gp: [N,k,chi] = [403,2,Mod(66,403)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("403.66");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(403, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 6]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [68,-3,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{68} + 3 T_{2}^{67} + 33 T_{2}^{66} + 95 T_{2}^{65} + 604 T_{2}^{64} + 1537 T_{2}^{63} + \cdots + 13456 \)
T2^68 + 3*T2^67 + 33*T2^66 + 95*T2^65 + 604*T2^64 + 1537*T2^63 + 7718*T2^62 + 17397*T2^61 + 78365*T2^60 + 160094*T2^59 + 671049*T2^58 + 1262081*T2^57 + 5001229*T2^56 + 8535443*T2^55 + 32577967*T2^54 + 49809700*T2^53 + 187650133*T2^52 + 255210967*T2^51 + 968988554*T2^50 + 1158685503*T2^49 + 4534279443*T2^48 + 4619956778*T2^47 + 19170408433*T2^46 + 16071777949*T2^45 + 73627298964*T2^44 + 48567779033*T2^43 + 258940177529*T2^42 + 125144385136*T2^41 + 837299640605*T2^40 + 259653945189*T2^39 + 2464894287907*T2^38 + 379856957112*T2^37 + 6631905039707*T2^36 + 109011516332*T2^35 + 16299757567385*T2^34 - 1570932577928*T2^33 + 36166313917982*T2^32 - 6335942410280*T2^31 + 70704832526805*T2^30 - 15126132310764*T2^29 + 123184880384448*T2^28 - 28569006777860*T2^27 + 189559984877975*T2^26 - 43389198626413*T2^25 + 248913053211942*T2^24 - 45347582129403*T2^23 + 261613950296147*T2^22 - 19537216056410*T2^21 + 236292674374360*T2^20 - 6937290082148*T2^19 + 173912132855122*T2^18 - 11009244995578*T2^17 + 91926533404759*T2^16 - 12237448344709*T2^15 + 27942386109512*T2^14 - 3666175315779*T2^13 + 5249030643646*T2^12 - 1235351071202*T2^11 + 1029964381732*T2^10 - 317542464552*T2^9 + 160818186091*T2^8 - 41514568708*T2^7 + 16428602539*T2^6 - 3172307245*T2^5 + 751043223*T2^4 - 118624274*T2^3 + 18803848*T2^2 + 836592*T2 + 13456
acting on \(S_{2}^{\mathrm{new}}(403, [\chi])\).