 0.0830352 0.293756i
\(956\) 53.8513 31.0910i 0.0563298 0.0325220i
\(957\) 0 0
\(958\) −2078.50 1200.03i −2.16963 1.25264i
\(959\) 46.8805 + 27.0665i 0.0488848 + 0.0282236i
\(960\) 0 0
\(961\) 400.321 + 693.376i 0.416567 + 0.721515i
\(962\) −777.308 −0.808012
\(963\) 0 0
\(964\) −1300.54 −1.34911
\(965\) 613.457 155.412i 0.635707 0.161049i
\(966\) 0 0
\(967\) −742.787 428.848i −0.768136 0.443483i 0.0640734 0.997945i \(-0.479591\pi\)
−0.832209 + 0.554462i \(0.812924\pi\)
\(968\) 12.8412 22.2416i 0.0132657 0.0229769i
\(969\) 0 0
\(970\) −316.641 + 80.2173i −0.326434 + 0.0826983i
\(971\) 546.278i 0.562594i 0.959621 + 0.281297i \(0.0907645\pi\)
−0.959621 + 0.281297i \(0.909235\pi\)
\(972\) 0 0
\(973\) 1653.20i 1.69908i
\(974\) −554.980 + 320.418i −0.569795 + 0.328971i
\(975\) 0 0
\(976\) −173.938 + 301.270i −0.178215 + 0.308678i
\(977\) 397.664 688.774i 0.407025 0.704988i −0.587530 0.809203i \(-0.699899\pi\)
0.994555 + 0.104214i \(0.0332328\pi\)
\(978\) 0 0
\(979\) −6.20231 10.7427i −0.00633535 0.0109732i
\(980\) −895.182 253.039i −0.913451 0.258203i
\(981\) 0 0
\(982\) 2174.27i 2.21412i
\(983\) 539.710 + 934.805i 0.549044 + 0.950972i 0.998340 + 0.0575890i \(0.0183413\pi\)
−0.449297 + 0.893383i \(0.648325\pi\)
\(984\) 0 0
\(985\) −1202.49 + 1170.03i −1.22080 + 1.18785i
\(986\) 171.013 + 98.7344i 0.173441 + 0.100136i
\(987\) 0 0
\(988\) −35.1095 + 20.2705i −0.0355359 + 0.0205167i
\(989\) 1257.72i 1.27171i
\(990\) 0 0
\(991\) 168.017 0.169543 0.0847716 0.996400i \(-0.472984\pi\)
0.0847716 + 0.996400i \(0.472984\pi\)
\(992\) 287.773 + 498.437i 0.290093 + 0.502457i
\(993\) 0 0
\(994\) −1242.59 + 2152.22i −1.25009 + 2.16521i
\(995\) 455.689 443.388i 0.457979 0.445616i
\(996\) 0 0
\(997\) −757.109 + 437.117i −0.759387 + 0.438432i −0.829076 0.559137i \(-0.811133\pi\)
0.0696887 + 0.997569i \(0.477799\pi\)
\(998\) 579.829 0.580991
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.h.a.44.9 20
3.2 odd 2 45.3.h.a.14.2 20
5.2 odd 4 675.3.j.e.476.2 20
5.3 odd 4 675.3.j.e.476.9 20
5.4 even 2 inner 135.3.h.a.44.2 20
9.2 odd 6 inner 135.3.h.a.89.2 20
9.4 even 3 405.3.d.a.404.4 20
9.5 odd 6 405.3.d.a.404.17 20
9.7 even 3 45.3.h.a.29.9 yes 20
15.2 even 4 225.3.j.e.176.9 20
15.8 even 4 225.3.j.e.176.2 20
15.14 odd 2 45.3.h.a.14.9 yes 20
45.2 even 12 675.3.j.e.251.2 20
45.4 even 6 405.3.d.a.404.18 20
45.7 odd 12 225.3.j.e.101.9 20
45.14 odd 6 405.3.d.a.404.3 20
45.29 odd 6 inner 135.3.h.a.89.9 20
45.34 even 6 45.3.h.a.29.2 yes 20
45.38 even 12 675.3.j.e.251.9 20
45.43 odd 12 225.3.j.e.101.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.2 20 3.2 odd 2
45.3.h.a.14.9 yes 20 15.14 odd 2
45.3.h.a.29.2 yes 20 45.34 even 6
45.3.h.a.29.9 yes 20 9.7 even 3
135.3.h.a.44.2 20 5.4 even 2 inner
135.3.h.a.44.9 20 1.1 even 1 trivial
135.3.h.a.89.2 20 9.2 odd 6 inner
135.3.h.a.89.9 20 45.29 odd 6 inner
225.3.j.e.101.2 20 45.43 odd 12
225.3.j.e.101.9 20 45.7 odd 12
225.3.j.e.176.2 20 15.8 even 4
225.3.j.e.176.9 20 15.2 even 4
405.3.d.a.404.3 20 45.14 odd 6
405.3.d.a.404.4 20 9.4 even 3
405.3.d.a.404.17 20 9.5 odd 6
405.3.d.a.404.18 20 45.4 even 6
675.3.j.e.251.2 20 45.2 even 12
675.3.j.e.251.9 20 45.38 even 12
675.3.j.e.476.2 20 5.2 odd 4
675.3.j.e.476.9 20 5.3 odd 4