Properties

Label 403.2.k.e.66.5
Level 403
Weight 2
Character 403.66
Analytic conductor 3.218
Analytic rank 0
Dimension 68
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.k (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 66.5
Character \(\chi\) \(=\) 403.66
Dual form 403.2.k.e.287.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.471037 - 1.44970i) q^{2} +(0.0410411 - 0.126311i) q^{3} +(-0.261732 + 0.190160i) q^{4} +1.10606 q^{5} -0.202446 q^{6} +(0.346937 - 0.252065i) q^{7} +(-2.06742 - 1.50207i) q^{8} +(2.41278 + 1.75299i) q^{9} +O(q^{10})\) \(q+(-0.471037 - 1.44970i) q^{2} +(0.0410411 - 0.126311i) q^{3} +(-0.261732 + 0.190160i) q^{4} +1.10606 q^{5} -0.202446 q^{6} +(0.346937 - 0.252065i) q^{7} +(-2.06742 - 1.50207i) q^{8} +(2.41278 + 1.75299i) q^{9} +(-0.520995 - 1.60346i) q^{10} +(2.52657 - 1.83566i) q^{11} +(0.0132776 + 0.0408641i) q^{12} +(0.309017 - 0.951057i) q^{13} +(-0.528840 - 0.384225i) q^{14} +(0.0453939 - 0.139708i) q^{15} +(-1.40367 + 4.32005i) q^{16} +(0.591113 + 0.429469i) q^{17} +(1.40480 - 4.32354i) q^{18} +(-2.37130 - 7.29812i) q^{19} +(-0.289492 + 0.210328i) q^{20} +(-0.0176000 - 0.0541672i) q^{21} +(-3.85128 - 2.79812i) q^{22} +(4.52877 + 3.29035i) q^{23} +(-0.274578 + 0.199493i) q^{24} -3.77663 q^{25} -1.52431 q^{26} +(0.642786 - 0.467012i) q^{27} +(-0.0428722 + 0.131947i) q^{28} +(-0.261210 - 0.803923i) q^{29} -0.223917 q^{30} +(5.30572 + 1.68798i) q^{31} +1.81303 q^{32} +(-0.128172 - 0.394473i) q^{33} +(0.344166 - 1.05924i) q^{34} +(0.383733 - 0.278798i) q^{35} -0.964850 q^{36} -7.85694 q^{37} +(-9.46314 + 6.87537i) q^{38} +(-0.107447 - 0.0780648i) q^{39} +(-2.28669 - 1.66138i) q^{40} +(-0.826180 - 2.54272i) q^{41} +(-0.0702361 + 0.0510295i) q^{42} +(-2.99661 - 9.22262i) q^{43} +(-0.312217 + 0.960905i) q^{44} +(2.66868 + 1.93891i) q^{45} +(2.63681 - 8.11526i) q^{46} +(-3.00641 + 9.25277i) q^{47} +(0.488064 + 0.354599i) q^{48} +(-2.10629 + 6.48249i) q^{49} +(1.77894 + 5.47500i) q^{50} +(0.0785067 - 0.0570385i) q^{51} +(0.0999729 + 0.307685i) q^{52} +(-0.0102721 - 0.00746311i) q^{53} +(-0.979805 - 0.711870i) q^{54} +(2.79454 - 2.03035i) q^{55} -1.09589 q^{56} -1.01916 q^{57} +(-1.04241 + 0.757356i) q^{58} +(0.627425 - 1.93102i) q^{59} +(0.0146858 + 0.0451982i) q^{60} +0.398081 q^{61} +(-0.0521209 - 8.48684i) q^{62} +1.27895 q^{63} +(1.95334 + 6.01175i) q^{64} +(0.341791 - 1.05192i) q^{65} +(-0.511495 + 0.371623i) q^{66} +6.84483 q^{67} -0.236381 q^{68} +(0.601474 - 0.436996i) q^{69} +(-0.584928 - 0.424975i) q^{70} +(11.9766 + 8.70154i) q^{71} +(-2.35513 - 7.24834i) q^{72} +(-10.7647 + 7.82100i) q^{73} +(3.70091 + 11.3902i) q^{74} +(-0.154997 + 0.477032i) q^{75} +(2.00845 + 1.45923i) q^{76} +(0.413857 - 1.27372i) q^{77} +(-0.0625593 + 0.192538i) q^{78} +(2.72537 + 1.98010i) q^{79} +(-1.55254 + 4.77824i) q^{80} +(2.73219 + 8.40882i) q^{81} +(-3.29703 + 2.39543i) q^{82} +(3.26155 + 10.0380i) q^{83} +(0.0149069 + 0.0108305i) q^{84} +(0.653806 + 0.475018i) q^{85} +(-11.9586 + 8.68840i) q^{86} -0.112265 q^{87} -7.98079 q^{88} +(14.2343 - 10.3418i) q^{89} +(1.55380 - 4.78209i) q^{90} +(-0.132518 - 0.407849i) q^{91} -1.81102 q^{92} +(0.430964 - 0.600897i) q^{93} +14.8299 q^{94} +(-2.62280 - 8.07215i) q^{95} +(0.0744087 - 0.229007i) q^{96} +(6.29958 - 4.57691i) q^{97} +10.3898 q^{98} +9.31396 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68q - 3q^{2} - 2q^{3} - 23q^{4} + 12q^{5} + 4q^{6} + 2q^{7} - 3q^{8} - 23q^{9} + O(q^{10}) \) \( 68q - 3q^{2} - 2q^{3} - 23q^{4} + 12q^{5} + 4q^{6} + 2q^{7} - 3q^{8} - 23q^{9} - 13q^{10} - 5q^{11} - 28q^{12} - 17q^{13} - 3q^{14} - 14q^{15} + 9q^{16} + 12q^{17} - 19q^{18} - 4q^{19} - 53q^{20} - 13q^{21} - 14q^{22} - 9q^{23} + 2q^{24} + 96q^{25} + 12q^{26} + 25q^{27} - 25q^{28} - 78q^{30} - 2q^{31} + 76q^{32} + 29q^{33} - 15q^{34} - 36q^{35} + 52q^{36} + 24q^{37} - 19q^{38} + 3q^{39} - 12q^{40} - 40q^{41} + 11q^{42} - 22q^{43} + 4q^{44} + 63q^{45} - 24q^{46} + 3q^{47} + 68q^{48} + 33q^{49} - 76q^{50} - 59q^{51} - 13q^{52} - q^{53} + 18q^{54} - 22q^{55} + 78q^{56} - 16q^{57} + 5q^{58} - 18q^{59} + 43q^{60} - 32q^{61} - 39q^{62} + 20q^{63} + 23q^{64} + 2q^{65} + 11q^{66} + 114q^{67} + 98q^{68} - 46q^{69} + 32q^{70} - 2q^{71} + 28q^{72} + 10q^{73} - 43q^{74} - 12q^{75} - 35q^{76} - 3q^{77} - 6q^{78} - 10q^{79} + 68q^{80} - 54q^{81} - 80q^{82} - 22q^{83} - 14q^{84} - 50q^{85} - 66q^{86} + 76q^{87} - 34q^{88} - 10q^{89} - 63q^{90} - 8q^{91} - 64q^{92} - 16q^{93} + 30q^{94} + 15q^{95} + 34q^{96} - 7q^{97} + 138q^{98} - 48q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.471037 1.44970i −0.333074 1.02510i −0.967663 0.252246i \(-0.918831\pi\)
0.634589 0.772850i \(-0.281169\pi\)
\(3\) 0.0410411 0.126311i 0.0236951 0.0729259i −0.938510 0.345253i \(-0.887793\pi\)
0.962205 + 0.272327i \(0.0877932\pi\)
\(4\) −0.261732 + 0.190160i −0.130866 + 0.0950798i
\(5\) 1.10606 0.494645 0.247322 0.968933i \(-0.420449\pi\)
0.247322 + 0.968933i \(0.420449\pi\)
\(6\) −0.202446 −0.0826483
\(7\) 0.346937 0.252065i 0.131130 0.0952715i −0.520287 0.853992i \(-0.674175\pi\)
0.651417 + 0.758720i \(0.274175\pi\)
\(8\) −2.06742 1.50207i −0.730944 0.531062i
\(9\) 2.41278 + 1.75299i 0.804260 + 0.584329i
\(10\) −0.520995 1.60346i −0.164753 0.507058i
\(11\) 2.52657 1.83566i 0.761790 0.553473i −0.137669 0.990478i \(-0.543961\pi\)
0.899459 + 0.437005i \(0.143961\pi\)
\(12\) 0.0132776 + 0.0408641i 0.00383290 + 0.0117965i
\(13\) 0.309017 0.951057i 0.0857059 0.263776i
\(14\) −0.528840 0.384225i −0.141338 0.102688i
\(15\) 0.0453939 0.139708i 0.0117206 0.0360724i
\(16\) −1.40367 + 4.32005i −0.350918 + 1.08001i
\(17\) 0.591113 + 0.429469i 0.143366 + 0.104161i 0.657156 0.753754i \(-0.271759\pi\)
−0.513790 + 0.857916i \(0.671759\pi\)
\(18\) 1.40480 4.32354i 0.331115 1.01907i
\(19\) −2.37130 7.29812i −0.544014 1.67430i −0.723323 0.690510i \(-0.757386\pi\)
0.179309 0.983793i \(-0.442614\pi\)
\(20\) −0.289492 + 0.210328i −0.0647323 + 0.0470307i
\(21\) −0.0176000 0.0541672i −0.00384063 0.0118202i
\(22\) −3.85128 2.79812i −0.821095 0.596561i
\(23\) 4.52877 + 3.29035i 0.944314 + 0.686085i 0.949455 0.313902i \(-0.101636\pi\)
−0.00514096 + 0.999987i \(0.501636\pi\)
\(24\) −0.274578 + 0.199493i −0.0560480 + 0.0407213i
\(25\) −3.77663 −0.755327
\(26\) −1.52431 −0.298942
\(27\) 0.642786 0.467012i 0.123704 0.0898764i
\(28\) −0.0428722 + 0.131947i −0.00810208 + 0.0249356i
\(29\) −0.261210 0.803923i −0.0485056 0.149285i 0.923870 0.382706i \(-0.125008\pi\)
−0.972376 + 0.233421i \(0.925008\pi\)
\(30\) −0.223917 −0.0408815
\(31\) 5.30572 + 1.68798i 0.952936 + 0.303170i
\(32\) 1.81303 0.320502
\(33\) −0.128172 0.394473i −0.0223119 0.0686689i
\(34\) 0.344166 1.05924i 0.0590240 0.181657i
\(35\) 0.383733 0.278798i 0.0648627 0.0471255i
\(36\) −0.964850 −0.160808
\(37\) −7.85694 −1.29167 −0.645836 0.763476i \(-0.723491\pi\)
−0.645836 + 0.763476i \(0.723491\pi\)
\(38\) −9.46314 + 6.87537i −1.53512 + 1.11533i
\(39\) −0.107447 0.0780648i −0.0172053 0.0125004i
\(40\) −2.28669 1.66138i −0.361558 0.262687i
\(41\) −0.826180 2.54272i −0.129028 0.397106i 0.865586 0.500761i \(-0.166946\pi\)
−0.994613 + 0.103655i \(0.966946\pi\)
\(42\) −0.0702361 + 0.0510295i −0.0108377 + 0.00787403i
\(43\) −2.99661 9.22262i −0.456979 1.40644i −0.868796 0.495170i \(-0.835106\pi\)
0.411817 0.911266i \(-0.364894\pi\)
\(44\) −0.312217 + 0.960905i −0.0470685 + 0.144862i
\(45\) 2.66868 + 1.93891i 0.397823 + 0.289035i
\(46\) 2.63681 8.11526i 0.388776 1.19653i
\(47\) −3.00641 + 9.25277i −0.438530 + 1.34966i 0.450896 + 0.892576i \(0.351104\pi\)
−0.889426 + 0.457079i \(0.848896\pi\)
\(48\) 0.488064 + 0.354599i 0.0704460 + 0.0511820i
\(49\) −2.10629 + 6.48249i −0.300899 + 0.926071i
\(50\) 1.77894 + 5.47500i 0.251580 + 0.774282i
\(51\) 0.0785067 0.0570385i 0.0109931 0.00798698i
\(52\) 0.0999729 + 0.307685i 0.0138637 + 0.0426682i
\(53\) −0.0102721 0.00746311i −0.00141098 0.00102514i 0.587080 0.809529i \(-0.300278\pi\)
−0.588491 + 0.808504i \(0.700278\pi\)
\(54\) −0.979805 0.711870i −0.133335 0.0968733i
\(55\) 2.79454 2.03035i 0.376816 0.273773i
\(56\) −1.09589 −0.146444
\(57\) −1.01916 −0.134991
\(58\) −1.04241 + 0.757356i −0.136875 + 0.0994457i
\(59\) 0.627425 1.93102i 0.0816838 0.251397i −0.901871 0.432005i \(-0.857806\pi\)
0.983555 + 0.180608i \(0.0578065\pi\)
\(60\) 0.0146858 + 0.0451982i 0.00189593 + 0.00583506i
\(61\) 0.398081 0.0509690 0.0254845 0.999675i \(-0.491887\pi\)
0.0254845 + 0.999675i \(0.491887\pi\)
\(62\) −0.0521209 8.48684i −0.00661936 1.07783i
\(63\) 1.27895 0.161133
\(64\) 1.95334 + 6.01175i 0.244167 + 0.751469i
\(65\) 0.341791 1.05192i 0.0423940 0.130475i
\(66\) −0.511495 + 0.371623i −0.0629607 + 0.0457436i
\(67\) 6.84483 0.836229 0.418114 0.908394i \(-0.362691\pi\)
0.418114 + 0.908394i \(0.362691\pi\)
\(68\) −0.236381 −0.0286654
\(69\) 0.601474 0.436996i 0.0724090 0.0526082i
\(70\) −0.584928 0.424975i −0.0699123 0.0507942i
\(71\) 11.9766 + 8.70154i 1.42137 + 1.03268i 0.991544 + 0.129769i \(0.0414236\pi\)
0.429822 + 0.902914i \(0.358576\pi\)
\(72\) −2.35513 7.24834i −0.277554 0.854225i
\(73\) −10.7647 + 7.82100i −1.25991 + 0.915379i −0.998753 0.0499174i \(-0.984104\pi\)
−0.261157 + 0.965296i \(0.584104\pi\)
\(74\) 3.70091 + 11.3902i 0.430222 + 1.32409i
\(75\) −0.154997 + 0.477032i −0.0178975 + 0.0550829i
\(76\) 2.00845 + 1.45923i 0.230386 + 0.167385i
\(77\) 0.413857 1.27372i 0.0471633 0.145154i
\(78\) −0.0625593 + 0.192538i −0.00708344 + 0.0218006i
\(79\) 2.72537 + 1.98010i 0.306629 + 0.222779i 0.730449 0.682968i \(-0.239311\pi\)
−0.423820 + 0.905746i \(0.639311\pi\)
\(80\) −1.55254 + 4.77824i −0.173580 + 0.534223i
\(81\) 2.73219 + 8.40882i 0.303577 + 0.934314i
\(82\) −3.29703 + 2.39543i −0.364096 + 0.264531i
\(83\) 3.26155 + 10.0380i 0.358001 + 1.10181i 0.954249 + 0.299014i \(0.0966578\pi\)
−0.596247 + 0.802801i \(0.703342\pi\)
\(84\) 0.0149069 + 0.0108305i 0.00162648 + 0.00118170i
\(85\) 0.653806 + 0.475018i 0.0709152 + 0.0515229i
\(86\) −11.9586 + 8.68840i −1.28952 + 0.936894i
\(87\) −0.112265 −0.0120361
\(88\) −7.98079 −0.850755
\(89\) 14.2343 10.3418i 1.50883 1.09623i 0.542142 0.840287i \(-0.317614\pi\)
0.966692 0.255944i \(-0.0823863\pi\)
\(90\) 1.55380 4.78209i 0.163785 0.504077i
\(91\) −0.132518 0.407849i −0.0138917 0.0427542i
\(92\) −1.81102 −0.188812
\(93\) 0.430964 0.600897i 0.0446889 0.0623101i
\(94\) 14.8299 1.52959
\(95\) −2.62280 8.07215i −0.269094 0.828185i
\(96\) 0.0744087 0.229007i 0.00759431 0.0233729i
\(97\) 6.29958 4.57691i 0.639625 0.464715i −0.220096 0.975478i \(-0.570637\pi\)
0.859721 + 0.510763i \(0.170637\pi\)
\(98\) 10.3898 1.04953
\(99\) 9.31396 0.936088
\(100\) 0.988467 0.718163i 0.0988467 0.0718163i
\(101\) 6.52576 + 4.74124i 0.649337 + 0.471771i 0.863045 0.505126i \(-0.168554\pi\)
−0.213708 + 0.976898i \(0.568554\pi\)
\(102\) −0.119669 0.0869443i −0.0118490 0.00860877i
\(103\) 1.17006 + 3.60107i 0.115289 + 0.354824i 0.992007 0.126181i \(-0.0402719\pi\)
−0.876718 + 0.481005i \(0.840272\pi\)
\(104\) −2.06742 + 1.50207i −0.202728 + 0.147290i
\(105\) −0.0194666 0.0599121i −0.00189975 0.00584682i
\(106\) −0.00598076 + 0.0184069i −0.000580903 + 0.00178783i
\(107\) 5.06610 + 3.68074i 0.489759 + 0.355830i 0.805091 0.593151i \(-0.202116\pi\)
−0.315333 + 0.948981i \(0.602116\pi\)
\(108\) −0.0794312 + 0.244464i −0.00764327 + 0.0235236i
\(109\) 3.46784 10.6729i 0.332159 1.02228i −0.635946 0.771734i \(-0.719390\pi\)
0.968105 0.250546i \(-0.0806101\pi\)
\(110\) −4.25974 3.09488i −0.406150 0.295086i
\(111\) −0.322457 + 0.992421i −0.0306063 + 0.0941964i
\(112\) 0.601947 + 1.85260i 0.0568787 + 0.175055i
\(113\) −11.0955 + 8.06135i −1.04378 + 0.758348i −0.971019 0.239002i \(-0.923180\pi\)
−0.0727570 + 0.997350i \(0.523180\pi\)
\(114\) 0.480061 + 1.47748i 0.0449618 + 0.138378i
\(115\) 5.00909 + 3.63932i 0.467100 + 0.339368i
\(116\) 0.221241 + 0.160741i 0.0205417 + 0.0149244i
\(117\) 2.41278 1.75299i 0.223062 0.162064i
\(118\) −3.09494 −0.284912
\(119\) 0.313333 0.0287232
\(120\) −0.303700 + 0.220651i −0.0277238 + 0.0201426i
\(121\) −0.385275 + 1.18575i −0.0350250 + 0.107796i
\(122\) −0.187511 0.577099i −0.0169764 0.0522481i
\(123\) −0.355082 −0.0320167
\(124\) −1.70967 + 0.567136i −0.153533 + 0.0509303i
\(125\) −9.70748 −0.868263
\(126\) −0.602433 1.85410i −0.0536690 0.165176i
\(127\) 3.03628 9.34470i 0.269426 0.829208i −0.721214 0.692712i \(-0.756416\pi\)
0.990641 0.136496i \(-0.0435842\pi\)
\(128\) 10.7287 7.79486i 0.948293 0.688975i
\(129\) −1.28791 −0.113394
\(130\) −1.68598 −0.147870
\(131\) −15.1892 + 11.0356i −1.32709 + 0.964187i −0.327275 + 0.944929i \(0.606130\pi\)
−0.999815 + 0.0192575i \(0.993870\pi\)
\(132\) 0.108560 + 0.0788731i 0.00944889 + 0.00686502i
\(133\) −2.66229 1.93427i −0.230850 0.167722i
\(134\) −3.22417 9.92298i −0.278526 0.857215i
\(135\) 0.710960 0.516542i 0.0611897 0.0444569i
\(136\) −0.576988 1.77579i −0.0494763 0.152273i
\(137\) −1.86619 + 5.74353i −0.159439 + 0.490703i −0.998584 0.0532056i \(-0.983056\pi\)
0.839145 + 0.543909i \(0.183056\pi\)
\(138\) −0.916832 0.666118i −0.0780460 0.0567037i
\(139\) −5.82041 + 17.9134i −0.493681 + 1.51939i 0.325322 + 0.945603i \(0.394527\pi\)
−0.819003 + 0.573789i \(0.805473\pi\)
\(140\) −0.0474192 + 0.145941i −0.00400765 + 0.0123343i
\(141\) 1.04534 + 0.759487i 0.0880339 + 0.0639604i
\(142\) 6.97321 21.4613i 0.585179 1.80100i
\(143\) −0.965065 2.97016i −0.0807028 0.248378i
\(144\) −10.9598 + 7.96273i −0.913313 + 0.663560i
\(145\) −0.288914 0.889187i −0.0239930 0.0738429i
\(146\) 16.4087 + 11.9216i 1.35799 + 0.986641i
\(147\) 0.732369 + 0.532097i 0.0604048 + 0.0438866i
\(148\) 2.05641 1.49407i 0.169036 0.122812i
\(149\) 6.92836 0.567593 0.283797 0.958884i \(-0.408406\pi\)
0.283797 + 0.958884i \(0.408406\pi\)
\(150\) 0.764565 0.0624264
\(151\) −7.40262 + 5.37832i −0.602416 + 0.437681i −0.846736 0.532014i \(-0.821435\pi\)
0.244319 + 0.969695i \(0.421435\pi\)
\(152\) −6.05981 + 18.6502i −0.491515 + 1.51273i
\(153\) 0.673373 + 2.07243i 0.0544390 + 0.167546i
\(154\) −2.04146 −0.164505
\(155\) 5.86845 + 1.86701i 0.471365 + 0.149962i
\(156\) 0.0429671 0.00344012
\(157\) −3.29431 10.1388i −0.262914 0.809167i −0.992167 0.124922i \(-0.960132\pi\)
0.729252 0.684245i \(-0.239868\pi\)
\(158\) 1.58681 4.88369i 0.126240 0.388525i
\(159\) −0.00136425 0.000991188i −0.000108192 7.86063e-5i
\(160\) 2.00532 0.158534
\(161\) 2.40058 0.189192
\(162\) 10.9033 7.92174i 0.856648 0.622391i
\(163\) −9.58851 6.96646i −0.751030 0.545655i 0.145116 0.989415i \(-0.453644\pi\)
−0.896146 + 0.443760i \(0.853644\pi\)
\(164\) 0.699761 + 0.508406i 0.0546421 + 0.0396998i
\(165\) −0.141766 0.436310i −0.0110364 0.0339667i
\(166\) 13.0158 9.45656i 1.01022 0.733971i
\(167\) −3.49931 10.7698i −0.270785 0.833389i −0.990304 0.138917i \(-0.955638\pi\)
0.719519 0.694472i \(-0.244362\pi\)
\(168\) −0.0449763 + 0.138423i −0.00347000 + 0.0106796i
\(169\) −0.809017 0.587785i −0.0622321 0.0452143i
\(170\) 0.380668 1.17158i 0.0291959 0.0898558i
\(171\) 7.07208 21.7656i 0.540815 1.66446i
\(172\) 2.53808 + 1.84402i 0.193527 + 0.140605i
\(173\) −3.51634 + 10.8222i −0.267342 + 0.822795i 0.723802 + 0.690007i \(0.242393\pi\)
−0.991145 + 0.132787i \(0.957607\pi\)
\(174\) 0.0528810 + 0.162751i 0.00400890 + 0.0123381i
\(175\) −1.31025 + 0.951956i −0.0990460 + 0.0719611i
\(176\) 4.38368 + 13.4916i 0.330433 + 1.01697i
\(177\) −0.218159 0.158502i −0.0163978 0.0119137i
\(178\) −21.6975 15.7641i −1.62629 1.18157i
\(179\) −17.5087 + 12.7208i −1.30866 + 0.950800i −1.00000 0.000370549i \(-0.999882\pi\)
−0.308665 + 0.951171i \(0.599882\pi\)
\(180\) −1.06718 −0.0795430
\(181\) −22.0709 −1.64052 −0.820260 0.571991i \(-0.806171\pi\)
−0.820260 + 0.571991i \(0.806171\pi\)
\(182\) −0.528840 + 0.384225i −0.0392002 + 0.0284806i
\(183\) 0.0163377 0.0502821i 0.00120771 0.00371696i
\(184\) −4.42056 13.6051i −0.325888 1.00298i
\(185\) −8.69024 −0.638919
\(186\) −1.07412 0.341725i −0.0787586 0.0250565i
\(187\) 2.28185 0.166865
\(188\) −0.972630 2.99345i −0.0709363 0.218320i
\(189\) 0.105289 0.324047i 0.00765868 0.0235710i
\(190\) −10.4668 + 7.60457i −0.759341 + 0.551694i
\(191\) 22.2117 1.60718 0.803591 0.595183i \(-0.202920\pi\)
0.803591 + 0.595183i \(0.202920\pi\)
\(192\) 0.839520 0.0605871
\(193\) −19.2116 + 13.9580i −1.38288 + 1.00472i −0.386276 + 0.922383i \(0.626239\pi\)
−0.996604 + 0.0823381i \(0.973761\pi\)
\(194\) −9.60251 6.97663i −0.689420 0.500893i
\(195\) −0.118843 0.0863443i −0.00851050 0.00618324i
\(196\) −0.681425 2.09721i −0.0486732 0.149801i
\(197\) −10.8927 + 7.91401i −0.776073 + 0.563850i −0.903798 0.427960i \(-0.859233\pi\)
0.127725 + 0.991810i \(0.459233\pi\)
\(198\) −4.38722 13.5025i −0.311786 0.959580i
\(199\) 4.16997 12.8338i 0.295601 0.909767i −0.687418 0.726262i \(-0.741256\pi\)
0.983019 0.183504i \(-0.0587442\pi\)
\(200\) 7.80790 + 5.67277i 0.552102 + 0.401125i
\(201\) 0.280919 0.864580i 0.0198145 0.0609828i
\(202\) 3.79952 11.6937i 0.267333 0.822768i
\(203\) −0.293264 0.213069i −0.0205831 0.0149545i
\(204\) −0.00970133 + 0.0298576i −0.000679229 + 0.00209045i
\(205\) −0.913804 2.81240i −0.0638228 0.196426i
\(206\) 4.66935 3.39248i 0.325329 0.236365i
\(207\) 5.15900 + 15.8778i 0.358575 + 1.10358i
\(208\) 3.67486 + 2.66994i 0.254806 + 0.185127i
\(209\) −19.3881 14.0863i −1.34111 0.974371i
\(210\) −0.0776853 + 0.0564417i −0.00536079 + 0.00389485i
\(211\) 24.9673 1.71882 0.859411 0.511285i \(-0.170830\pi\)
0.859411 + 0.511285i \(0.170830\pi\)
\(212\) 0.00410772 0.000282119
\(213\) 1.59064 1.15567i 0.108989 0.0791849i
\(214\) 2.94966 9.07812i 0.201635 0.620567i
\(215\) −3.31443 10.2008i −0.226042 0.695686i
\(216\) −2.03040 −0.138151
\(217\) 2.26623 0.751762i 0.153842 0.0510329i
\(218\) −17.1061 −1.15857
\(219\) 0.546088 + 1.68068i 0.0369012 + 0.113570i
\(220\) −0.345330 + 1.06282i −0.0232822 + 0.0716551i
\(221\) 0.591113 0.429469i 0.0397626 0.0288892i
\(222\) 1.59061 0.106754
\(223\) −2.13932 −0.143260 −0.0716299 0.997431i \(-0.522820\pi\)
−0.0716299 + 0.997431i \(0.522820\pi\)
\(224\) 0.629008 0.457001i 0.0420274 0.0305347i
\(225\) −9.11219 6.62039i −0.607479 0.441359i
\(226\) 16.9130 + 12.2880i 1.12503 + 0.817385i
\(227\) −5.21256 16.0426i −0.345970 1.06479i −0.961063 0.276331i \(-0.910881\pi\)
0.615093 0.788455i \(-0.289119\pi\)
\(228\) 0.266746 0.193803i 0.0176657 0.0128349i
\(229\) −6.04215 18.5958i −0.399277 1.22885i −0.925580 0.378551i \(-0.876422\pi\)
0.526304 0.850297i \(-0.323578\pi\)
\(230\) 2.91646 8.97596i 0.192306 0.591857i
\(231\) −0.143900 0.104550i −0.00946794 0.00687886i
\(232\) −0.667517 + 2.05441i −0.0438246 + 0.134878i
\(233\) −6.50141 + 20.0093i −0.425922 + 1.31085i 0.476187 + 0.879344i \(0.342018\pi\)
−0.902109 + 0.431508i \(0.857982\pi\)
\(234\) −3.67782 2.67210i −0.240427 0.174680i
\(235\) −3.32527 + 10.2341i −0.216916 + 0.667600i
\(236\) 0.202984 + 0.624720i 0.0132131 + 0.0406658i
\(237\) 0.361962 0.262981i 0.0235119 0.0170824i
\(238\) −0.147592 0.454240i −0.00956694 0.0294440i
\(239\) −10.3802 7.54164i −0.671438 0.487828i 0.199069 0.979986i \(-0.436208\pi\)
−0.870506 + 0.492158i \(0.836208\pi\)
\(240\) 0.539828 + 0.392208i 0.0348457 + 0.0253169i
\(241\) 16.1989 11.7692i 1.04346 0.758119i 0.0725025 0.997368i \(-0.476901\pi\)
0.970958 + 0.239250i \(0.0769015\pi\)
\(242\) 1.90047 0.122167
\(243\) 3.55785 0.228236
\(244\) −0.104191 + 0.0756989i −0.00667012 + 0.00484613i
\(245\) −2.32968 + 7.17002i −0.148838 + 0.458076i
\(246\) 0.167257 + 0.514764i 0.0106639 + 0.0328201i
\(247\) −7.67370 −0.488266
\(248\) −8.43371 11.4593i −0.535541 0.727669i
\(249\) 1.40177 0.0888338
\(250\) 4.57259 + 14.0730i 0.289196 + 0.890053i
\(251\) 2.60232 8.00911i 0.164257 0.505531i −0.834724 0.550669i \(-0.814373\pi\)
0.998981 + 0.0451380i \(0.0143728\pi\)
\(252\) −0.334743 + 0.243205i −0.0210868 + 0.0153205i
\(253\) 17.4822 1.09910
\(254\) −14.9773 −0.939757
\(255\) 0.0868331 0.0630879i 0.00543770 0.00395072i
\(256\) −6.12607 4.45085i −0.382880 0.278178i
\(257\) 3.21682 + 2.33715i 0.200660 + 0.145788i 0.683578 0.729878i \(-0.260423\pi\)
−0.482918 + 0.875666i \(0.660423\pi\)
\(258\) 0.606652 + 1.86708i 0.0377685 + 0.116240i
\(259\) −2.72586 + 1.98046i −0.169377 + 0.123060i
\(260\) 0.110576 + 0.340318i 0.00685763 + 0.0211056i
\(261\) 0.779024 2.39759i 0.0482204 0.148407i
\(262\) 23.1531 + 16.8217i 1.43040 + 1.03925i
\(263\) 3.77970 11.6327i 0.233066 0.717305i −0.764306 0.644854i \(-0.776918\pi\)
0.997372 0.0724504i \(-0.0230819\pi\)
\(264\) −0.327540 + 1.00806i −0.0201587 + 0.0620421i
\(265\) −0.0113615 0.00825464i −0.000697933 0.000507078i
\(266\) −1.55008 + 4.77065i −0.0950413 + 0.292507i
\(267\) −0.722100 2.22239i −0.0441918 0.136008i
\(268\) −1.79151 + 1.30161i −0.109434 + 0.0795085i
\(269\) −7.84604 24.1476i −0.478382 1.47231i −0.841342 0.540503i \(-0.818234\pi\)
0.362960 0.931805i \(-0.381766\pi\)
\(270\) −1.08372 0.787371i −0.0659533 0.0479178i
\(271\) −2.60163 1.89020i −0.158038 0.114821i 0.505956 0.862559i \(-0.331140\pi\)
−0.663994 + 0.747738i \(0.731140\pi\)
\(272\) −2.68506 + 1.95081i −0.162805 + 0.118285i
\(273\) −0.0569547 −0.00344706
\(274\) 9.20547 0.556122
\(275\) −9.54194 + 6.93262i −0.575400 + 0.418053i
\(276\) −0.0743261 + 0.228752i −0.00447391 + 0.0137693i
\(277\) 3.82572 + 11.7744i 0.229866 + 0.707453i 0.997761 + 0.0668783i \(0.0213039\pi\)
−0.767896 + 0.640575i \(0.778696\pi\)
\(278\) 28.7107 1.72195
\(279\) 9.84254 + 13.3736i 0.589257 + 0.800657i
\(280\) −1.21211 −0.0724377
\(281\) 6.62245 + 20.3818i 0.395062 + 1.21588i 0.928913 + 0.370298i \(0.120744\pi\)
−0.533851 + 0.845579i \(0.679256\pi\)
\(282\) 0.608636 1.87319i 0.0362437 0.111547i
\(283\) 1.80992 1.31498i 0.107589 0.0781677i −0.532690 0.846310i \(-0.678819\pi\)
0.640279 + 0.768143i \(0.278819\pi\)
\(284\) −4.78936 −0.284196
\(285\) −1.12725 −0.0667724
\(286\) −3.85128 + 2.79812i −0.227731 + 0.165456i
\(287\) −0.927563 0.673914i −0.0547523 0.0397799i
\(288\) 4.37445 + 3.17822i 0.257767 + 0.187278i
\(289\) −5.08832 15.6602i −0.299313 0.921190i
\(290\) −1.15297 + 0.837681i −0.0677046 + 0.0491903i
\(291\) −0.319575 0.983550i −0.0187338 0.0576567i
\(292\) 1.33023 4.09402i 0.0778456 0.239584i
\(293\) 11.1743 + 8.11860i 0.652809 + 0.474293i 0.864227 0.503102i \(-0.167808\pi\)
−0.211418 + 0.977396i \(0.567808\pi\)
\(294\) 0.426410 1.31236i 0.0248688 0.0765381i
\(295\) 0.693969 2.13582i 0.0404044 0.124352i
\(296\) 16.2436 + 11.8017i 0.944141 + 0.685958i
\(297\) 0.766771 2.35988i 0.0444925 0.136934i
\(298\) −3.26352 10.0441i −0.189050 0.581838i
\(299\) 4.52877 3.29035i 0.261906 0.190286i
\(300\) −0.0501445 0.154329i −0.00289509 0.00891018i
\(301\) −3.36433 2.44433i −0.193917 0.140889i
\(302\) 11.2839 + 8.19822i 0.649314 + 0.471754i
\(303\) 0.866697 0.629693i 0.0497905 0.0361749i
\(304\) 34.8568 1.99917
\(305\) 0.440301 0.0252116
\(306\) 2.68722 1.95238i 0.153618 0.111610i
\(307\) −2.98733 + 9.19404i −0.170496 + 0.524732i −0.999399 0.0346599i \(-0.988965\pi\)
0.828903 + 0.559392i \(0.188965\pi\)
\(308\) 0.133890 + 0.412072i 0.00762912 + 0.0234800i
\(309\) 0.502877 0.0286077
\(310\) −0.0576488 9.38694i −0.00327423 0.533143i
\(311\) −4.22201 −0.239408 −0.119704 0.992810i \(-0.538195\pi\)
−0.119704 + 0.992810i \(0.538195\pi\)
\(312\) 0.104879 + 0.322786i 0.00593763 + 0.0182741i
\(313\) 2.30085 7.08128i 0.130052 0.400258i −0.864736 0.502227i \(-0.832514\pi\)
0.994788 + 0.101969i \(0.0325143\pi\)
\(314\) −13.1466 + 9.55155i −0.741904 + 0.539025i
\(315\) 1.41459 0.0797034
\(316\) −1.08985 −0.0613091
\(317\) 7.35020 5.34023i 0.412828 0.299937i −0.361918 0.932210i \(-0.617878\pi\)
0.774746 + 0.632273i \(0.217878\pi\)
\(318\) 0.00207954 + 0.00151088i 0.000116615 + 8.47258e-5i
\(319\) −2.13570 1.55168i −0.119576 0.0868772i
\(320\) 2.16050 + 6.64935i 0.120776 + 0.371710i
\(321\) 0.672838 0.488845i 0.0375541 0.0272847i
\(322\) −1.13076 3.48013i −0.0630150 0.193940i
\(323\) 1.73261 5.33241i 0.0964048 0.296703i
\(324\) −2.31412 1.68131i −0.128562 0.0934060i
\(325\) −1.16704 + 3.59179i −0.0647359 + 0.199237i
\(326\) −5.58276 + 17.1820i −0.309200 + 0.951621i
\(327\) −1.20579 0.876056i −0.0666802 0.0484460i
\(328\) −2.11128 + 6.49786i −0.116576 + 0.358784i
\(329\) 1.28926 + 3.96794i 0.0710793 + 0.218760i
\(330\) −0.565744 + 0.411037i −0.0311432 + 0.0226268i
\(331\) 6.87193 + 21.1496i 0.377715 + 1.16249i 0.941628 + 0.336654i \(0.109295\pi\)
−0.563913 + 0.825834i \(0.690705\pi\)
\(332\) −2.76248 2.00706i −0.151611 0.110152i
\(333\) −18.9571 13.7731i −1.03884 0.754762i
\(334\) −13.9647 + 10.1459i −0.764113 + 0.555160i
\(335\) 7.57078 0.413636
\(336\) 0.258710 0.0141138
\(337\) −7.28573 + 5.29339i −0.396879 + 0.288349i −0.768268 0.640128i \(-0.778881\pi\)
0.371390 + 0.928477i \(0.378881\pi\)
\(338\) −0.471037 + 1.44970i −0.0256211 + 0.0788535i
\(339\) 0.562869 + 1.73233i 0.0305709 + 0.0940875i
\(340\) −0.261451 −0.0141792
\(341\) 16.5039 5.47471i 0.893734 0.296472i
\(342\) −34.8849 −1.88636
\(343\) 1.83089 + 5.63489i 0.0988585 + 0.304255i
\(344\) −7.65777 + 23.5682i −0.412879 + 1.27071i
\(345\) 0.665266 0.483344i 0.0358167 0.0260224i
\(346\) 17.3453 0.932488
\(347\) −0.0849528 −0.00456051 −0.00228025 0.999997i \(-0.500726\pi\)
−0.00228025 + 0.999997i \(0.500726\pi\)
\(348\) 0.0293834 0.0213483i 0.00157512 0.00114439i
\(349\) 8.80264 + 6.39550i 0.471195 + 0.342343i 0.797907 0.602781i \(-0.205941\pi\)
−0.326712 + 0.945124i \(0.605941\pi\)
\(350\) 1.99723 + 1.45108i 0.106757 + 0.0775632i
\(351\) −0.245523 0.755641i −0.0131050 0.0403331i
\(352\) 4.58075 3.32811i 0.244155 0.177389i
\(353\) −7.48876 23.0480i −0.398587 1.22672i −0.926133 0.377197i \(-0.876888\pi\)
0.527546 0.849526i \(-0.323112\pi\)
\(354\) −0.127020 + 0.390927i −0.00675102 + 0.0207775i
\(355\) 13.2469 + 9.62442i 0.703071 + 0.510811i
\(356\) −1.75898 + 5.41358i −0.0932257 + 0.286919i
\(357\) 0.0128595 0.0395775i 0.000680598 0.00209467i
\(358\) 26.6887 + 19.3905i 1.41054 + 1.02482i
\(359\) 7.03258 21.6441i 0.371166 1.14233i −0.574864 0.818249i \(-0.694945\pi\)
0.946029 0.324081i \(-0.105055\pi\)
\(360\) −2.60491 8.01709i −0.137291 0.422538i
\(361\) −32.2681 + 23.4442i −1.69832 + 1.23390i
\(362\) 10.3962 + 31.9963i 0.546414 + 1.68169i
\(363\) 0.133962 + 0.0973292i 0.00703119 + 0.00510846i
\(364\) 0.112241 + 0.0815477i 0.00588302 + 0.00427426i
\(365\) −11.9064 + 8.65049i −0.623208 + 0.452787i
\(366\) −0.0805899 −0.00421250
\(367\) −8.92455 −0.465858 −0.232929 0.972494i \(-0.574831\pi\)
−0.232929 + 0.972494i \(0.574831\pi\)
\(368\) −20.5714 + 14.9460i −1.07236 + 0.779113i
\(369\) 2.46397 7.58331i 0.128269 0.394771i
\(370\) 4.09343 + 12.5983i 0.212807 + 0.654953i
\(371\) −0.00544495 −0.000282688
\(372\) 0.00146918 + 0.239226i 7.61735e−5 + 0.0124033i
\(373\) 9.07619 0.469948 0.234974 0.972002i \(-0.424500\pi\)
0.234974 + 0.972002i \(0.424500\pi\)
\(374\) −1.07484 3.30801i −0.0555785 0.171053i
\(375\) −0.398405 + 1.22617i −0.0205736 + 0.0633189i
\(376\) 20.1138 14.6136i 1.03729 0.753637i
\(377\) −0.845295 −0.0435349
\(378\) −0.519368 −0.0267134
\(379\) −9.80998 + 7.12737i −0.503905 + 0.366108i −0.810507 0.585730i \(-0.800808\pi\)
0.306602 + 0.951838i \(0.400808\pi\)
\(380\) 2.22147 + 1.61399i 0.113959 + 0.0827961i
\(381\) −1.05573 0.767033i −0.0540867 0.0392963i
\(382\) −10.4625 32.2004i −0.535310 1.64751i
\(383\) 26.6284 19.3467i 1.36065 0.988569i 0.362245 0.932083i \(-0.382010\pi\)
0.998403 0.0564861i \(-0.0179897\pi\)
\(384\) −0.544263 1.67507i −0.0277743 0.0854805i
\(385\) 0.457750 1.40881i 0.0233291 0.0717996i
\(386\) 29.2844 + 21.2764i 1.49054 + 1.08294i
\(387\) 8.93698 27.5052i 0.454292 1.39817i
\(388\) −0.778460 + 2.39585i −0.0395203 + 0.121631i
\(389\) 7.98283 + 5.79987i 0.404746 + 0.294065i 0.771471 0.636264i \(-0.219521\pi\)
−0.366726 + 0.930329i \(0.619521\pi\)
\(390\) −0.0691943 + 0.212958i −0.00350379 + 0.0107836i
\(391\) 1.26392 + 3.88993i 0.0639190 + 0.196722i
\(392\) 14.0918 10.2383i 0.711741 0.517110i
\(393\) 0.770543 + 2.37149i 0.0388687 + 0.119626i
\(394\) 16.6038 + 12.0634i 0.836490 + 0.607745i
\(395\) 3.01443 + 2.19011i 0.151672 + 0.110196i
\(396\) −2.43776 + 1.77114i −0.122502 + 0.0890031i
\(397\) −9.26761 −0.465128 −0.232564 0.972581i \(-0.574711\pi\)
−0.232564 + 0.972581i \(0.574711\pi\)
\(398\) −20.5695 −1.03105
\(399\) −0.353583 + 0.256893i −0.0177013 + 0.0128608i
\(400\) 5.30115 16.3153i 0.265057 0.815763i
\(401\) −2.94217 9.05508i −0.146925 0.452189i 0.850328 0.526252i \(-0.176403\pi\)
−0.997254 + 0.0740634i \(0.976403\pi\)
\(402\) −1.38571 −0.0691129
\(403\) 3.24493 4.52443i 0.161641 0.225378i
\(404\) −2.60960 −0.129832
\(405\) 3.02197 + 9.30066i 0.150163 + 0.462153i
\(406\) −0.170749 + 0.525510i −0.00847411 + 0.0260806i
\(407\) −19.8511 + 14.4227i −0.983983 + 0.714906i
\(408\) −0.247982 −0.0122770
\(409\) −3.20698 −0.158575 −0.0792875 0.996852i \(-0.525265\pi\)
−0.0792875 + 0.996852i \(0.525265\pi\)
\(410\) −3.64671 + 2.64949i −0.180098 + 0.130849i
\(411\) 0.648883 + 0.471441i 0.0320071 + 0.0232545i
\(412\) −0.991021 0.720019i −0.0488241 0.0354728i
\(413\) −0.269064 0.828093i −0.0132398 0.0407478i
\(414\) 20.5880 14.9580i 1.01184 0.735148i
\(415\) 3.60747 + 11.1026i 0.177083 + 0.545007i
\(416\) 0.560257 1.72429i 0.0274689 0.0845405i
\(417\) 2.02379 + 1.47037i 0.0991053 + 0.0720042i
\(418\) −11.2884 + 34.7423i −0.552136 + 1.69930i
\(419\) 0.168041 0.517178i 0.00820936 0.0252658i −0.946868 0.321623i \(-0.895772\pi\)
0.955077 + 0.296357i \(0.0957718\pi\)
\(420\) 0.0164879 + 0.0119792i 0.000804527 + 0.000584523i
\(421\) −11.0922 + 34.1384i −0.540603 + 1.66381i 0.190618 + 0.981664i \(0.438951\pi\)
−0.731221 + 0.682141i \(0.761049\pi\)
\(422\) −11.7606 36.1953i −0.572495 1.76196i
\(423\) −23.4738 + 17.0547i −1.14134 + 0.829229i
\(424\) 0.0100266 + 0.0308588i 0.000486936 + 0.00149864i
\(425\) −2.23242 1.62195i −0.108288 0.0786759i
\(426\) −2.42462 1.76159i −0.117473 0.0853495i
\(427\) 0.138109 0.100342i 0.00668357 0.00485589i
\(428\) −2.02589 −0.0979251
\(429\) −0.414773 −0.0200254
\(430\) −13.2269 + 9.60988i −0.637856 + 0.463430i
\(431\) −1.31981 + 4.06197i −0.0635732 + 0.195658i −0.977798 0.209549i \(-0.932801\pi\)
0.914225 + 0.405207i \(0.132801\pi\)
\(432\) 1.11525 + 3.43240i 0.0536577 + 0.165142i
\(433\) −9.45085 −0.454179 −0.227090 0.973874i \(-0.572921\pi\)
−0.227090 + 0.973874i \(0.572921\pi\)
\(434\) −2.15731 2.93126i −0.103554 0.140705i
\(435\) −0.124172 −0.00595358
\(436\) 1.12191 + 3.45289i 0.0537298 + 0.165363i
\(437\) 13.2742 40.8539i 0.634993 1.95431i
\(438\) 2.17927 1.58333i 0.104129 0.0756545i
\(439\) −3.77467 −0.180155 −0.0900776 0.995935i \(-0.528711\pi\)
−0.0900776 + 0.995935i \(0.528711\pi\)
\(440\) −8.82723 −0.420821
\(441\) −16.4457 + 11.9485i −0.783131 + 0.568978i
\(442\) −0.901039 0.654643i −0.0428581 0.0311382i
\(443\) 0.981633 + 0.713198i 0.0466388 + 0.0338851i 0.610860 0.791738i \(-0.290824\pi\)
−0.564222 + 0.825623i \(0.690824\pi\)
\(444\) −0.104321 0.321067i −0.00495085 0.0152372i
\(445\) 15.7440 11.4387i 0.746336 0.542245i
\(446\) 1.00770 + 3.10139i 0.0477161 + 0.146855i
\(447\) 0.284347 0.875131i 0.0134492 0.0413923i
\(448\) 2.19303 + 1.59333i 0.103611 + 0.0752779i
\(449\) −7.19533 + 22.1449i −0.339569 + 1.04508i 0.624859 + 0.780738i \(0.285156\pi\)
−0.964428 + 0.264347i \(0.914844\pi\)
\(450\) −5.30543 + 16.3284i −0.250100 + 0.769730i
\(451\) −6.75498 4.90778i −0.318080 0.231098i
\(452\) 1.37111 4.21983i 0.0644914 0.198484i
\(453\) 0.375531 + 1.15577i 0.0176440 + 0.0543027i
\(454\) −20.8017 + 15.1133i −0.976274 + 0.709304i
\(455\) −0.146573 0.451105i −0.00687145 0.0211481i
\(456\) 2.10703 + 1.53085i 0.0986706 + 0.0716884i
\(457\) −10.7108 7.78186i −0.501030 0.364020i 0.308380 0.951263i \(-0.400213\pi\)
−0.809410 + 0.587243i \(0.800213\pi\)
\(458\) −24.1124 + 17.5187i −1.12670 + 0.818594i
\(459\) 0.580526 0.0270966
\(460\) −2.00309 −0.0933947
\(461\) −16.2689 + 11.8201i −0.757720 + 0.550516i −0.898210 0.439566i \(-0.855132\pi\)
0.140490 + 0.990082i \(0.455132\pi\)
\(462\) −0.0837836 + 0.257860i −0.00389797 + 0.0119967i
\(463\) −11.2717 34.6906i −0.523839 1.61221i −0.766601 0.642124i \(-0.778054\pi\)
0.242763 0.970086i \(-0.421946\pi\)
\(464\) 3.83964 0.178251
\(465\) 0.476672 0.664628i 0.0221051 0.0308214i
\(466\) 32.0700 1.48561
\(467\) −12.3568 38.0302i −0.571803 1.75983i −0.646817 0.762645i \(-0.723900\pi\)
0.0750142 0.997182i \(-0.476100\pi\)
\(468\) −0.298155 + 0.917627i −0.0137822 + 0.0424173i
\(469\) 2.37473 1.72534i 0.109655 0.0796688i
\(470\) 16.4028 0.756603
\(471\) −1.41585 −0.0652391
\(472\) −4.19767 + 3.04979i −0.193214 + 0.140378i
\(473\) −24.5008 17.8009i −1.12655 0.818484i
\(474\) −0.551741 0.400864i −0.0253423 0.0184123i
\(475\) 8.95554 + 27.5623i 0.410908 + 1.26465i
\(476\) −0.0820094 + 0.0595833i −0.00375889 + 0.00273100i
\(477\) −0.0117016 0.0360137i −0.000535777 0.00164895i
\(478\) −6.04369 + 18.6006i −0.276432 + 0.850770i
\(479\) −8.03313 5.83641i −0.367043 0.266672i 0.388941 0.921263i \(-0.372841\pi\)
−0.755984 + 0.654590i \(0.772841\pi\)
\(480\) 0.0823005 0.253295i 0.00375649 0.0115613i
\(481\) −2.42793 + 7.47239i −0.110704 + 0.340712i
\(482\) −24.6921 17.9398i −1.12469 0.817138i
\(483\) 0.0985224 0.303221i 0.00448292 0.0137970i
\(484\) −0.124644 0.383614i −0.00566562 0.0174370i
\(485\) 6.96771 5.06234i 0.316387 0.229869i
\(486\) −1.67588 5.15782i −0.0760194 0.233964i
\(487\) 24.9145 + 18.1014i 1.12898 + 0.820255i 0.985547 0.169405i \(-0.0541846\pi\)
0.143437 + 0.989659i \(0.454185\pi\)
\(488\) −0.823001 0.597945i −0.0372555 0.0270677i
\(489\) −1.27347 + 0.925227i −0.0575881 + 0.0418402i
\(490\) 11.4918 0.519146
\(491\) 25.1650 1.13568 0.567839 0.823139i \(-0.307779\pi\)
0.567839 + 0.823139i \(0.307779\pi\)
\(492\) 0.0929364 0.0675223i 0.00418990 0.00304414i
\(493\) 0.190855 0.587391i 0.00859568 0.0264548i
\(494\) 3.61460 + 11.1246i 0.162628 + 0.500519i
\(495\) 10.3018 0.463031
\(496\) −14.7397 + 20.5516i −0.661830 + 0.922796i
\(497\) 6.34849 0.284769
\(498\) −0.660288 2.03216i −0.0295882 0.0910631i
\(499\) 5.57046 17.1441i 0.249368 0.767476i −0.745519 0.666484i \(-0.767798\pi\)
0.994887 0.100992i \(-0.0322016\pi\)
\(500\) 2.54076 1.84597i 0.113626 0.0825543i
\(501\) −1.50396 −0.0671920
\(502\) −12.8366 −0.572927
\(503\) 11.3942 8.27839i 0.508044 0.369115i −0.304037 0.952660i \(-0.598335\pi\)
0.812081 + 0.583545i \(0.198335\pi\)
\(504\) −2.64413 1.92107i −0.117779 0.0855714i
\(505\) 7.21788 + 5.24410i 0.321191 + 0.233359i
\(506\) −8.23479 25.3441i −0.366081 1.12668i
\(507\) −0.107447 + 0.0780648i −0.00477189 + 0.00346698i
\(508\) 0.982294 + 3.02319i 0.0435822 + 0.134132i
\(509\) 6.77391 20.8479i 0.300248 0.924069i −0.681160 0.732135i \(-0.738524\pi\)
0.981408 0.191934i \(-0.0614760\pi\)
\(510\) −0.132360 0.0961655i −0.00586102 0.00425828i
\(511\) −1.76327 + 5.42679i −0.0780026 + 0.240067i
\(512\) 4.62919 14.2472i 0.204583 0.629643i
\(513\) −4.93255 3.58370i −0.217777 0.158224i
\(514\) 1.87294 5.76432i 0.0826119 0.254253i
\(515\) 1.29416 + 3.98300i 0.0570273 + 0.175512i
\(516\) 0.337087 0.244908i 0.0148394 0.0107815i
\(517\) 9.38906 + 28.8965i 0.412930 + 1.27087i
\(518\) 4.15506 + 3.01883i 0.182563 + 0.132640i
\(519\) 1.22265 + 0.888308i 0.0536684 + 0.0389924i
\(520\) −2.28669 + 1.66138i −0.100278 + 0.0728563i
\(521\) 9.06077 0.396960 0.198480 0.980105i \(-0.436400\pi\)
0.198480 + 0.980105i \(0.436400\pi\)
\(522\) −3.84274 −0.168192
\(523\) 36.1764 26.2837i 1.58188 1.14930i 0.667385 0.744713i \(-0.267413\pi\)
0.914497 0.404592i \(-0.132587\pi\)
\(524\) 1.87698 5.77676i 0.0819964 0.252359i
\(525\) 0.0664686 + 0.204569i 0.00290093 + 0.00892814i
\(526\) −18.6444 −0.812934
\(527\) 2.41135 + 3.27643i 0.105040 + 0.142724i
\(528\) 1.88405 0.0819929
\(529\) 2.57601 + 7.92816i 0.112001 + 0.344702i
\(530\) −0.00661508 + 0.0203591i −0.000287340 + 0.000884343i
\(531\) 4.89888 3.55925i 0.212593 0.154458i
\(532\) 1.06463 0.0461575
\(533\) −2.67357 −0.115805
\(534\) −2.88168 + 2.09366i −0.124702 + 0.0906016i
\(535\) 5.60341 + 4.07112i 0.242257 + 0.176010i
\(536\) −14.1512 10.2814i −0.611237 0.444090i
\(537\) 0.888210 + 2.73363i 0.0383291 + 0.117965i
\(538\) −31.3112 + 22.7489i −1.34992 + 0.980774i
\(539\) 6.57798 + 20.2449i 0.283333 + 0.872011i
\(540\) −0.0878556 + 0.270392i −0.00378070 + 0.0116358i
\(541\) 3.99147 + 2.89997i 0.171607 + 0.124680i 0.670273 0.742114i \(-0.266177\pi\)
−0.498667 + 0.866794i \(0.666177\pi\)
\(542\) −1.51476 + 4.66195i −0.0650645 + 0.200248i
\(543\) −0.905815 + 2.78781i −0.0388722 + 0.119636i
\(544\) 1.07171 + 0.778640i 0.0459490 + 0.0333839i
\(545\) 3.83564 11.8049i 0.164301 0.505665i
\(546\) 0.0268278 + 0.0825675i 0.00114812 + 0.00353356i
\(547\) 16.1500 11.7337i 0.690526 0.501696i −0.186307 0.982492i \(-0.559652\pi\)
0.876833 + 0.480795i \(0.159652\pi\)
\(548\) −0.603747 1.85814i −0.0257908 0.0793759i
\(549\) 0.960482 + 0.697831i 0.0409924 + 0.0297827i
\(550\) 14.5449 + 10.5675i 0.620195 + 0.450598i
\(551\) −5.24772 + 3.81269i −0.223560 + 0.162426i
\(552\) −1.89990 −0.0808652
\(553\) 1.44465 0.0614327
\(554\) 15.2673 11.0923i 0.648645 0.471268i
\(555\) −0.356657 + 1.09768i −0.0151392 + 0.0465938i
\(556\) −1.88301 5.79532i −0.0798575 0.245776i
\(557\) −39.4508 −1.67158 −0.835792 0.549046i \(-0.814991\pi\)
−0.835792 + 0.549046i \(0.814991\pi\)
\(558\) 14.7516 20.5682i 0.624483 0.870723i
\(559\) −9.69724 −0.410149
\(560\) 0.665789 + 2.04909i 0.0281347 + 0.0865898i
\(561\) 0.0936496 0.288224i 0.00395389 0.0121688i
\(562\) 26.4282 19.2012i 1.11480 0.809953i
\(563\) 11.4008 0.480486 0.240243 0.970713i \(-0.422773\pi\)
0.240243 + 0.970713i \(0.422773\pi\)
\(564\) −0.418024 −0.0176020
\(565\) −12.2723 + 8.91633i −0.516298 + 0.375113i
\(566\) −2.75888 2.00444i −0.115964 0.0842531i
\(567\) 3.06747 + 2.22865i 0.128822 + 0.0935943i
\(568\) −11.6905 35.9795i −0.490521 1.50967i
\(569\) 11.2063 8.14185i 0.469792 0.341324i −0.327568 0.944828i \(-0.606229\pi\)
0.797360 + 0.603504i \(0.206229\pi\)
\(570\) 0.530976 + 1.63418i 0.0222401 + 0.0684481i
\(571\) −3.40579 + 10.4820i −0.142528 + 0.438656i −0.996685 0.0813593i \(-0.974074\pi\)
0.854157 + 0.520016i \(0.174074\pi\)
\(572\) 0.817394 + 0.593872i 0.0341770 + 0.0248310i
\(573\) 0.911591 2.80559i 0.0380823 0.117205i
\(574\) −0.540059 + 1.66213i −0.0225416 + 0.0693760i
\(575\) −17.1035 12.4264i −0.713266 0.518218i
\(576\) −5.82555 + 17.9292i −0.242731 + 0.747050i
\(577\) 12.0642 + 37.1298i 0.502240 + 1.54574i 0.805362 + 0.592784i \(0.201971\pi\)
−0.303122 + 0.952952i \(0.598029\pi\)
\(578\) −20.3059 + 14.7531i −0.844615 + 0.613649i
\(579\) 0.974595 + 2.99950i 0.0405028 + 0.124655i
\(580\) 0.244706 + 0.177789i 0.0101609 + 0.00738229i
\(581\) 3.66178 + 2.66044i 0.151916 + 0.110374i
\(582\) −1.27533 + 0.926578i −0.0528639 + 0.0384079i
\(583\) −0.0396529 −0.00164226
\(584\) 34.0029 1.40705
\(585\) 2.66868 1.93891i 0.110336 0.0801640i
\(586\) 6.50606 20.0236i 0.268763 0.827166i
\(587\) −7.90510 24.3294i −0.326279 1.00418i −0.970860 0.239647i \(-0.922968\pi\)
0.644582 0.764536i \(-0.277032\pi\)
\(588\) −0.292868 −0.0120777
\(589\) −0.262388 42.7245i −0.0108115 1.76043i
\(590\) −3.42319 −0.140930
\(591\) 0.552582 + 1.70067i 0.0227302 + 0.0699563i
\(592\) 11.0285 33.9424i 0.453271 1.39502i
\(593\) 10.8148 7.85742i 0.444111 0.322665i −0.343155 0.939279i \(-0.611496\pi\)
0.787266 + 0.616613i \(0.211496\pi\)
\(594\) −3.78230 −0.155190
\(595\) 0.346565 0.0142078
\(596\) −1.81338 + 1.31749i −0.0742788 + 0.0539667i
\(597\) −1.44992 1.05343i −0.0593413 0.0431140i
\(598\) −6.90325 5.01550i −0.282295 0.205099i
\(599\) −0.378710 1.16555i −0.0154737 0.0476231i 0.943022 0.332732i \(-0.107970\pi\)
−0.958495 + 0.285109i \(0.907970\pi\)
\(600\) 1.03698 0.753410i 0.0423345 0.0307578i
\(601\) −14.4942 44.6087i −0.591233 1.81963i −0.572650 0.819800i \(-0.694085\pi\)
−0.0185824 0.999827i \(-0.505915\pi\)
\(602\) −1.95883 + 6.02866i −0.0798360 + 0.245710i
\(603\) 16.5151 + 11.9989i 0.672546 + 0.488633i
\(604\) 0.914765 2.81536i 0.0372213 0.114555i
\(605\) −0.426137 + 1.31151i −0.0173249 + 0.0533206i
\(606\) −1.32111 0.959846i −0.0536666 0.0389911i
\(607\) 9.05718 27.8751i 0.367620 1.13142i −0.580705 0.814114i \(-0.697223\pi\)
0.948324 0.317302i \(-0.102777\pi\)
\(608\) −4.29924 13.2317i −0.174357 0.536617i
\(609\) −0.0389489 + 0.0282981i −0.00157829 + 0.00114670i
\(610\) −0.207398 0.638306i −0.00839731 0.0258443i
\(611\) 7.87088 + 5.71853i 0.318422 + 0.231347i
\(612\) −0.570336 0.414373i −0.0230545 0.0167500i
\(613\) −0.610236 + 0.443363i −0.0246472 + 0.0179072i −0.600041 0.799970i \(-0.704849\pi\)
0.575393 + 0.817877i \(0.304849\pi\)
\(614\) 14.7358 0.594688
\(615\) −0.392742 −0.0158369
\(616\) −2.76883 + 2.01168i −0.111559 + 0.0810527i
\(617\) 3.91473 12.0483i 0.157601 0.485046i −0.840814 0.541324i \(-0.817923\pi\)
0.998415 + 0.0562780i \(0.0179233\pi\)
\(618\) −0.236874 0.729023i −0.00952847 0.0293256i
\(619\) −17.7553 −0.713645 −0.356822 0.934172i \(-0.616140\pi\)
−0.356822 + 0.934172i \(0.616140\pi\)
\(620\) −1.89099 + 0.627286i −0.0759441 + 0.0251924i
\(621\) 4.44766 0.178479
\(622\) 1.98872 + 6.12066i 0.0797405 + 0.245416i
\(623\) 2.33160 7.17593i 0.0934136 0.287498i
\(624\) 0.488064 0.354599i 0.0195382 0.0141953i
\(625\) 8.14612 0.325845
\(626\) −11.3496 −0.453619
\(627\) −2.57497 + 1.87083i −0.102835 + 0.0747136i
\(628\) 2.79023 + 2.02722i 0.111342 + 0.0808948i
\(629\) −4.64434 3.37431i −0.185182 0.134542i
\(630\) −0.666327 2.05074i −0.0265471 0.0817036i
\(631\) −30.6031 + 22.2344i −1.21829 + 0.885138i −0.995957 0.0898327i \(-0.971367\pi\)
−0.222332 + 0.974971i \(0.571367\pi\)
\(632\) −2.66025 8.18741i −0.105819 0.325678i
\(633\) 1.02469 3.15366i 0.0407276 0.125347i
\(634\) −11.2040 8.14016i −0.444967 0.323287i
\(635\) 3.35830 10.3358i 0.133270 0.410164i
\(636\) 0.000168585 0 0.000518852i 6.68484e−6 0 2.05738e-5i
\(637\) 5.51434 + 4.00640i 0.218486 + 0.158739i
\(638\) −1.24348 + 3.82703i −0.0492297 + 0.151514i
\(639\) 13.6433 + 41.9898i 0.539721 + 1.66109i
\(640\) 11.8666 8.62158i 0.469068 0.340798i
\(641\) 4.21134 + 12.9612i 0.166338 + 0.511935i 0.999132 0.0416470i \(-0.0132605\pi\)
−0.832795 + 0.553582i \(0.813260\pi\)
\(642\) −1.02561 0.745151i −0.0404777 0.0294088i
\(643\) −17.0074 12.3566i −0.670707 0.487297i 0.199555 0.979887i \(-0.436050\pi\)
−0.870262 + 0.492590i \(0.836050\pi\)
\(644\) −0.628310 + 0.456494i −0.0247589 + 0.0179884i
\(645\) −1.42450 −0.0560897
\(646\) −8.54654 −0.336259
\(647\) 11.0461 8.02546i 0.434267 0.315513i −0.349086 0.937091i \(-0.613508\pi\)
0.783353 + 0.621577i \(0.213508\pi\)
\(648\) 6.98205 21.4885i 0.274281 0.844150i
\(649\) −1.95946 6.03059i −0.0769154 0.236721i
\(650\) 5.75676 0.225799
\(651\) −0.00194746 0.317104i −7.63270e−5 0.0124283i
\(652\) 3.83436 0.150165
\(653\) −0.409437 1.26012i −0.0160225 0.0493122i 0.942726 0.333569i \(-0.108253\pi\)
−0.958748 + 0.284257i \(0.908253\pi\)
\(654\) −0.702051 + 2.16069i −0.0274524 + 0.0844897i
\(655\) −16.8002 + 12.2061i −0.656438 + 0.476930i
\(656\) 12.1444 0.474158
\(657\) −39.6829 −1.54818
\(658\) 5.14505 3.73810i 0.200575 0.145726i
\(659\) −22.9244 16.6555i −0.893007 0.648807i 0.0436536 0.999047i \(-0.486100\pi\)
−0.936660 + 0.350239i \(0.886100\pi\)
\(660\) 0.120073 + 0.0872383i 0.00467385 + 0.00339575i
\(661\) −3.18105 9.79027i −0.123729 0.380797i 0.869939 0.493160i \(-0.164158\pi\)
−0.993667 + 0.112363i \(0.964158\pi\)
\(662\) 27.4238 19.9245i 1.06585 0.774389i
\(663\) −0.0299869 0.0922902i −0.00116459 0.00358425i
\(664\) 8.33481 25.6519i 0.323453 0.995487i
\(665\) −2.94465 2.13941i −0.114189 0.0829629i
\(666\) −11.0375 + 33.9698i −0.427693 + 1.31630i
\(667\) 1.46222 4.50026i 0.0566175 0.174251i
\(668\) 2.96386 + 2.15337i 0.114675 + 0.0833163i
\(669\) −0.0878001 + 0.270221i −0.00339455 + 0.0104473i
\(670\) −3.56612 10.9754i −0.137771 0.424017i
\(671\) 1.00578 0.730742i 0.0388277 0.0282100i
\(672\) −0.0319093 0.0982067i −0.00123093 0.00378841i
\(673\) −4.28962 3.11659i −0.165353 0.120136i 0.502032 0.864849i \(-0.332586\pi\)
−0.667384 + 0.744714i \(0.732586\pi\)
\(674\) 11.1057 + 8.06876i 0.427776 + 0.310797i
\(675\) −2.42757 + 1.76373i −0.0934371 + 0.0678860i
\(676\) 0.323519 0.0124430
\(677\) −10.7418 −0.412841 −0.206420 0.978463i \(-0.566181\pi\)
−0.206420 + 0.978463i \(0.566181\pi\)
\(678\) 2.24624 1.63199i 0.0862663 0.0626761i
\(679\) 1.03188 3.17580i 0.0396000 0.121876i
\(680\) −0.638183 1.96413i −0.0244732 0.0753208i
\(681\) −2.24029 −0.0858483
\(682\) −15.7107 21.3469i −0.601592 0.817416i
\(683\) −10.4114 −0.398383 −0.199191 0.979961i \(-0.563832\pi\)
−0.199191 + 0.979961i \(0.563832\pi\)
\(684\) 2.28795 + 7.04159i 0.0874820 + 0.269242i
\(685\) −2.06411 + 6.35269i −0.0788657 + 0.242724i
\(686\) 7.30650 5.30848i 0.278964 0.202679i
\(687\) −2.59684 −0.0990758
\(688\) 44.0485 1.67933
\(689\) −0.0102721 + 0.00746311i −0.000391335 + 0.000284322i
\(690\) −1.01407 0.736766i −0.0386050 0.0280482i
\(691\) 17.3970 + 12.6397i 0.661815 + 0.480837i 0.867275 0.497829i \(-0.165869\pi\)
−0.205461 + 0.978665i \(0.565869\pi\)
\(692\) −1.13760 3.50118i −0.0432452 0.133095i
\(693\) 3.23136 2.34772i 0.122749 0.0891825i
\(694\) 0.0400160 + 0.123156i 0.00151899 + 0.00467496i
\(695\) −6.43772 + 19.8133i −0.244196 + 0.751560i
\(696\) 0.232099 + 0.168630i 0.00879770 + 0.00639191i
\(697\) 0.603653 1.85785i 0.0228650 0.0703712i
\(698\) 5.12520 15.7737i 0.193992 0.597045i
\(699\) 2.26058 + 1.64241i 0.0855029 + 0.0621215i
\(700\) 0.161912 0.498315i 0.00611972 0.0188345i
\(701\) 13.6121 + 41.8937i 0.514122 + 1.58230i 0.784874 + 0.619656i \(0.212728\pi\)
−0.270752 + 0.962649i \(0.587272\pi\)
\(702\) −0.979805 + 0.711870i −0.0369804 + 0.0268678i
\(703\) 18.6312 + 57.3408i 0.702688 + 2.16265i
\(704\) 15.9708 + 11.6035i 0.601922 + 0.437322i
\(705\) 1.15621 + 0.840038i 0.0435455 + 0.0316377i
\(706\) −29.8854 + 21.7130i −1.12475 + 0.817179i
\(707\) 3.45913 0.130094
\(708\) 0.0872400 0.00327868
\(709\) 24.6120 17.8816i 0.924321 0.671559i −0.0202746 0.999794i \(-0.506454\pi\)
0.944596 + 0.328236i \(0.106454\pi\)
\(710\) 7.71279 23.7375i 0.289456 0.890853i
\(711\) 3.10464 + 9.55510i 0.116433 + 0.358344i
\(712\) −44.9625 −1.68504
\(713\) 18.4744 + 25.1022i 0.691871 + 0.940083i
\(714\) −0.0634331 −0.00237392
\(715\) −1.06742 3.28518i −0.0399192 0.122859i
\(716\) 2.16361 6.65891i 0.0808580 0.248855i
\(717\) −1.37861 + 1.00162i −0.0514851 + 0.0374061i
\(718\) −34.6901 −1.29462
\(719\) 21.5622 0.804136 0.402068 0.915610i \(-0.368292\pi\)
0.402068 + 0.915610i \(0.368292\pi\)
\(720\) −12.1221 + 8.80725i −0.451765 + 0.328227i
\(721\) 1.31364 + 0.954416i 0.0489225 + 0.0355443i
\(722\) 49.1866 + 35.7362i 1.83054 + 1.32996i
\(723\) −0.821761 2.52912i −0.0305616 0.0940590i
\(724\) 5.77668 4.19700i 0.214689 0.155980i
\(725\) 0.986496 + 3.03612i 0.0366375 + 0.112759i
\(726\) 0.0779974 0.240051i 0.00289476 0.00890914i
\(727\) −2.54991 1.85262i −0.0945710 0.0687098i 0.539495 0.841989i \(-0.318615\pi\)
−0.634066 + 0.773279i \(0.718615\pi\)
\(728\) −0.338647 + 1.04225i −0.0125511 + 0.0386283i
\(729\) −8.05056 + 24.7771i −0.298169 + 0.917669i
\(730\) 18.1490 + 13.1860i 0.671725 + 0.488037i
\(731\) 2.18949 6.73856i 0.0809813 0.249235i
\(732\) 0.00528554 + 0.0162672i 0.000195359 + 0.000601254i
\(733\) 3.14334 2.28377i 0.116102 0.0843531i −0.528219 0.849108i \(-0.677140\pi\)
0.644321 + 0.764755i \(0.277140\pi\)
\(734\) 4.20380 + 12.9380i 0.155165 + 0.477549i
\(735\) 0.810043 + 0.588531i 0.0298789 + 0.0217083i
\(736\) 8.21081 + 5.96550i 0.302654 + 0.219891i
\(737\) 17.2940 12.5648i 0.637031 0.462830i
\(738\) −12.1542 −0.447401
\(739\) −19.0051 −0.699113 −0.349557 0.936915i \(-0.613668\pi\)
−0.349557 + 0.936915i \(0.613668\pi\)
\(740\) 2.27452 1.65253i 0.0836129 0.0607483i
\(741\) −0.314937 + 0.969275i −0.0115695 + 0.0356072i
\(742\) 0.00256478 + 0.00789357i 9.41559e−5 + 0.000289782i
\(743\) −9.70195 −0.355930 −0.177965 0.984037i \(-0.556951\pi\)
−0.177965 + 0.984037i \(0.556951\pi\)
\(744\) −1.79358 + 0.594970i −0.0657557 + 0.0218127i
\(745\) 7.66318 0.280757
\(746\) −4.27523 13.1578i −0.156527 0.481741i
\(747\) −9.72711 + 29.9370i −0.355896 + 1.09534i
\(748\) −0.597234 + 0.433916i −0.0218370 + 0.0158655i
\(749\) 2.68540 0.0981225
\(750\) 1.96524 0.0717605
\(751\) 24.8628 18.0639i 0.907256 0.659160i −0.0330636 0.999453i \(-0.510526\pi\)
0.940319 + 0.340293i \(0.110526\pi\)
\(752\) −35.7525 25.9757i −1.30376 0.947236i
\(753\) −0.904841 0.657405i −0.0329742 0.0239572i
\(754\) 0.398166 + 1.22543i 0.0145003 + 0.0446274i
\(755\) −8.18773 + 5.94874i −0.297982 + 0.216497i
\(756\) 0.0340631 + 0.104836i 0.00123886 + 0.00381283i
\(757\) −3.87346 + 11.9213i −0.140783 + 0.433286i −0.996445 0.0842499i \(-0.973151\pi\)
0.855662 + 0.517536i \(0.173151\pi\)
\(758\) 14.9534 + 10.8643i 0.543134 + 0.394610i
\(759\) 0.717490 2.20821i 0.0260432 0.0801528i
\(760\) −6.70250 + 20.6282i −0.243125 + 0.748263i
\(761\) −23.2979 16.9269i −0.844547 0.613599i 0.0790903 0.996867i \(-0.474798\pi\)
−0.923637 + 0.383268i \(0.874798\pi\)
\(762\) −0.614683 + 1.89180i −0.0222676 + 0.0685326i
\(763\) −1.48714