Properties

Label 403.2.k.e.66.6
Level 403
Weight 2
Character 403.66
Analytic conductor 3.218
Analytic rank 0
Dimension 68
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.k (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 66.6
Character \(\chi\) \(=\) 403.66
Dual form 403.2.k.e.287.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.285917 - 0.879963i) q^{2} +(-0.982047 + 3.02243i) q^{3} +(0.925448 - 0.672377i) q^{4} -3.20777 q^{5} +2.94041 q^{6} +(3.53175 - 2.56597i) q^{7} +(-2.35335 - 1.70981i) q^{8} +(-5.74362 - 4.17298i) q^{9} +O(q^{10})\) \(q+(-0.285917 - 0.879963i) q^{2} +(-0.982047 + 3.02243i) q^{3} +(0.925448 - 0.672377i) q^{4} -3.20777 q^{5} +2.94041 q^{6} +(3.53175 - 2.56597i) q^{7} +(-2.35335 - 1.70981i) q^{8} +(-5.74362 - 4.17298i) q^{9} +(0.917156 + 2.82271i) q^{10} +(2.91008 - 2.11430i) q^{11} +(1.12338 + 3.45741i) q^{12} +(0.309017 - 0.951057i) q^{13} +(-3.26775 - 2.37416i) q^{14} +(3.15018 - 9.69525i) q^{15} +(-0.124726 + 0.383868i) q^{16} +(6.01051 + 4.36689i) q^{17} +(-2.02987 + 6.24730i) q^{18} +(-0.151293 - 0.465631i) q^{19} +(-2.96862 + 2.15683i) q^{20} +(4.28711 + 13.1944i) q^{21} +(-2.69255 - 1.95625i) q^{22} +(0.998169 + 0.725212i) q^{23} +(7.47888 - 5.43373i) q^{24} +5.28976 q^{25} -0.925248 q^{26} +(10.5400 - 7.65773i) q^{27} +(1.54315 - 4.74934i) q^{28} +(-0.157079 - 0.483439i) q^{29} -9.43215 q^{30} +(3.23500 - 4.53153i) q^{31} -5.44435 q^{32} +(3.53249 + 10.8719i) q^{33} +(2.12419 - 6.53759i) q^{34} +(-11.3290 + 8.23102i) q^{35} -8.12124 q^{36} +3.70182 q^{37} +(-0.366481 + 0.266264i) q^{38} +(2.57103 + 1.86796i) q^{39} +(7.54900 + 5.48467i) q^{40} +(-1.14497 - 3.52387i) q^{41} +(10.3848 - 7.54500i) q^{42} +(0.114848 + 0.353467i) q^{43} +(1.27152 - 3.91335i) q^{44} +(18.4242 + 13.3860i) q^{45} +(0.352766 - 1.08570i) q^{46} +(2.17893 - 6.70605i) q^{47} +(-1.03773 - 0.753952i) q^{48} +(3.72596 - 11.4673i) q^{49} +(-1.51243 - 4.65479i) q^{50} +(-19.1012 + 13.8778i) q^{51} +(-0.353490 - 1.08793i) q^{52} +(-8.10271 - 5.88696i) q^{53} +(-9.75207 - 7.08530i) q^{54} +(-9.33487 + 6.78218i) q^{55} -12.6988 q^{56} +1.55591 q^{57} +(-0.380496 + 0.276447i) q^{58} +(-0.125995 + 0.387773i) q^{59} +(-3.60354 - 11.0906i) q^{60} -4.19075 q^{61} +(-4.91252 - 1.55104i) q^{62} -30.9928 q^{63} +(1.80609 + 5.55856i) q^{64} +(-0.991254 + 3.05077i) q^{65} +(8.55685 - 6.21691i) q^{66} +5.80795 q^{67} +8.49861 q^{68} +(-3.17215 + 2.30470i) q^{69} +(10.4822 + 7.61574i) q^{70} +(-7.90103 - 5.74044i) q^{71} +(6.38174 + 19.6410i) q^{72} +(4.57861 - 3.32655i) q^{73} +(-1.05842 - 3.25747i) q^{74} +(-5.19479 + 15.9879i) q^{75} +(-0.453093 - 0.329192i) q^{76} +(4.85247 - 14.9344i) q^{77} +(0.908637 - 2.79650i) q^{78} +(2.70104 + 1.96242i) q^{79} +(0.400092 - 1.23136i) q^{80} +(6.21261 + 19.1205i) q^{81} +(-2.77351 + 2.01507i) q^{82} +(4.93941 + 15.2019i) q^{83} +(12.8391 + 9.32815i) q^{84} +(-19.2803 - 14.0080i) q^{85} +(0.278201 - 0.202125i) q^{86} +1.61542 q^{87} -10.4635 q^{88} +(-2.54472 + 1.84885i) q^{89} +(6.51135 - 20.0399i) q^{90} +(-1.34901 - 4.15182i) q^{91} +1.41137 q^{92} +(10.5193 + 14.2277i) q^{93} -6.52407 q^{94} +(0.485312 + 1.49364i) q^{95} +(5.34661 - 16.4552i) q^{96} +(2.48437 - 1.80500i) q^{97} -11.1561 q^{98} -25.5374 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68q - 3q^{2} - 2q^{3} - 23q^{4} + 12q^{5} + 4q^{6} + 2q^{7} - 3q^{8} - 23q^{9} + O(q^{10}) \) \( 68q - 3q^{2} - 2q^{3} - 23q^{4} + 12q^{5} + 4q^{6} + 2q^{7} - 3q^{8} - 23q^{9} - 13q^{10} - 5q^{11} - 28q^{12} - 17q^{13} - 3q^{14} - 14q^{15} + 9q^{16} + 12q^{17} - 19q^{18} - 4q^{19} - 53q^{20} - 13q^{21} - 14q^{22} - 9q^{23} + 2q^{24} + 96q^{25} + 12q^{26} + 25q^{27} - 25q^{28} - 78q^{30} - 2q^{31} + 76q^{32} + 29q^{33} - 15q^{34} - 36q^{35} + 52q^{36} + 24q^{37} - 19q^{38} + 3q^{39} - 12q^{40} - 40q^{41} + 11q^{42} - 22q^{43} + 4q^{44} + 63q^{45} - 24q^{46} + 3q^{47} + 68q^{48} + 33q^{49} - 76q^{50} - 59q^{51} - 13q^{52} - q^{53} + 18q^{54} - 22q^{55} + 78q^{56} - 16q^{57} + 5q^{58} - 18q^{59} + 43q^{60} - 32q^{61} - 39q^{62} + 20q^{63} + 23q^{64} + 2q^{65} + 11q^{66} + 114q^{67} + 98q^{68} - 46q^{69} + 32q^{70} - 2q^{71} + 28q^{72} + 10q^{73} - 43q^{74} - 12q^{75} - 35q^{76} - 3q^{77} - 6q^{78} - 10q^{79} + 68q^{80} - 54q^{81} - 80q^{82} - 22q^{83} - 14q^{84} - 50q^{85} - 66q^{86} + 76q^{87} - 34q^{88} - 10q^{89} - 63q^{90} - 8q^{91} - 64q^{92} - 16q^{93} + 30q^{94} + 15q^{95} + 34q^{96} - 7q^{97} + 138q^{98} - 48q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.285917 0.879963i −0.202174 0.622228i −0.999818 0.0190986i \(-0.993920\pi\)
0.797644 0.603129i \(-0.206080\pi\)
\(3\) −0.982047 + 3.02243i −0.566985 + 1.74500i 0.0949929 + 0.995478i \(0.469717\pi\)
−0.661978 + 0.749523i \(0.730283\pi\)
\(4\) 0.925448 0.672377i 0.462724 0.336189i
\(5\) −3.20777 −1.43456 −0.717278 0.696787i \(-0.754612\pi\)
−0.717278 + 0.696787i \(0.754612\pi\)
\(6\) 2.94041 1.20042
\(7\) 3.53175 2.56597i 1.33488 0.969845i 0.335261 0.942125i \(-0.391176\pi\)
0.999616 0.0277194i \(-0.00882448\pi\)
\(8\) −2.35335 1.70981i −0.832035 0.604509i
\(9\) −5.74362 4.17298i −1.91454 1.39099i
\(10\) 0.917156 + 2.82271i 0.290030 + 0.892621i
\(11\) 2.91008 2.11430i 0.877424 0.637486i −0.0551451 0.998478i \(-0.517562\pi\)
0.932569 + 0.360993i \(0.117562\pi\)
\(12\) 1.12338 + 3.45741i 0.324292 + 0.998068i
\(13\) 0.309017 0.951057i 0.0857059 0.263776i
\(14\) −3.26775 2.37416i −0.873342 0.634520i
\(15\) 3.15018 9.69525i 0.813372 2.50330i
\(16\) −0.124726 + 0.383868i −0.0311815 + 0.0959669i
\(17\) 6.01051 + 4.36689i 1.45776 + 1.05913i 0.983939 + 0.178506i \(0.0571263\pi\)
0.473823 + 0.880620i \(0.342874\pi\)
\(18\) −2.02987 + 6.24730i −0.478445 + 1.47250i
\(19\) −0.151293 0.465631i −0.0347089 0.106823i 0.932201 0.361941i \(-0.117886\pi\)
−0.966910 + 0.255118i \(0.917886\pi\)
\(20\) −2.96862 + 2.15683i −0.663803 + 0.482281i
\(21\) 4.28711 + 13.1944i 0.935525 + 2.87925i
\(22\) −2.69255 1.95625i −0.574053 0.417074i
\(23\) 0.998169 + 0.725212i 0.208133 + 0.151217i 0.686968 0.726687i \(-0.258941\pi\)
−0.478836 + 0.877904i \(0.658941\pi\)
\(24\) 7.47888 5.43373i 1.52662 1.10915i
\(25\) 5.28976 1.05795
\(26\) −0.925248 −0.181456
\(27\) 10.5400 7.65773i 2.02842 1.47373i
\(28\) 1.54315 4.74934i 0.291629 0.897541i
\(29\) −0.157079 0.483439i −0.0291688 0.0897723i 0.935412 0.353559i \(-0.115029\pi\)
−0.964581 + 0.263786i \(0.915029\pi\)
\(30\) −9.43215 −1.72207
\(31\) 3.23500 4.53153i 0.581023 0.813887i
\(32\) −5.44435 −0.962435
\(33\) 3.53249 + 10.8719i 0.614927 + 1.89255i
\(34\) 2.12419 6.53759i 0.364296 1.12119i
\(35\) −11.3290 + 8.23102i −1.91496 + 1.39130i
\(36\) −8.12124 −1.35354
\(37\) 3.70182 0.608576 0.304288 0.952580i \(-0.401581\pi\)
0.304288 + 0.952580i \(0.401581\pi\)
\(38\) −0.366481 + 0.266264i −0.0594511 + 0.0431937i
\(39\) 2.57103 + 1.86796i 0.411695 + 0.299114i
\(40\) 7.54900 + 5.48467i 1.19360 + 0.867202i
\(41\) −1.14497 3.52387i −0.178815 0.550336i 0.820972 0.570968i \(-0.193432\pi\)
−0.999787 + 0.0206322i \(0.993432\pi\)
\(42\) 10.3848 7.54500i 1.60241 1.16422i
\(43\) 0.114848 + 0.353467i 0.0175142 + 0.0539032i 0.959432 0.281941i \(-0.0909783\pi\)
−0.941917 + 0.335844i \(0.890978\pi\)
\(44\) 1.27152 3.91335i 0.191689 0.589960i
\(45\) 18.4242 + 13.3860i 2.74651 + 1.99546i
\(46\) 0.352766 1.08570i 0.0520125 0.160078i
\(47\) 2.17893 6.70605i 0.317829 0.978178i −0.656745 0.754113i \(-0.728067\pi\)
0.974574 0.224065i \(-0.0719328\pi\)
\(48\) −1.03773 0.753952i −0.149783 0.108824i
\(49\) 3.72596 11.4673i 0.532280 1.63819i
\(50\) −1.51243 4.65479i −0.213890 0.658287i
\(51\) −19.1012 + 13.8778i −2.67471 + 1.94329i
\(52\) −0.353490 1.08793i −0.0490202 0.150869i
\(53\) −8.10271 5.88696i −1.11299 0.808637i −0.129861 0.991532i \(-0.541453\pi\)
−0.983132 + 0.182896i \(0.941453\pi\)
\(54\) −9.75207 7.08530i −1.32709 0.964187i
\(55\) −9.33487 + 6.78218i −1.25871 + 0.914509i
\(56\) −12.6988 −1.69694
\(57\) 1.55591 0.206086
\(58\) −0.380496 + 0.276447i −0.0499616 + 0.0362993i
\(59\) −0.125995 + 0.387773i −0.0164032 + 0.0504838i −0.958923 0.283666i \(-0.908449\pi\)
0.942520 + 0.334150i \(0.108449\pi\)
\(60\) −3.60354 11.0906i −0.465215 1.43178i
\(61\) −4.19075 −0.536571 −0.268285 0.963339i \(-0.586457\pi\)
−0.268285 + 0.963339i \(0.586457\pi\)
\(62\) −4.91252 1.55104i −0.623891 0.196982i
\(63\) −30.9928 −3.90472
\(64\) 1.80609 + 5.55856i 0.225761 + 0.694821i
\(65\) −0.991254 + 3.05077i −0.122950 + 0.378401i
\(66\) 8.55685 6.21691i 1.05327 0.765249i
\(67\) 5.80795 0.709554 0.354777 0.934951i \(-0.384557\pi\)
0.354777 + 0.934951i \(0.384557\pi\)
\(68\) 8.49861 1.03061
\(69\) −3.17215 + 2.30470i −0.381882 + 0.277454i
\(70\) 10.4822 + 7.61574i 1.25286 + 0.910255i
\(71\) −7.90103 5.74044i −0.937680 0.681265i 0.0101810 0.999948i \(-0.496759\pi\)
−0.947861 + 0.318684i \(0.896759\pi\)
\(72\) 6.38174 + 19.6410i 0.752096 + 2.31471i
\(73\) 4.57861 3.32655i 0.535885 0.389343i −0.286669 0.958030i \(-0.592548\pi\)
0.822555 + 0.568686i \(0.192548\pi\)
\(74\) −1.05842 3.25747i −0.123038 0.378673i
\(75\) −5.19479 + 15.9879i −0.599843 + 1.84613i
\(76\) −0.453093 0.329192i −0.0519734 0.0377609i
\(77\) 4.85247 14.9344i 0.552990 1.70193i
\(78\) 0.908637 2.79650i 0.102883 0.316641i
\(79\) 2.70104 + 1.96242i 0.303891 + 0.220790i 0.729271 0.684225i \(-0.239859\pi\)
−0.425380 + 0.905015i \(0.639859\pi\)
\(80\) 0.400092 1.23136i 0.0447317 0.137670i
\(81\) 6.21261 + 19.1205i 0.690290 + 2.12450i
\(82\) −2.77351 + 2.01507i −0.306283 + 0.222527i
\(83\) 4.93941 + 15.2019i 0.542170 + 1.66863i 0.727624 + 0.685976i \(0.240625\pi\)
−0.185454 + 0.982653i \(0.559375\pi\)
\(84\) 12.8391 + 9.32815i 1.40086 + 1.01778i
\(85\) −19.2803 14.0080i −2.09124 1.51938i
\(86\) 0.278201 0.202125i 0.0299991 0.0217957i
\(87\) 1.61542 0.173191
\(88\) −10.4635 −1.11541
\(89\) −2.54472 + 1.84885i −0.269740 + 0.195978i −0.714430 0.699707i \(-0.753314\pi\)
0.444690 + 0.895685i \(0.353314\pi\)
\(90\) 6.51135 20.0399i 0.686357 2.11239i
\(91\) −1.34901 4.15182i −0.141415 0.435229i
\(92\) 1.41137 0.147145
\(93\) 10.5193 + 14.2277i 1.09080 + 1.47535i
\(94\) −6.52407 −0.672906
\(95\) 0.485312 + 1.49364i 0.0497919 + 0.153244i
\(96\) 5.34661 16.4552i 0.545686 1.67945i
\(97\) 2.48437 1.80500i 0.252249 0.183270i −0.454474 0.890760i \(-0.650173\pi\)
0.706723 + 0.707490i \(0.250173\pi\)
\(98\) −11.1561 −1.12694
\(99\) −25.5374 −2.56660
\(100\) 4.89540 3.55671i 0.489540 0.355671i
\(101\) 9.34420 + 6.78896i 0.929782 + 0.675527i 0.945940 0.324343i \(-0.105143\pi\)
−0.0161571 + 0.999869i \(0.505143\pi\)
\(102\) 17.6734 + 12.8404i 1.74992 + 1.27139i
\(103\) −0.348418 1.07232i −0.0343306 0.105659i 0.932423 0.361369i \(-0.117691\pi\)
−0.966753 + 0.255710i \(0.917691\pi\)
\(104\) −2.35335 + 1.70981i −0.230765 + 0.167661i
\(105\) −13.7521 42.3245i −1.34206 4.13044i
\(106\) −2.86360 + 8.81327i −0.278138 + 0.856020i
\(107\) −0.650560 0.472660i −0.0628920 0.0456937i 0.555895 0.831252i \(-0.312376\pi\)
−0.618787 + 0.785559i \(0.712376\pi\)
\(108\) 4.60530 14.1737i 0.443145 1.36386i
\(109\) −4.64790 + 14.3048i −0.445188 + 1.37015i 0.437090 + 0.899418i \(0.356009\pi\)
−0.882278 + 0.470729i \(0.843991\pi\)
\(110\) 8.63707 + 6.27520i 0.823512 + 0.598316i
\(111\) −3.63537 + 11.1885i −0.345054 + 1.06197i
\(112\) 0.544490 + 1.67577i 0.0514495 + 0.158345i
\(113\) 1.40293 1.01929i 0.131977 0.0958868i −0.519838 0.854265i \(-0.674008\pi\)
0.651815 + 0.758378i \(0.274008\pi\)
\(114\) −0.444863 1.36915i −0.0416652 0.128232i
\(115\) −3.20189 2.32631i −0.298578 0.216930i
\(116\) −0.470421 0.341781i −0.0436775 0.0317336i
\(117\) −5.74362 + 4.17298i −0.530998 + 0.385792i
\(118\) 0.377250 0.0347287
\(119\) 32.4329 2.97312
\(120\) −23.9905 + 17.4301i −2.19002 + 1.59114i
\(121\) 0.599140 1.84396i 0.0544673 0.167633i
\(122\) 1.19821 + 3.68771i 0.108481 + 0.333869i
\(123\) 11.7751 1.06172
\(124\) −0.0530734 6.36884i −0.00476613 0.571938i
\(125\) −0.929476 −0.0831348
\(126\) 8.86137 + 27.2725i 0.789434 + 2.42963i
\(127\) 2.08773 6.42539i 0.185256 0.570161i −0.814696 0.579888i \(-0.803096\pi\)
0.999953 + 0.00972714i \(0.00309630\pi\)
\(128\) −4.43421 + 3.22164i −0.391932 + 0.284756i
\(129\) −1.18112 −0.103991
\(130\) 2.96798 0.260309
\(131\) 3.38295 2.45786i 0.295570 0.214744i −0.430110 0.902776i \(-0.641525\pi\)
0.725680 + 0.688032i \(0.241525\pi\)
\(132\) 10.5791 + 7.68619i 0.920795 + 0.668997i
\(133\) −1.72912 1.25628i −0.149934 0.108933i
\(134\) −1.66059 5.11078i −0.143453 0.441504i
\(135\) −33.8097 + 24.5642i −2.90988 + 2.11415i
\(136\) −6.67828 20.5536i −0.572658 1.76246i
\(137\) −5.93613 + 18.2695i −0.507157 + 1.56087i 0.289956 + 0.957040i \(0.406359\pi\)
−0.797113 + 0.603830i \(0.793641\pi\)
\(138\) 2.93503 + 2.13242i 0.249846 + 0.181524i
\(139\) −6.27551 + 19.3140i −0.532282 + 1.63820i 0.217168 + 0.976134i \(0.430318\pi\)
−0.749450 + 0.662061i \(0.769682\pi\)
\(140\) −4.95007 + 15.2348i −0.418358 + 1.28757i
\(141\) 18.1288 + 13.1713i 1.52672 + 1.10922i
\(142\) −2.79233 + 8.59391i −0.234327 + 0.721185i
\(143\) −1.11155 3.42101i −0.0929528 0.286079i
\(144\) 2.31825 1.68431i 0.193188 0.140359i
\(145\) 0.503872 + 1.55076i 0.0418443 + 0.128783i
\(146\) −4.23635 3.07789i −0.350602 0.254728i
\(147\) 31.0001 + 22.5229i 2.55685 + 1.85766i
\(148\) 3.42584 2.48902i 0.281603 0.204596i
\(149\) −18.6434 −1.52732 −0.763662 0.645616i \(-0.776601\pi\)
−0.763662 + 0.645616i \(0.776601\pi\)
\(150\) 15.5541 1.26998
\(151\) −8.62522 + 6.26659i −0.701911 + 0.509968i −0.880554 0.473946i \(-0.842829\pi\)
0.178643 + 0.983914i \(0.442829\pi\)
\(152\) −0.440096 + 1.35448i −0.0356965 + 0.109862i
\(153\) −16.2991 50.1635i −1.31770 4.05548i
\(154\) −14.5291 −1.17079
\(155\) −10.3771 + 14.5361i −0.833511 + 1.16757i
\(156\) 3.63533 0.291060
\(157\) −0.398835 1.22749i −0.0318305 0.0979642i 0.933879 0.357589i \(-0.116401\pi\)
−0.965710 + 0.259625i \(0.916401\pi\)
\(158\) 0.954585 2.93791i 0.0759427 0.233728i
\(159\) 25.7502 18.7086i 2.04212 1.48369i
\(160\) 17.4642 1.38067
\(161\) 5.38615 0.424488
\(162\) 15.0490 10.9337i 1.18236 0.859036i
\(163\) −0.222573 0.161709i −0.0174332 0.0126660i 0.579035 0.815303i \(-0.303430\pi\)
−0.596468 + 0.802637i \(0.703430\pi\)
\(164\) −3.42898 2.49130i −0.267759 0.194538i
\(165\) −11.3314 34.8744i −0.882147 2.71497i
\(166\) 11.9649 8.69299i 0.928655 0.674707i
\(167\) −0.660097 2.03157i −0.0510798 0.157207i 0.922263 0.386564i \(-0.126338\pi\)
−0.973343 + 0.229356i \(0.926338\pi\)
\(168\) 12.4708 38.3811i 0.962142 2.96117i
\(169\) −0.809017 0.587785i −0.0622321 0.0452143i
\(170\) −6.81391 + 20.9711i −0.522603 + 1.60841i
\(171\) −1.07410 + 3.30575i −0.0821387 + 0.252797i
\(172\) 0.343949 + 0.249894i 0.0262259 + 0.0190542i
\(173\) 3.63258 11.1799i 0.276180 0.849995i −0.712725 0.701444i \(-0.752539\pi\)
0.988905 0.148551i \(-0.0474609\pi\)
\(174\) −0.461876 1.42151i −0.0350147 0.107764i
\(175\) 18.6821 13.5733i 1.41223 1.02605i
\(176\) 0.448648 + 1.38080i 0.0338181 + 0.104081i
\(177\) −1.04828 0.761624i −0.0787939 0.0572471i
\(178\) 2.35450 + 1.71064i 0.176477 + 0.128218i
\(179\) −3.10323 + 2.25463i −0.231946 + 0.168519i −0.697688 0.716402i \(-0.745788\pi\)
0.465742 + 0.884921i \(0.345788\pi\)
\(180\) 26.0510 1.94173
\(181\) −24.8551 −1.84746 −0.923731 0.383041i \(-0.874877\pi\)
−0.923731 + 0.383041i \(0.874877\pi\)
\(182\) −3.26775 + 2.37416i −0.242221 + 0.175984i
\(183\) 4.11552 12.6663i 0.304228 0.936317i
\(184\) −1.10907 3.41336i −0.0817615 0.251636i
\(185\) −11.8746 −0.873036
\(186\) 9.51223 13.3246i 0.697471 0.977004i
\(187\) 26.7240 1.95425
\(188\) −2.49251 7.67116i −0.181785 0.559477i
\(189\) 17.5750 54.0904i 1.27840 3.93450i
\(190\) 1.17558 0.854112i 0.0852859 0.0619638i
\(191\) 14.1301 1.02242 0.511210 0.859456i \(-0.329197\pi\)
0.511210 + 0.859456i \(0.329197\pi\)
\(192\) −18.5740 −1.34047
\(193\) −1.05199 + 0.764312i −0.0757236 + 0.0550164i −0.625003 0.780622i \(-0.714902\pi\)
0.549279 + 0.835639i \(0.314902\pi\)
\(194\) −2.29866 1.67007i −0.165034 0.119904i
\(195\) −8.24727 5.99199i −0.590599 0.429096i
\(196\) −4.26219 13.1177i −0.304442 0.936976i
\(197\) 20.3496 14.7848i 1.44985 1.05338i 0.463980 0.885846i \(-0.346421\pi\)
0.985867 0.167529i \(-0.0535789\pi\)
\(198\) 7.30157 + 22.4719i 0.518900 + 1.59701i
\(199\) −5.82171 + 17.9174i −0.412690 + 1.27013i 0.501611 + 0.865093i \(0.332741\pi\)
−0.914301 + 0.405036i \(0.867259\pi\)
\(200\) −12.4487 9.04448i −0.880253 0.639541i
\(201\) −5.70368 + 17.5541i −0.402307 + 1.23817i
\(202\) 3.30236 10.1636i 0.232353 0.715110i
\(203\) −1.79525 1.30433i −0.126002 0.0915457i
\(204\) −8.34603 + 25.6864i −0.584339 + 1.79841i
\(205\) 3.67281 + 11.3037i 0.256520 + 0.789488i
\(206\) −0.843983 + 0.613189i −0.0588031 + 0.0427229i
\(207\) −2.70680 8.33068i −0.188136 0.579023i
\(208\) 0.326537 + 0.237243i 0.0226413 + 0.0164499i
\(209\) −1.42476 1.03515i −0.0985526 0.0716027i
\(210\) −33.3120 + 24.2026i −2.29875 + 1.67014i
\(211\) −18.0767 −1.24445 −0.622225 0.782838i \(-0.713771\pi\)
−0.622225 + 0.782838i \(0.713771\pi\)
\(212\) −11.4569 −0.786863
\(213\) 25.1093 18.2429i 1.72046 1.24999i
\(214\) −0.229917 + 0.707610i −0.0157168 + 0.0483713i
\(215\) −0.368407 1.13384i −0.0251251 0.0773272i
\(216\) −37.8975 −2.57860
\(217\) −0.202542 24.3051i −0.0137495 1.64994i
\(218\) 13.9166 0.942549
\(219\) 5.55787 + 17.1054i 0.375566 + 1.15587i
\(220\) −4.07875 + 12.5531i −0.274989 + 0.846330i
\(221\) 6.01051 4.36689i 0.404310 0.293749i
\(222\) 10.8849 0.730545
\(223\) −4.76057 −0.318791 −0.159396 0.987215i \(-0.550955\pi\)
−0.159396 + 0.987215i \(0.550955\pi\)
\(224\) −19.2281 + 13.9700i −1.28473 + 0.933412i
\(225\) −30.3824 22.0741i −2.02549 1.47160i
\(226\) −1.29806 0.943097i −0.0863457 0.0627339i
\(227\) 2.93265 + 9.02576i 0.194647 + 0.599061i 0.999981 + 0.00623920i \(0.00198601\pi\)
−0.805334 + 0.592821i \(0.798014\pi\)
\(228\) 1.43992 1.04616i 0.0953609 0.0692837i
\(229\) −2.14033 6.58727i −0.141437 0.435299i 0.855098 0.518466i \(-0.173497\pi\)
−0.996536 + 0.0831666i \(0.973497\pi\)
\(230\) −1.13159 + 3.48268i −0.0746149 + 0.229641i
\(231\) 40.3727 + 29.3325i 2.65633 + 1.92994i
\(232\) −0.456927 + 1.40628i −0.0299987 + 0.0923265i
\(233\) 7.01168 21.5797i 0.459350 1.41374i −0.406600 0.913606i \(-0.633286\pi\)
0.865951 0.500129i \(-0.166714\pi\)
\(234\) 5.31427 + 3.86104i 0.347405 + 0.252404i
\(235\) −6.98949 + 21.5114i −0.455944 + 1.40325i
\(236\) 0.144128 + 0.443580i 0.00938193 + 0.0288746i
\(237\) −8.58384 + 6.23653i −0.557580 + 0.405106i
\(238\) −9.27313 28.5398i −0.601088 1.84996i
\(239\) −8.48500 6.16471i −0.548849 0.398762i 0.278512 0.960433i \(-0.410159\pi\)
−0.827361 + 0.561671i \(0.810159\pi\)
\(240\) 3.32878 + 2.41850i 0.214872 + 0.156114i
\(241\) 10.1330 7.36203i 0.652722 0.474230i −0.211476 0.977383i \(-0.567827\pi\)
0.864197 + 0.503153i \(0.167827\pi\)
\(242\) −1.79392 −0.115318
\(243\) −24.8070 −1.59137
\(244\) −3.87832 + 2.81777i −0.248284 + 0.180389i
\(245\) −11.9520 + 36.7845i −0.763586 + 2.35008i
\(246\) −3.36670 10.3616i −0.214653 0.660633i
\(247\) −0.489594 −0.0311521
\(248\) −15.3611 + 5.13305i −0.975434 + 0.325949i
\(249\) −50.7975 −3.21916
\(250\) 0.265753 + 0.817904i 0.0168077 + 0.0517288i
\(251\) −3.07058 + 9.45029i −0.193814 + 0.596497i 0.806175 + 0.591677i \(0.201534\pi\)
−0.999988 + 0.00481945i \(0.998466\pi\)
\(252\) −28.6822 + 20.8388i −1.80681 + 1.31272i
\(253\) 4.43807 0.279019
\(254\) −6.25102 −0.392224
\(255\) 61.2722 44.5169i 3.83702 2.78775i
\(256\) 13.5595 + 9.85158i 0.847471 + 0.615724i
\(257\) 20.3156 + 14.7601i 1.26725 + 0.920711i 0.999089 0.0426638i \(-0.0135844\pi\)
0.268160 + 0.963374i \(0.413584\pi\)
\(258\) 0.337701 + 1.03934i 0.0210244 + 0.0647064i
\(259\) 13.0739 9.49876i 0.812374 0.590224i
\(260\) 1.13391 + 3.48982i 0.0703222 + 0.216430i
\(261\) −1.11518 + 3.43217i −0.0690280 + 0.212446i
\(262\) −3.13007 2.27413i −0.193376 0.140496i
\(263\) 5.52330 16.9990i 0.340582 1.04820i −0.623325 0.781963i \(-0.714219\pi\)
0.963907 0.266240i \(-0.0857812\pi\)
\(264\) 10.2757 31.6252i 0.632423 1.94640i
\(265\) 25.9916 + 18.8840i 1.59665 + 1.16003i
\(266\) −0.611095 + 1.88076i −0.0374686 + 0.115317i
\(267\) −3.08898 9.50691i −0.189043 0.581813i
\(268\) 5.37495 3.90513i 0.328328 0.238544i
\(269\) 0.943199 + 2.90287i 0.0575079 + 0.176991i 0.975684 0.219181i \(-0.0703384\pi\)
−0.918176 + 0.396172i \(0.870338\pi\)
\(270\) 31.2824 + 22.7280i 1.90378 + 1.38318i
\(271\) 16.1782 + 11.7541i 0.982754 + 0.714012i 0.958322 0.285689i \(-0.0922225\pi\)
0.0244314 + 0.999702i \(0.492222\pi\)
\(272\) −2.42597 + 1.76257i −0.147096 + 0.106872i
\(273\) 13.8734 0.839656
\(274\) 17.7737 1.07375
\(275\) 15.3936 11.1841i 0.928272 0.674429i
\(276\) −1.38603 + 4.26577i −0.0834293 + 0.256769i
\(277\) 2.24630 + 6.91339i 0.134967 + 0.415385i 0.995585 0.0938657i \(-0.0299224\pi\)
−0.860618 + 0.509251i \(0.829922\pi\)
\(278\) 18.7899 1.12694
\(279\) −37.4906 + 12.5278i −2.24450 + 0.750019i
\(280\) 40.7347 2.43436
\(281\) −4.65905 14.3391i −0.277936 0.855399i −0.988428 0.151693i \(-0.951527\pi\)
0.710492 0.703705i \(-0.248473\pi\)
\(282\) 6.40694 19.7185i 0.381528 1.17422i
\(283\) −24.7658 + 17.9934i −1.47218 + 1.06960i −0.492200 + 0.870482i \(0.663807\pi\)
−0.979976 + 0.199117i \(0.936193\pi\)
\(284\) −11.1717 −0.662920
\(285\) −4.99101 −0.295642
\(286\) −2.69255 + 1.95625i −0.159214 + 0.115676i
\(287\) −13.0859 9.50747i −0.772437 0.561208i
\(288\) 31.2703 + 22.7192i 1.84262 + 1.33874i
\(289\) 11.8032 + 36.3264i 0.694305 + 2.13685i
\(290\) 1.22054 0.886777i 0.0716728 0.0520733i
\(291\) 3.01572 + 9.28142i 0.176784 + 0.544087i
\(292\) 2.00056 6.15710i 0.117074 0.360317i
\(293\) 17.7378 + 12.8872i 1.03625 + 0.752881i 0.969550 0.244892i \(-0.0787526\pi\)
0.0667012 + 0.997773i \(0.478753\pi\)
\(294\) 10.9559 33.7187i 0.638959 1.96651i
\(295\) 0.404163 1.24389i 0.0235313 0.0724218i
\(296\) −8.71169 6.32941i −0.506357 0.367890i
\(297\) 14.4814 44.5693i 0.840298 2.58617i
\(298\) 5.33046 + 16.4055i 0.308785 + 0.950343i
\(299\) 0.998169 0.725212i 0.0577256 0.0419401i
\(300\) 5.94241 + 18.2889i 0.343085 + 1.05591i
\(301\) 1.31260 + 0.953660i 0.0756570 + 0.0549681i
\(302\) 7.98047 + 5.79815i 0.459224 + 0.333646i
\(303\) −29.6956 + 21.5751i −1.70597 + 1.23946i
\(304\) 0.197611 0.0113338
\(305\) 13.4429 0.769741
\(306\) −39.4818 + 28.6852i −2.25702 + 1.63982i
\(307\) −8.98364 + 27.6488i −0.512723 + 1.57800i 0.274664 + 0.961540i \(0.411433\pi\)
−0.787387 + 0.616459i \(0.788567\pi\)
\(308\) −5.55082 17.0837i −0.316287 0.973432i
\(309\) 3.58317 0.203840
\(310\) 15.7582 + 4.97537i 0.895007 + 0.282582i
\(311\) 5.56554 0.315593 0.157796 0.987472i \(-0.449561\pi\)
0.157796 + 0.987472i \(0.449561\pi\)
\(312\) −2.85668 8.79195i −0.161728 0.497746i
\(313\) −7.38343 + 22.7239i −0.417336 + 1.28443i 0.492809 + 0.870138i \(0.335970\pi\)
−0.910145 + 0.414291i \(0.864030\pi\)
\(314\) −0.966110 + 0.701920i −0.0545207 + 0.0396116i
\(315\) 99.4176 5.60154
\(316\) 3.81916 0.214845
\(317\) −18.8426 + 13.6900i −1.05831 + 0.768906i −0.973775 0.227515i \(-0.926940\pi\)
−0.0845338 + 0.996421i \(0.526940\pi\)
\(318\) −23.8253 17.3101i −1.33606 0.970702i
\(319\) −1.47925 1.07474i −0.0828219 0.0601736i
\(320\) −5.79350 17.8306i −0.323867 0.996759i
\(321\) 2.06746 1.50210i 0.115394 0.0838390i
\(322\) −1.53999 4.73962i −0.0858206 0.264129i
\(323\) 1.12401 3.45936i 0.0625418 0.192484i
\(324\) 18.6056 + 13.5178i 1.03365 + 0.750987i
\(325\) 1.63463 5.03086i 0.0906727 0.279062i
\(326\) −0.0786601 + 0.242091i −0.00435658 + 0.0134082i
\(327\) −38.6707 28.0959i −2.13849 1.55371i
\(328\) −3.33062 + 10.2506i −0.183903 + 0.565994i
\(329\) −9.51208 29.2752i −0.524418 1.61399i
\(330\) −27.4484 + 19.9424i −1.51098 + 1.09779i
\(331\) 0.427169 + 1.31469i 0.0234793 + 0.0722619i 0.962110 0.272663i \(-0.0879044\pi\)
−0.938630 + 0.344925i \(0.887904\pi\)
\(332\) 14.7926 + 10.7475i 0.811849 + 0.589843i
\(333\) −21.2619 15.4476i −1.16514 0.846526i
\(334\) −1.59897 + 1.16172i −0.0874919 + 0.0635666i
\(335\) −18.6305 −1.01790
\(336\) −5.59961 −0.305484
\(337\) 23.2327 16.8795i 1.26557 0.919487i 0.266549 0.963821i \(-0.414117\pi\)
0.999017 + 0.0443339i \(0.0141165\pi\)
\(338\) −0.285917 + 0.879963i −0.0155519 + 0.0478637i
\(339\) 1.70299 + 5.24126i 0.0924937 + 0.284666i
\(340\) −27.2615 −1.47846
\(341\) −0.166890 20.0269i −0.00903761 1.08452i
\(342\) 3.21604 0.173904
\(343\) −6.82256 20.9977i −0.368384 1.13377i
\(344\) 0.334083 1.02820i 0.0180125 0.0554369i
\(345\) 10.1755 7.39295i 0.547832 0.398023i
\(346\) −10.8765 −0.584727
\(347\) 15.1117 0.811238 0.405619 0.914042i \(-0.367056\pi\)
0.405619 + 0.914042i \(0.367056\pi\)
\(348\) 1.49499 1.08617i 0.0801396 0.0582248i
\(349\) 0.972479 + 0.706547i 0.0520556 + 0.0378206i 0.613509 0.789688i \(-0.289758\pi\)
−0.561453 + 0.827509i \(0.689758\pi\)
\(350\) −17.2856 12.5587i −0.923953 0.671291i
\(351\) −4.02591 12.3905i −0.214887 0.661354i
\(352\) −15.8435 + 11.5110i −0.844463 + 0.613538i
\(353\) 5.93366 + 18.2619i 0.315817 + 0.971984i 0.975417 + 0.220367i \(0.0707256\pi\)
−0.659600 + 0.751617i \(0.729274\pi\)
\(354\) −0.370478 + 1.14021i −0.0196907 + 0.0606017i
\(355\) 25.3447 + 18.4140i 1.34515 + 0.977312i
\(356\) −1.11188 + 3.42203i −0.0589298 + 0.181367i
\(357\) −31.8506 + 98.0262i −1.68572 + 5.18810i
\(358\) 2.87126 + 2.08609i 0.151751 + 0.110253i
\(359\) −0.934200 + 2.87517i −0.0493052 + 0.151746i −0.972678 0.232159i \(-0.925421\pi\)
0.923373 + 0.383905i \(0.125421\pi\)
\(360\) −20.4711 63.0037i −1.07892 3.32059i
\(361\) 15.1774 11.0270i 0.798811 0.580370i
\(362\) 7.10649 + 21.8715i 0.373509 + 1.14954i
\(363\) 4.98487 + 3.62172i 0.261638 + 0.190091i
\(364\) −4.04003 2.93525i −0.211755 0.153849i
\(365\) −14.6871 + 10.6708i −0.768758 + 0.558535i
\(366\) −12.3225 −0.644109
\(367\) −0.848006 −0.0442656 −0.0221328 0.999755i \(-0.507046\pi\)
−0.0221328 + 0.999755i \(0.507046\pi\)
\(368\) −0.402883 + 0.292712i −0.0210017 + 0.0152587i
\(369\) −8.12875 + 25.0177i −0.423166 + 1.30237i
\(370\) 3.39515 + 10.4492i 0.176505 + 0.543228i
\(371\) −43.7225 −2.26996
\(372\) 19.3015 + 6.09409i 1.00074 + 0.315964i
\(373\) 27.5454 1.42625 0.713124 0.701038i \(-0.247280\pi\)
0.713124 + 0.701038i \(0.247280\pi\)
\(374\) −7.64085 23.5161i −0.395099 1.21599i
\(375\) 0.912789 2.80928i 0.0471362 0.145070i
\(376\) −16.5939 + 12.0561i −0.855763 + 0.621748i
\(377\) −0.508317 −0.0261797
\(378\) −52.6225 −2.70661
\(379\) 5.31121 3.85882i 0.272819 0.198214i −0.442960 0.896541i \(-0.646072\pi\)
0.715779 + 0.698327i \(0.246072\pi\)
\(380\) 1.45342 + 1.05597i 0.0745587 + 0.0541701i
\(381\) 17.3700 + 12.6201i 0.889894 + 0.646546i
\(382\) −4.04005 12.4340i −0.206707 0.636179i
\(383\) −12.1452 + 8.82401i −0.620591 + 0.450886i −0.853128 0.521702i \(-0.825297\pi\)
0.232537 + 0.972588i \(0.425297\pi\)
\(384\) −5.38258 16.5659i −0.274679 0.845375i
\(385\) −15.5656 + 47.9059i −0.793296 + 2.44151i
\(386\) 0.973347 + 0.707178i 0.0495421 + 0.0359944i
\(387\) 0.815366 2.50944i 0.0414474 0.127562i
\(388\) 1.08551 3.34086i 0.0551086 0.169607i
\(389\) 19.6234 + 14.2573i 0.994947 + 0.722871i 0.960999 0.276552i \(-0.0891918\pi\)
0.0339483 + 0.999424i \(0.489192\pi\)
\(390\) −2.91469 + 8.97051i −0.147591 + 0.454239i
\(391\) 2.83258 + 8.71778i 0.143250 + 0.440877i
\(392\) −28.3754 + 20.6160i −1.43318 + 1.04126i
\(393\) 4.10649 + 12.6385i 0.207145 + 0.637527i
\(394\) −18.8284 13.6796i −0.948561 0.689170i
\(395\) −8.66432 6.29499i −0.435949 0.316736i
\(396\) −23.6335 + 17.1707i −1.18763 + 0.862862i
\(397\) 8.71678 0.437483 0.218741 0.975783i \(-0.429805\pi\)
0.218741 + 0.975783i \(0.429805\pi\)
\(398\) 17.4312 0.873745
\(399\) 5.49510 3.99243i 0.275099 0.199871i
\(400\) −0.659771 + 2.03057i −0.0329886 + 0.101528i
\(401\) −9.73783 29.9700i −0.486284 1.49663i −0.830113 0.557596i \(-0.811724\pi\)
0.343829 0.939032i \(-0.388276\pi\)
\(402\) 17.0778 0.851761
\(403\) −3.31007 4.47699i −0.164886 0.223015i
\(404\) 13.2123 0.657337
\(405\) −19.9286 61.3339i −0.990260 3.04771i
\(406\) −0.634465 + 1.95268i −0.0314880 + 0.0969101i
\(407\) 10.7726 7.82677i 0.533979 0.387958i
\(408\) 68.6803 3.40018
\(409\) −17.5637 −0.868471 −0.434235 0.900799i \(-0.642981\pi\)
−0.434235 + 0.900799i \(0.642981\pi\)
\(410\) 8.89676 6.46387i 0.439380 0.319228i
\(411\) −49.3888 35.8831i −2.43617 1.76998i
\(412\) −1.04345 0.758108i −0.0514069 0.0373493i
\(413\) 0.550030 + 1.69282i 0.0270652 + 0.0832982i
\(414\) −6.55677 + 4.76377i −0.322248 + 0.234127i
\(415\) −15.8445 48.7642i −0.777774 2.39374i
\(416\) −1.68240 + 5.17789i −0.0824863 + 0.253867i
\(417\) −52.2125 37.9346i −2.55686 1.85767i
\(418\) −0.503529 + 1.54970i −0.0246284 + 0.0757984i
\(419\) 3.43742 10.5793i 0.167929 0.516832i −0.831311 0.555807i \(-0.812409\pi\)
0.999240 + 0.0389751i \(0.0124093\pi\)
\(420\) −41.1848 29.9225i −2.00961 1.46007i
\(421\) 11.5455 35.5335i 0.562694 1.73180i −0.112010 0.993707i \(-0.535729\pi\)
0.674704 0.738088i \(-0.264271\pi\)
\(422\) 5.16844 + 15.9068i 0.251596 + 0.774332i
\(423\) −40.4992 + 29.4244i −1.96914 + 1.43066i
\(424\) 9.00293 + 27.7082i 0.437221 + 1.34563i
\(425\) 31.7941 + 23.0998i 1.54224 + 1.12050i
\(426\) −23.2323 16.8792i −1.12561 0.817802i
\(427\) −14.8007 + 10.7533i −0.716256 + 0.520390i
\(428\) −0.919865 −0.0444634
\(429\) 11.4314 0.551911
\(430\) −0.892402 + 0.648368i −0.0430355 + 0.0312671i
\(431\) 0.555951 1.71104i 0.0267792 0.0824180i −0.936774 0.349936i \(-0.886203\pi\)
0.963553 + 0.267518i \(0.0862034\pi\)
\(432\) 1.62495 + 5.00107i 0.0781802 + 0.240614i
\(433\) −18.5443 −0.891182 −0.445591 0.895237i \(-0.647006\pi\)
−0.445591 + 0.895237i \(0.647006\pi\)
\(434\) −21.3297 + 7.12749i −1.02386 + 0.342131i
\(435\) −5.18188 −0.248452
\(436\) 5.31681 + 16.3634i 0.254629 + 0.783667i
\(437\) 0.186666 0.574498i 0.00892943 0.0274820i
\(438\) 13.4630 9.78143i 0.643286 0.467375i
\(439\) 0.364098 0.0173774 0.00868872 0.999962i \(-0.497234\pi\)
0.00868872 + 0.999962i \(0.497234\pi\)
\(440\) 33.5645 1.60012
\(441\) −69.2535 + 50.3156i −3.29778 + 2.39598i
\(442\) −5.56121 4.04045i −0.264520 0.192185i
\(443\) 10.6185 + 7.71476i 0.504498 + 0.366539i 0.810733 0.585417i \(-0.199069\pi\)
−0.306234 + 0.951956i \(0.599069\pi\)
\(444\) 4.15855 + 12.7987i 0.197356 + 0.607400i
\(445\) 8.16288 5.93068i 0.386957 0.281141i
\(446\) 1.36113 + 4.18912i 0.0644513 + 0.198361i
\(447\) 18.3087 56.3483i 0.865970 2.66518i
\(448\) 20.6417 + 14.9971i 0.975231 + 0.708547i
\(449\) −3.48849 + 10.7365i −0.164632 + 0.506686i −0.999009 0.0445087i \(-0.985828\pi\)
0.834377 + 0.551195i \(0.185828\pi\)
\(450\) −10.7375 + 33.0467i −0.506172 + 1.55784i
\(451\) −10.7825 7.83394i −0.507728 0.368886i
\(452\) 0.612994 1.88660i 0.0288328 0.0887382i
\(453\) −10.4700 32.2232i −0.491922 1.51398i
\(454\) 7.10384 5.16124i 0.333400 0.242229i
\(455\) 4.32730 + 13.3181i 0.202867 + 0.624361i
\(456\) −3.66161 2.66032i −0.171471 0.124581i
\(457\) 1.81613 + 1.31950i 0.0849550 + 0.0617234i 0.629452 0.777039i \(-0.283279\pi\)
−0.544497 + 0.838763i \(0.683279\pi\)
\(458\) −5.18460 + 3.76683i −0.242260 + 0.176012i
\(459\) 96.7909 4.51781
\(460\) −4.52734 −0.211088
\(461\) 26.0928 18.9576i 1.21526 0.882941i 0.219566 0.975598i \(-0.429536\pi\)
0.995698 + 0.0926563i \(0.0295358\pi\)
\(462\) 14.2683 43.9132i 0.663819 2.04303i
\(463\) 1.08199 + 3.33002i 0.0502842 + 0.154759i 0.973046 0.230613i \(-0.0740731\pi\)
−0.922761 + 0.385372i \(0.874073\pi\)
\(464\) 0.205168 0.00952470
\(465\) −33.7435 45.6393i −1.56482 2.11647i
\(466\) −20.9941 −0.972534
\(467\) 3.19064 + 9.81977i 0.147645 + 0.454405i 0.997342 0.0728672i \(-0.0232149\pi\)
−0.849697 + 0.527272i \(0.823215\pi\)
\(468\) −2.50960 + 7.72376i −0.116006 + 0.357031i
\(469\) 20.5122 14.9030i 0.947167 0.688157i
\(470\) 20.9277 0.965322
\(471\) 4.10167 0.188995
\(472\) 0.959530 0.697139i 0.0441659 0.0320884i
\(473\) 1.08155 + 0.785795i 0.0497299 + 0.0361309i
\(474\) 7.94218 + 5.77033i 0.364796 + 0.265040i
\(475\) −0.800302 2.46308i −0.0367204 0.113014i
\(476\) 30.0150 21.8071i 1.37573 0.999529i
\(477\) 21.9727 + 67.6250i 1.00606 + 3.09633i
\(478\) −2.99871 + 9.22908i −0.137158 + 0.422128i
\(479\) 1.79017 + 1.30064i 0.0817952 + 0.0594277i 0.627931 0.778269i \(-0.283902\pi\)
−0.546136 + 0.837696i \(0.683902\pi\)
\(480\) −17.1507 + 52.7844i −0.782818 + 2.40927i
\(481\) 1.14393 3.52064i 0.0521585 0.160528i
\(482\) −9.37550 6.81170i −0.427043 0.310265i
\(483\) −5.28946 + 16.2793i −0.240679 + 0.740733i
\(484\) −0.685366 2.10934i −0.0311530 0.0958791i
\(485\) −7.96927 + 5.79001i −0.361866 + 0.262911i
\(486\) 7.09276 + 21.8293i 0.321734 + 0.990195i
\(487\) 7.50595 + 5.45339i 0.340127 + 0.247117i 0.744715 0.667382i \(-0.232585\pi\)
−0.404589 + 0.914499i \(0.632585\pi\)
\(488\) 9.86231 + 7.16539i 0.446446 + 0.324362i
\(489\) 0.707330 0.513905i 0.0319866 0.0232396i
\(490\) 35.7863 1.61666
\(491\) −9.05969 −0.408858 −0.204429 0.978881i \(-0.565534\pi\)
−0.204429 + 0.978881i \(0.565534\pi\)
\(492\) 10.8972 7.91729i 0.491284 0.356939i
\(493\) 1.16700 3.59166i 0.0525590 0.161760i
\(494\) 0.139983 + 0.430824i 0.00629815 + 0.0193837i
\(495\) 81.9178 3.68193
\(496\) 1.33602 + 1.80701i 0.0599890 + 0.0811373i
\(497\) −42.6343 −1.91241
\(498\) 14.5239 + 44.6999i 0.650831 + 2.00305i
\(499\) −2.88741 + 8.88653i −0.129258 + 0.397816i −0.994653 0.103275i \(-0.967068\pi\)
0.865395 + 0.501091i \(0.167068\pi\)
\(500\) −0.860181 + 0.624958i −0.0384685 + 0.0279490i
\(501\) 6.78852 0.303289
\(502\) 9.19384 0.410341
\(503\) −28.2442 + 20.5206i −1.25935 + 0.914969i −0.998725 0.0504724i \(-0.983927\pi\)
−0.260621 + 0.965441i \(0.583927\pi\)
\(504\) 72.9369 + 52.9918i 3.24887 + 2.36044i
\(505\) −29.9740 21.7774i −1.33383 0.969081i
\(506\) −1.26892 3.90534i −0.0564104 0.173613i
\(507\) 2.57103 1.86796i 0.114184 0.0829592i
\(508\) −2.38819 7.35011i −0.105959 0.326108i
\(509\) 13.0314 40.1064i 0.577605 1.77768i −0.0495286 0.998773i \(-0.515772\pi\)
0.627133 0.778912i \(-0.284228\pi\)
\(510\) −56.6920 41.1891i −2.51036 1.82389i
\(511\) 7.63467 23.4971i 0.337738 1.03945i
\(512\) 1.40469 4.32318i 0.0620789 0.191059i
\(513\) −5.16030 3.74917i −0.227833 0.165530i
\(514\) 7.17979 22.0971i 0.316687 0.974662i
\(515\) 1.11764 + 3.43975i 0.0492492 + 0.151573i
\(516\) −1.09306 + 0.794155i −0.0481193 + 0.0349607i
\(517\) −7.83774 24.1221i −0.344703 1.06089i
\(518\) −12.0966 8.78871i −0.531495 0.386154i
\(519\) 30.2232 + 21.9584i 1.32665 + 0.963869i
\(520\) 7.54900 5.48467i 0.331045 0.240519i
\(521\) −10.7505 −0.470989 −0.235495 0.971876i \(-0.575671\pi\)
−0.235495 + 0.971876i \(0.575671\pi\)
\(522\) 3.33904 0.146146
\(523\) −11.5897 + 8.42039i −0.506781 + 0.368198i −0.811601 0.584212i \(-0.801404\pi\)
0.304820 + 0.952410i \(0.401404\pi\)
\(524\) 1.47814 4.54924i 0.0645728 0.198734i
\(525\) 22.6778 + 69.7951i 0.989740 + 3.04611i
\(526\) −16.5377 −0.721077
\(527\) 39.2327 13.1099i 1.70900 0.571076i
\(528\) −4.61395 −0.200797
\(529\) −6.63698 20.4265i −0.288564 0.888110i
\(530\) 9.18577 28.2709i 0.399004 1.22801i
\(531\) 2.34184 1.70145i 0.101627 0.0738365i
\(532\) −2.44491 −0.106000
\(533\) −3.70522 −0.160491
\(534\) −7.48253 + 5.43638i −0.323801 + 0.235255i
\(535\) 2.08684 + 1.51618i 0.0902221 + 0.0655502i
\(536\) −13.6681 9.93049i −0.590374 0.428932i
\(537\) −3.76694 11.5934i −0.162555 0.500294i
\(538\) 2.28474 1.65996i 0.0985022 0.0715660i
\(539\) −13.4025 41.2487i −0.577287 1.77671i
\(540\) −14.7727 + 45.4658i −0.635717 + 1.95653i
\(541\) −10.1890 7.40271i −0.438058 0.318267i 0.346805 0.937937i \(-0.387267\pi\)
−0.784863 + 0.619670i \(0.787267\pi\)
\(542\) 5.71758 17.5969i 0.245591 0.755851i
\(543\) 24.4088 75.1227i 1.04748 3.22382i
\(544\) −32.7233 23.7749i −1.40300 1.01934i
\(545\) 14.9094 45.8863i 0.638647 1.96555i
\(546\) −3.96664 12.2081i −0.169757 0.522457i
\(547\) 2.06911 1.50330i 0.0884688 0.0642763i −0.542672 0.839945i \(-0.682587\pi\)
0.631140 + 0.775669i \(0.282587\pi\)
\(548\) 6.79043 + 20.8988i 0.290073 + 0.892752i
\(549\) 24.0701 + 17.4879i 1.02729 + 0.746367i
\(550\) −14.2429 10.3481i −0.607321 0.441244i
\(551\) −0.201339 + 0.146281i −0.00857734 + 0.00623180i
\(552\) 11.4058 0.485463
\(553\) 14.5749 0.619789
\(554\) 5.44127 3.95332i 0.231178 0.167960i
\(555\) 11.6614 35.8901i 0.494999 1.52345i
\(556\) 7.17866 + 22.0936i 0.304443 + 0.936979i
\(557\) 0.530931 0.0224963 0.0112481 0.999937i \(-0.496420\pi\)
0.0112481 + 0.999937i \(0.496420\pi\)
\(558\) 21.7432 + 29.4084i 0.920463 + 1.24496i
\(559\) 0.371657 0.0157194
\(560\) −1.74660 5.37547i −0.0738072 0.227155i
\(561\) −26.2442 + 80.7714i −1.10803 + 3.41017i
\(562\) −11.2858 + 8.19959i −0.476061 + 0.345879i
\(563\) 6.00123 0.252922 0.126461 0.991972i \(-0.459638\pi\)
0.126461 + 0.991972i \(0.459638\pi\)
\(564\) 25.6333 1.07936
\(565\) −4.50028 + 3.26965i −0.189328 + 0.137555i
\(566\) 22.9145 + 16.6484i 0.963170 + 0.699784i
\(567\) 71.0039 + 51.5873i 2.98188 + 2.16646i
\(568\) 8.77885 + 27.0185i 0.368352 + 1.13367i
\(569\) −20.8937 + 15.1802i −0.875910 + 0.636386i −0.932166 0.362030i \(-0.882084\pi\)
0.0562560 + 0.998416i \(0.482084\pi\)
\(570\) 1.42702 + 4.39190i 0.0597711 + 0.183957i
\(571\) −3.37851 + 10.3980i −0.141386 + 0.435142i −0.996529 0.0832513i \(-0.973470\pi\)
0.855142 + 0.518393i \(0.173470\pi\)
\(572\) −3.32889 2.41858i −0.139188 0.101126i
\(573\) −13.8765 + 42.7074i −0.579698 + 1.78413i
\(574\) −4.62473 + 14.2335i −0.193033 + 0.594093i
\(575\) 5.28007 + 3.83620i 0.220194 + 0.159980i
\(576\) 12.8223 39.4630i 0.534263 1.64429i
\(577\) −10.4708 32.2257i −0.435903 1.34157i −0.892158 0.451723i \(-0.850810\pi\)
0.456255 0.889849i \(-0.349190\pi\)
\(578\) 28.5912 20.7727i 1.18924 0.864031i
\(579\) −1.27698 3.93014i −0.0530695 0.163331i
\(580\) 1.50900 + 1.09635i 0.0626578 + 0.0455236i
\(581\) 56.4524 + 41.0151i 2.34204 + 1.70159i
\(582\) 7.30506 5.30744i 0.302805 0.220000i
\(583\) −36.0264 −1.49206
\(584\) −16.4628 −0.681237
\(585\) 18.4242 13.3860i 0.761746 0.553441i
\(586\) 6.26876 19.2933i 0.258960 0.796997i
\(587\) −13.8346 42.5786i −0.571017 1.75741i −0.649359 0.760482i \(-0.724963\pi\)
0.0783422 0.996927i \(-0.475037\pi\)
\(588\) 43.8329 1.80764
\(589\) −2.59945 0.820730i −0.107109 0.0338176i
\(590\) −1.21013 −0.0498203
\(591\) 24.7019 + 76.0246i 1.01610 + 3.12723i
\(592\) −0.461714 + 1.42101i −0.0189763 + 0.0584032i
\(593\) −20.4891 + 14.8862i −0.841388 + 0.611304i −0.922758 0.385380i \(-0.874070\pi\)
0.0813702 + 0.996684i \(0.474070\pi\)
\(594\) −43.3598 −1.77907
\(595\) −104.037 −4.26511
\(596\) −17.2535 + 12.5354i −0.706729 + 0.513469i
\(597\) −48.4368 35.1914i −1.98239 1.44029i
\(598\) −0.923553 0.671001i −0.0377669 0.0274393i
\(599\) −4.15660 12.7927i −0.169834 0.522696i 0.829526 0.558468i \(-0.188611\pi\)
−0.999360 + 0.0357727i \(0.988611\pi\)
\(600\) 39.5615 28.7431i 1.61509 1.17343i
\(601\) 8.22456 + 25.3126i 0.335487 + 1.03252i 0.966482 + 0.256735i \(0.0826468\pi\)
−0.630995 + 0.775787i \(0.717353\pi\)
\(602\) 0.463890 1.42771i 0.0189068 0.0581890i
\(603\) −33.3586 24.2365i −1.35847 0.986986i
\(604\) −3.76868 + 11.5988i −0.153345 + 0.471949i
\(605\) −1.92190 + 5.91500i −0.0781364 + 0.240479i
\(606\) 27.4758 + 19.9623i 1.11613 + 0.810914i
\(607\) −14.5463 + 44.7690i −0.590417 + 1.81712i −0.0140853 + 0.999901i \(0.504484\pi\)
−0.576332 + 0.817216i \(0.695516\pi\)
\(608\) 0.823691 + 2.53506i 0.0334051 + 0.102810i
\(609\) 5.70526 4.14511i 0.231189 0.167968i
\(610\) −3.84357 11.8293i −0.155622 0.478954i
\(611\) −5.70451 4.14457i −0.230780 0.167671i
\(612\) −48.8128 35.4645i −1.97314 1.43357i
\(613\) 23.8926 17.3590i 0.965014 0.701124i 0.0107043 0.999943i \(-0.496593\pi\)
0.954310 + 0.298819i \(0.0965927\pi\)
\(614\) 26.8985 1.08553
\(615\) −37.7717 −1.52310
\(616\) −36.9545 + 26.8490i −1.48894 + 1.08178i
\(617\) −11.2455 + 34.6100i −0.452725 + 1.39335i 0.421060 + 0.907033i \(0.361658\pi\)
−0.873785 + 0.486313i \(0.838342\pi\)
\(618\) −1.02449 3.15306i −0.0412111 0.126835i
\(619\) 13.9413 0.560349 0.280174 0.959949i \(-0.409608\pi\)
0.280174 + 0.959949i \(0.409608\pi\)
\(620\) 0.170247 + 20.4297i 0.00683729 + 0.820478i
\(621\) 16.0741 0.645033
\(622\) −1.59128 4.89747i −0.0638047 0.196371i
\(623\) −4.24324 + 13.0594i −0.170002 + 0.523212i
\(624\) −1.03773 + 0.753952i −0.0415423 + 0.0301823i
\(625\) −23.4672 −0.938690
\(626\) 22.1072 0.883582
\(627\) 4.52784 3.28967i 0.180825 0.131377i
\(628\) −1.19444 0.867808i −0.0476632 0.0346293i
\(629\) 22.2498 + 16.1654i 0.887159 + 0.644559i
\(630\) −28.4252 87.4838i −1.13249 3.48544i
\(631\) 19.3657 14.0700i 0.770938 0.560119i −0.131308 0.991342i \(-0.541918\pi\)
0.902246 + 0.431222i \(0.141918\pi\)
\(632\) −3.00113 9.23654i −0.119379 0.367410i
\(633\) 17.7522 54.6356i 0.705585 2.17157i
\(634\) 17.4341 + 12.6666i 0.692397 + 0.503056i
\(635\) −6.69696 + 20.6111i −0.265761 + 0.817928i
\(636\) 11.2512 34.6277i 0.446140 1.37308i
\(637\) −9.75469 7.08720i −0.386495 0.280805i
\(638\) −0.522785 + 1.60897i −0.0206973 + 0.0636996i
\(639\) 21.4258 + 65.9418i 0.847591 + 2.60862i
\(640\) 14.2239 10.3343i 0.562249 0.408498i
\(641\) 3.33400 + 10.2610i 0.131685 + 0.405285i 0.995060 0.0992786i \(-0.0316535\pi\)
−0.863375 + 0.504563i \(0.831653\pi\)
\(642\) −1.91291 1.38981i −0.0754967 0.0548516i
\(643\) −20.3420 14.7794i −0.802212 0.582841i 0.109350 0.994003i \(-0.465123\pi\)
−0.911562 + 0.411162i \(0.865123\pi\)
\(644\) 4.98461 3.62153i 0.196421 0.142708i
\(645\) 3.78874 0.149182
\(646\) −3.36548 −0.132413
\(647\) 23.8465 17.3255i 0.937503 0.681136i −0.0103153 0.999947i \(-0.503284\pi\)
0.947818 + 0.318811i \(0.103284\pi\)
\(648\) 18.0719 55.6195i 0.709931 2.18494i
\(649\) 0.453213 + 1.39485i 0.0177902 + 0.0547525i
\(650\) −4.89434 −0.191972
\(651\) 73.6595 + 23.2566i 2.88694 + 0.911499i
\(652\) −0.314709 −0.0123249
\(653\) 2.94436 + 9.06180i 0.115222 + 0.354616i 0.991993 0.126291i \(-0.0403075\pi\)
−0.876772 + 0.480907i \(0.840307\pi\)
\(654\) −13.6667 + 42.0619i −0.534412 + 1.64475i
\(655\) −10.8517 + 7.88423i −0.424012 + 0.308063i
\(656\) 1.49551 0.0583898
\(657\) −40.1794 −1.56755
\(658\) −23.0414 + 16.7406i −0.898247 + 0.652615i
\(659\) −22.5693 16.3975i −0.879174 0.638757i 0.0538588 0.998549i \(-0.482848\pi\)
−0.933033 + 0.359791i \(0.882848\pi\)
\(660\) −33.9354 24.6555i −1.32093 0.959713i
\(661\) 11.3941 + 35.0674i 0.443178 + 1.36396i 0.884469 + 0.466598i \(0.154521\pi\)
−0.441291 + 0.897364i \(0.645479\pi\)
\(662\) 1.03474 0.751786i 0.0402165 0.0292190i
\(663\) 7.29602 + 22.4548i 0.283354 + 0.872073i
\(664\) 14.3683 44.2209i 0.557596 1.71611i
\(665\) 5.54662 + 4.02986i 0.215089 + 0.156271i
\(666\) −7.51422 + 23.1264i −0.291170 + 0.896130i
\(667\) 0.193804 0.596469i 0.00750414 0.0230954i
\(668\) −1.97687 1.43628i −0.0764872 0.0555712i
\(669\) 4.67510 14.3885i 0.180750 0.556291i
\(670\) 5.32679 + 16.3942i 0.205792 + 0.633363i
\(671\) −12.1954 + 8.86051i −0.470800 + 0.342056i
\(672\) −23.3406 71.8348i −0.900381 2.77109i
\(673\) 19.3336 + 14.0467i 0.745254 + 0.541459i 0.894352 0.447363i \(-0.147637\pi\)
−0.149098 + 0.988822i \(0.547637\pi\)
\(674\) −21.4960 15.6178i −0.827995 0.601574i
\(675\) 55.7538 40.5075i 2.14597 1.55914i
\(676\) −1.14392 −0.0439968
\(677\) −32.1405 −1.23526 −0.617629 0.786470i \(-0.711907\pi\)
−0.617629 + 0.786470i \(0.711907\pi\)
\(678\) 4.12520 2.99713i 0.158427 0.115104i
\(679\) 4.14260 12.7496i 0.158978 0.489285i
\(680\) 21.4224 + 65.9313i 0.821510 + 2.52835i
\(681\) −30.1597 −1.15572
\(682\) −17.5752 + 5.87289i −0.672990 + 0.224885i
\(683\) −18.1841 −0.695794 −0.347897 0.937533i \(-0.613104\pi\)
−0.347897 + 0.937533i \(0.613104\pi\)
\(684\) 1.22868 + 3.78150i 0.0469799 + 0.144589i
\(685\) 19.0417 58.6043i 0.727546 2.23916i
\(686\) −16.5265 + 12.0072i −0.630985 + 0.458437i
\(687\) 22.0115 0.839790
\(688\) −0.150009 −0.00571904
\(689\) −8.10271 + 5.88696i −0.308689 + 0.224275i
\(690\) −9.41488 6.84031i −0.358418 0.260406i
\(691\) −8.55121 6.21282i −0.325303 0.236347i 0.413132 0.910671i \(-0.364435\pi\)
−0.738435 + 0.674325i \(0.764435\pi\)
\(692\) −4.15537 12.7889i −0.157963 0.486161i
\(693\) −90.1916 + 65.5280i −3.42610 + 2.48920i
\(694\) −4.32069 13.2977i −0.164011 0.504775i
\(695\) 20.1304 61.9549i 0.763588 2.35008i
\(696\) −3.80165 2.76206i −0.144101 0.104696i
\(697\) 8.50647 26.1802i 0.322205 0.991646i
\(698\) 0.343687 1.05776i 0.0130087 0.0400368i
\(699\) 58.3374 + 42.3846i 2.20652 + 1.60313i
\(700\) 8.16291 25.1229i 0.308529 0.949555i
\(701\) 12.4301 + 38.2558i 0.469478 + 1.44490i 0.853263 + 0.521481i \(0.174620\pi\)
−0.383785 + 0.923422i \(0.625380\pi\)
\(702\) −9.75207 + 7.08530i −0.368068 + 0.267417i
\(703\) −0.560059 1.72368i −0.0211230 0.0650100i
\(704\) 17.0083 + 12.3573i 0.641026 + 0.465733i
\(705\) −58.1528 42.2505i −2.19016 1.59125i
\(706\) 14.3733 10.4428i 0.540945 0.393020i
\(707\) 50.4216 1.89630
\(708\) −1.48223 −0.0557057
\(709\) −17.0559 + 12.3919i −0.640549 + 0.465386i −0.860039 0.510229i \(-0.829561\pi\)
0.219490 + 0.975615i \(0.429561\pi\)
\(710\) 8.95714 27.5672i 0.336155 1.03458i
\(711\) −7.32461 22.5428i −0.274694 0.845422i
\(712\) 9.14981 0.342904
\(713\) 6.51540 2.17717i 0.244004 0.0815357i
\(714\) 95.3661 3.56899
\(715\) 3.56560 + 10.9738i 0.133346 + 0.410397i
\(716\) −1.35592 + 4.17308i −0.0506730 + 0.155955i
\(717\) 26.9651 19.5913i 1.00703 0.731650i
\(718\) 2.79715 0.104389
\(719\) −41.3656 −1.54268 −0.771338 0.636426i \(-0.780412\pi\)
−0.771338 + 0.636426i \(0.780412\pi\)
\(720\) −7.43641 + 5.40287i −0.277139 + 0.201353i
\(721\) −3.98206 2.89314i −0.148300 0.107746i
\(722\) −14.0429 10.2027i −0.522621 0.379706i
\(723\) 12.3002 + 37.8560i 0.457448 + 1.40788i
\(724\) −23.0021 + 16.7120i −0.854865 + 0.621096i
\(725\) −0.830908 2.55727i −0.0308592 0.0949747i
\(726\) 1.76172 5.42201i 0.0653835 0.201230i
\(727\) −0.643007 0.467172i −0.0238478 0.0173264i 0.575798 0.817592i \(-0.304692\pi\)
−0.599645 + 0.800266i \(0.704692\pi\)
\(728\) −3.92414 + 12.0772i −0.145438 + 0.447613i
\(729\) 5.72383 17.6161i 0.211994 0.652449i
\(730\) 13.5892 + 9.87313i 0.502959 + 0.365421i
\(731\) −0.853254 + 2.62604i −0.0315587 + 0.0971278i
\(732\) −4.70781 14.4891i −0.174006 0.535534i
\(733\) −30.6808 + 22.2909i −1.13322 + 0.823334i −0.986161 0.165793i \(-0.946982\pi\)
−0.147062 + 0.989127i \(0.546982\pi\)
\(734\) 0.242460 + 0.746214i 0.00894935 + 0.0275433i
\(735\) −99.4411 72.2482i −3.66794 2.66492i
\(736\) −5.43438 3.94831i −0.200314 0.145537i
\(737\) 16.9016 12.2797i 0.622579 0.452330i
\(738\) 24.3388 0.895925
\(739\) −38.4187 −1.41325 −0.706627 0.707587i \(-0.749784\pi\)
−0.706627 + 0.707587i \(0.749784\pi\)
\(740\) −10.9893 + 7.98420i −0.403975 + 0.293505i
\(741\) 0.480804 1.47976i 0.0176628 0.0543604i
\(742\) 12.5010 + 38.4742i 0.458927 + 1.41243i
\(743\) −11.0652 −0.405943 −0.202972 0.979185i \(-0.565060\pi\)
−0.202972 + 0.979185i \(0.565060\pi\)
\(744\) −0.428906 51.4689i −0.0157244 1.88694i
\(745\) 59.8035 2.19103
\(746\) −7.87572 24.2390i −0.288350 0.887451i
\(747\) 35.0673 107.926i 1.28305 3.94881i
\(748\) 24.7317 17.9686i 0.904279 0.656997i
\(749\) −3.51045 −0.128269
\(750\) −2.73304 −0.0997966
\(751\) 1.90608 1.38485i 0.0695539 0.0505339i −0.552465 0.833536i \(-0.686313\pi\)
0.622019 + 0.783002i \(0.286313\pi\)
\(752\) 2.30247 + 1.67284i 0.0839623 + 0.0610022i
\(753\) −25.5474 18.5613i −0.930998 0.676410i
\(754\) 0.145337 + 0.447300i 0.00529285 + 0.0162897i
\(755\) 27.6677 20.1018i 1.00693 0.731578i
\(756\) −20.1044 61.8749i −0.731189 2.25037i
\(757\) 3.52613 10.8523i 0.128160 0.394434i −0.866304 0.499517i \(-0.833511\pi\)
0.994463 + 0.105083i \(0.0335108\pi\)
\(758\) −4.91419 3.57037i −0.178491 0.129682i
\(759\) −4.35840 + 13.4138i −0.158200 + 0.486889i
\(760\) 1.41172 4.34484i 0.0512086 0.157604i
\(761\) −9.57817 6.95895i −0.347209 0.252262i 0.400489 0.916302i \(-0.368840\pi\)
−0.747697 + 0.664040i \(0.768840\pi\)
\(762\) 6.13880 18.8933i 0.222385 0.684431i
\(763\) 20.2903 + 62.4472i 0.734559 + 2.26074i
\(764\) 13.0767 9.50078i