Properties

Label 403.2.k.e.66.7
Level 403
Weight 2
Character 403.66
Analytic conductor 3.218
Analytic rank 0
Dimension 68
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.k (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 66.7
Character \(\chi\) \(=\) 403.66
Dual form 403.2.k.e.287.7

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.100028 - 0.307853i) q^{2} +(0.126453 - 0.389181i) q^{3} +(1.53327 - 1.11398i) q^{4} +0.747578 q^{5} -0.132459 q^{6} +(2.14953 - 1.56172i) q^{7} +(-1.02006 - 0.741120i) q^{8} +(2.29158 + 1.66493i) q^{9} +O(q^{10})\) \(q+(-0.100028 - 0.307853i) q^{2} +(0.126453 - 0.389181i) q^{3} +(1.53327 - 1.11398i) q^{4} +0.747578 q^{5} -0.132459 q^{6} +(2.14953 - 1.56172i) q^{7} +(-1.02006 - 0.741120i) q^{8} +(2.29158 + 1.66493i) q^{9} +(-0.0747784 - 0.230144i) q^{10} +(-2.44705 + 1.77789i) q^{11} +(-0.239655 - 0.737584i) q^{12} +(0.309017 - 0.951057i) q^{13} +(-0.695794 - 0.505524i) q^{14} +(0.0945331 - 0.290943i) q^{15} +(1.04519 - 3.21676i) q^{16} +(-2.20148 - 1.59947i) q^{17} +(0.283333 - 0.872009i) q^{18} +(2.34136 + 7.20596i) q^{19} +(1.14624 - 0.832789i) q^{20} +(-0.335980 - 1.03404i) q^{21} +(0.792101 + 0.575495i) q^{22} +(-3.43610 - 2.49648i) q^{23} +(-0.417419 + 0.303273i) q^{24} -4.44113 q^{25} -0.323696 q^{26} +(1.93091 - 1.40289i) q^{27} +(1.55606 - 4.78907i) q^{28} +(-0.309549 - 0.952693i) q^{29} -0.0990237 q^{30} +(4.43973 - 3.35988i) q^{31} -3.61657 q^{32} +(0.382484 + 1.17716i) q^{33} +(-0.272193 + 0.837724i) q^{34} +(1.60694 - 1.16751i) q^{35} +5.36830 q^{36} +1.76030 q^{37} +(1.98418 - 1.44159i) q^{38} +(-0.331057 - 0.240527i) q^{39} +(-0.762577 - 0.554045i) q^{40} +(-0.574150 - 1.76705i) q^{41} +(-0.284725 + 0.206865i) q^{42} +(1.63078 + 5.01903i) q^{43} +(-1.77144 + 5.45195i) q^{44} +(1.71313 + 1.24467i) q^{45} +(-0.424843 + 1.30753i) q^{46} +(0.325679 - 1.00234i) q^{47} +(-1.11974 - 0.813535i) q^{48} +(0.0183691 - 0.0565344i) q^{49} +(0.444235 + 1.36722i) q^{50} +(-0.900865 + 0.654517i) q^{51} +(-0.585655 - 1.80246i) q^{52} +(-5.87231 - 4.26648i) q^{53} +(-0.625027 - 0.454109i) q^{54} +(-1.82936 + 1.32911i) q^{55} -3.35008 q^{56} +3.10049 q^{57} +(-0.262326 + 0.190591i) q^{58} +(-1.69748 + 5.22431i) q^{59} +(-0.179161 - 0.551401i) q^{60} -3.83655 q^{61} +(-1.47845 - 1.03070i) q^{62} +7.52597 q^{63} +(-1.72862 - 5.32015i) q^{64} +(0.231014 - 0.710989i) q^{65} +(0.324135 - 0.235498i) q^{66} +0.705826 q^{67} -5.15723 q^{68} +(-1.40609 + 1.02158i) q^{69} +(-0.520160 - 0.377918i) q^{70} +(6.67057 + 4.84645i) q^{71} +(-1.10364 - 3.39667i) q^{72} +(-5.86568 + 4.26166i) q^{73} +(-0.176078 - 0.541913i) q^{74} +(-0.561592 + 1.72840i) q^{75} +(11.6172 + 8.44042i) q^{76} +(-2.48344 + 7.64323i) q^{77} +(-0.0409322 + 0.125976i) q^{78} +(-2.21672 - 1.61054i) q^{79} +(0.781361 - 2.40478i) q^{80} +(2.32411 + 7.15287i) q^{81} +(-0.486562 + 0.353508i) q^{82} +(3.72682 + 11.4700i) q^{83} +(-1.66705 - 1.21118i) q^{84} +(-1.64578 - 1.19573i) q^{85} +(1.38200 - 1.00408i) q^{86} -0.409913 q^{87} +3.81377 q^{88} +(-9.02943 + 6.56026i) q^{89} +(0.211814 - 0.651895i) q^{90} +(-0.821046 - 2.52692i) q^{91} -8.04949 q^{92} +(-0.746188 - 2.15272i) q^{93} -0.341150 q^{94} +(1.75035 + 5.38702i) q^{95} +(-0.457325 + 1.40750i) q^{96} +(0.956236 - 0.694746i) q^{97} -0.0192417 q^{98} -8.56767 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68q - 3q^{2} - 2q^{3} - 23q^{4} + 12q^{5} + 4q^{6} + 2q^{7} - 3q^{8} - 23q^{9} + O(q^{10}) \) \( 68q - 3q^{2} - 2q^{3} - 23q^{4} + 12q^{5} + 4q^{6} + 2q^{7} - 3q^{8} - 23q^{9} - 13q^{10} - 5q^{11} - 28q^{12} - 17q^{13} - 3q^{14} - 14q^{15} + 9q^{16} + 12q^{17} - 19q^{18} - 4q^{19} - 53q^{20} - 13q^{21} - 14q^{22} - 9q^{23} + 2q^{24} + 96q^{25} + 12q^{26} + 25q^{27} - 25q^{28} - 78q^{30} - 2q^{31} + 76q^{32} + 29q^{33} - 15q^{34} - 36q^{35} + 52q^{36} + 24q^{37} - 19q^{38} + 3q^{39} - 12q^{40} - 40q^{41} + 11q^{42} - 22q^{43} + 4q^{44} + 63q^{45} - 24q^{46} + 3q^{47} + 68q^{48} + 33q^{49} - 76q^{50} - 59q^{51} - 13q^{52} - q^{53} + 18q^{54} - 22q^{55} + 78q^{56} - 16q^{57} + 5q^{58} - 18q^{59} + 43q^{60} - 32q^{61} - 39q^{62} + 20q^{63} + 23q^{64} + 2q^{65} + 11q^{66} + 114q^{67} + 98q^{68} - 46q^{69} + 32q^{70} - 2q^{71} + 28q^{72} + 10q^{73} - 43q^{74} - 12q^{75} - 35q^{76} - 3q^{77} - 6q^{78} - 10q^{79} + 68q^{80} - 54q^{81} - 80q^{82} - 22q^{83} - 14q^{84} - 50q^{85} - 66q^{86} + 76q^{87} - 34q^{88} - 10q^{89} - 63q^{90} - 8q^{91} - 64q^{92} - 16q^{93} + 30q^{94} + 15q^{95} + 34q^{96} - 7q^{97} + 138q^{98} - 48q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.100028 0.307853i −0.0707302 0.217685i 0.909443 0.415829i \(-0.136509\pi\)
−0.980173 + 0.198144i \(0.936509\pi\)
\(3\) 0.126453 0.389181i 0.0730074 0.224694i −0.907894 0.419200i \(-0.862311\pi\)
0.980901 + 0.194507i \(0.0623105\pi\)
\(4\) 1.53327 1.11398i 0.766633 0.556991i
\(5\) 0.747578 0.334327 0.167164 0.985929i \(-0.446539\pi\)
0.167164 + 0.985929i \(0.446539\pi\)
\(6\) −0.132459 −0.0540763
\(7\) 2.14953 1.56172i 0.812445 0.590276i −0.102094 0.994775i \(-0.532554\pi\)
0.914538 + 0.404499i \(0.132554\pi\)
\(8\) −1.02006 0.741120i −0.360647 0.262025i
\(9\) 2.29158 + 1.66493i 0.763860 + 0.554977i
\(10\) −0.0747784 0.230144i −0.0236470 0.0727780i
\(11\) −2.44705 + 1.77789i −0.737814 + 0.536053i −0.892026 0.451985i \(-0.850716\pi\)
0.154212 + 0.988038i \(0.450716\pi\)
\(12\) −0.239655 0.737584i −0.0691826 0.212922i
\(13\) 0.309017 0.951057i 0.0857059 0.263776i
\(14\) −0.695794 0.505524i −0.185959 0.135107i
\(15\) 0.0945331 0.290943i 0.0244084 0.0751212i
\(16\) 1.04519 3.21676i 0.261297 0.804190i
\(17\) −2.20148 1.59947i −0.533937 0.387928i 0.287891 0.957663i \(-0.407046\pi\)
−0.821828 + 0.569735i \(0.807046\pi\)
\(18\) 0.283333 0.872009i 0.0667822 0.205535i
\(19\) 2.34136 + 7.20596i 0.537145 + 1.65316i 0.738969 + 0.673740i \(0.235313\pi\)
−0.201824 + 0.979422i \(0.564687\pi\)
\(20\) 1.14624 0.832789i 0.256306 0.186217i
\(21\) −0.335980 1.03404i −0.0733167 0.225646i
\(22\) 0.792101 + 0.575495i 0.168877 + 0.122696i
\(23\) −3.43610 2.49648i −0.716477 0.520551i 0.168779 0.985654i \(-0.446017\pi\)
−0.885257 + 0.465103i \(0.846017\pi\)
\(24\) −0.417419 + 0.303273i −0.0852053 + 0.0619053i
\(25\) −4.44113 −0.888225
\(26\) −0.323696 −0.0634820
\(27\) 1.93091 1.40289i 0.371603 0.269985i
\(28\) 1.55606 4.78907i 0.294068 0.905050i
\(29\) −0.309549 0.952693i −0.0574818 0.176911i 0.918193 0.396133i \(-0.129648\pi\)
−0.975675 + 0.219222i \(0.929648\pi\)
\(30\) −0.0990237 −0.0180792
\(31\) 4.43973 3.35988i 0.797399 0.603453i
\(32\) −3.61657 −0.639326
\(33\) 0.382484 + 1.17716i 0.0665819 + 0.204918i
\(34\) −0.272193 + 0.837724i −0.0466807 + 0.143668i
\(35\) 1.60694 1.16751i 0.271622 0.197345i
\(36\) 5.36830 0.894717
\(37\) 1.76030 0.289391 0.144695 0.989476i \(-0.453780\pi\)
0.144695 + 0.989476i \(0.453780\pi\)
\(38\) 1.98418 1.44159i 0.321876 0.233857i
\(39\) −0.331057 0.240527i −0.0530116 0.0385151i
\(40\) −0.762577 0.554045i −0.120574 0.0876022i
\(41\) −0.574150 1.76705i −0.0896671 0.275967i 0.896160 0.443731i \(-0.146345\pi\)
−0.985827 + 0.167764i \(0.946345\pi\)
\(42\) −0.284725 + 0.206865i −0.0439340 + 0.0319199i
\(43\) 1.63078 + 5.01903i 0.248692 + 0.765395i 0.995007 + 0.0998027i \(0.0318212\pi\)
−0.746315 + 0.665593i \(0.768179\pi\)
\(44\) −1.77144 + 5.45195i −0.267055 + 0.821912i
\(45\) 1.71313 + 1.24467i 0.255379 + 0.185544i
\(46\) −0.424843 + 1.30753i −0.0626397 + 0.192785i
\(47\) 0.325679 1.00234i 0.0475052 0.146206i −0.924490 0.381206i \(-0.875509\pi\)
0.971995 + 0.235000i \(0.0755089\pi\)
\(48\) −1.11974 0.813535i −0.161620 0.117424i
\(49\) 0.0183691 0.0565344i 0.00262416 0.00807634i
\(50\) 0.444235 + 1.36722i 0.0628244 + 0.193354i
\(51\) −0.900865 + 0.654517i −0.126146 + 0.0916507i
\(52\) −0.585655 1.80246i −0.0812158 0.249957i
\(53\) −5.87231 4.26648i −0.806624 0.586047i 0.106226 0.994342i \(-0.466123\pi\)
−0.912850 + 0.408295i \(0.866123\pi\)
\(54\) −0.625027 0.454109i −0.0850554 0.0617964i
\(55\) −1.82936 + 1.32911i −0.246671 + 0.179217i
\(56\) −3.35008 −0.447673
\(57\) 3.10049 0.410671
\(58\) −0.262326 + 0.190591i −0.0344451 + 0.0250259i
\(59\) −1.69748 + 5.22431i −0.220993 + 0.680147i 0.777681 + 0.628660i \(0.216396\pi\)
−0.998674 + 0.0514871i \(0.983604\pi\)
\(60\) −0.179161 0.551401i −0.0231296 0.0711856i
\(61\) −3.83655 −0.491220 −0.245610 0.969369i \(-0.578988\pi\)
−0.245610 + 0.969369i \(0.578988\pi\)
\(62\) −1.47845 1.03070i −0.187763 0.130899i
\(63\) 7.52597 0.948183
\(64\) −1.72862 5.32015i −0.216078 0.665019i
\(65\) 0.231014 0.710989i 0.0286538 0.0881873i
\(66\) 0.324135 0.235498i 0.0398982 0.0289878i
\(67\) 0.705826 0.0862303 0.0431152 0.999070i \(-0.486272\pi\)
0.0431152 + 0.999070i \(0.486272\pi\)
\(68\) −5.15723 −0.625406
\(69\) −1.40609 + 1.02158i −0.169273 + 0.122984i
\(70\) −0.520160 0.377918i −0.0621710 0.0451699i
\(71\) 6.67057 + 4.84645i 0.791651 + 0.575168i 0.908453 0.417987i \(-0.137264\pi\)
−0.116802 + 0.993155i \(0.537264\pi\)
\(72\) −1.10364 3.39667i −0.130066 0.400301i
\(73\) −5.86568 + 4.26166i −0.686525 + 0.498790i −0.875516 0.483189i \(-0.839478\pi\)
0.188991 + 0.981979i \(0.439478\pi\)
\(74\) −0.176078 0.541913i −0.0204687 0.0629961i
\(75\) −0.561592 + 1.72840i −0.0648470 + 0.199579i
\(76\) 11.6172 + 8.44042i 1.33259 + 0.968183i
\(77\) −2.48344 + 7.64323i −0.283014 + 0.871027i
\(78\) −0.0409322 + 0.125976i −0.00463466 + 0.0142640i
\(79\) −2.21672 1.61054i −0.249400 0.181200i 0.456061 0.889949i \(-0.349260\pi\)
−0.705461 + 0.708749i \(0.749260\pi\)
\(80\) 0.781361 2.40478i 0.0873588 0.268863i
\(81\) 2.32411 + 7.15287i 0.258234 + 0.794763i
\(82\) −0.486562 + 0.353508i −0.0537318 + 0.0390384i
\(83\) 3.72682 + 11.4700i 0.409071 + 1.25899i 0.917448 + 0.397857i \(0.130246\pi\)
−0.508376 + 0.861135i \(0.669754\pi\)
\(84\) −1.66705 1.21118i −0.181890 0.132151i
\(85\) −1.64578 1.19573i −0.178510 0.129695i
\(86\) 1.38200 1.00408i 0.149025 0.108273i
\(87\) −0.409913 −0.0439473
\(88\) 3.81377 0.406550
\(89\) −9.02943 + 6.56026i −0.957117 + 0.695386i −0.952479 0.304603i \(-0.901476\pi\)
−0.00463782 + 0.999989i \(0.501476\pi\)
\(90\) 0.211814 0.651895i 0.0223271 0.0687158i
\(91\) −0.821046 2.52692i −0.0860690 0.264893i
\(92\) −8.04949 −0.839218
\(93\) −0.746188 2.15272i −0.0773761 0.223227i
\(94\) −0.341150 −0.0351869
\(95\) 1.75035 + 5.38702i 0.179582 + 0.552697i
\(96\) −0.457325 + 1.40750i −0.0466755 + 0.143653i
\(97\) 0.956236 0.694746i 0.0970911 0.0705408i −0.538181 0.842830i \(-0.680888\pi\)
0.635272 + 0.772289i \(0.280888\pi\)
\(98\) −0.0192417 −0.00194371
\(99\) −8.56767 −0.861083
\(100\) −6.80943 + 4.94734i −0.680943 + 0.494734i
\(101\) −3.18040 2.31069i −0.316461 0.229923i 0.418203 0.908354i \(-0.362660\pi\)
−0.734664 + 0.678431i \(0.762660\pi\)
\(102\) 0.291607 + 0.211865i 0.0288734 + 0.0209777i
\(103\) −2.91859 8.98250i −0.287577 0.885072i −0.985614 0.169010i \(-0.945943\pi\)
0.698037 0.716062i \(-0.254057\pi\)
\(104\) −1.02006 + 0.741120i −0.100025 + 0.0726728i
\(105\) −0.251171 0.773025i −0.0245118 0.0754395i
\(106\) −0.726058 + 2.23458i −0.0705210 + 0.217041i
\(107\) 14.8169 + 10.7651i 1.43240 + 1.04070i 0.989563 + 0.144100i \(0.0460288\pi\)
0.442839 + 0.896601i \(0.353971\pi\)
\(108\) 1.39780 4.30199i 0.134504 0.413959i
\(109\) −3.83791 + 11.8119i −0.367605 + 1.13137i 0.580729 + 0.814097i \(0.302767\pi\)
−0.948334 + 0.317274i \(0.897233\pi\)
\(110\) 0.592157 + 0.430228i 0.0564600 + 0.0410206i
\(111\) 0.222594 0.685073i 0.0211277 0.0650243i
\(112\) −2.77703 8.54681i −0.262404 0.807598i
\(113\) −5.09307 + 3.70033i −0.479115 + 0.348098i −0.800983 0.598687i \(-0.795689\pi\)
0.321868 + 0.946785i \(0.395689\pi\)
\(114\) −0.310135 0.954498i −0.0290468 0.0893969i
\(115\) −2.56876 1.86631i −0.239538 0.174034i
\(116\) −1.53590 1.11590i −0.142605 0.103609i
\(117\) 2.29158 1.66493i 0.211857 0.153923i
\(118\) 1.77811 0.163689
\(119\) −7.23007 −0.662779
\(120\) −0.312053 + 0.226720i −0.0284865 + 0.0206966i
\(121\) −0.572008 + 1.76046i −0.0520008 + 0.160042i
\(122\) 0.383761 + 1.18110i 0.0347441 + 0.106931i
\(123\) −0.760305 −0.0685544
\(124\) 3.06443 10.0974i 0.275194 0.906771i
\(125\) −7.05798 −0.631285
\(126\) −0.752805 2.31690i −0.0670652 0.206405i
\(127\) −1.79308 + 5.51853i −0.159110 + 0.489691i −0.998554 0.0537555i \(-0.982881\pi\)
0.839444 + 0.543446i \(0.182881\pi\)
\(128\) −7.31666 + 5.31586i −0.646707 + 0.469860i
\(129\) 2.15953 0.190136
\(130\) −0.241988 −0.0212238
\(131\) −3.07944 + 2.23734i −0.269052 + 0.195478i −0.714128 0.700015i \(-0.753177\pi\)
0.445076 + 0.895493i \(0.353177\pi\)
\(132\) 1.89779 + 1.37882i 0.165181 + 0.120011i
\(133\) 16.2865 + 11.8329i 1.41222 + 1.02604i
\(134\) −0.0706021 0.217291i −0.00609909 0.0187711i
\(135\) 1.44350 1.04877i 0.124237 0.0902634i
\(136\) 1.06025 + 3.26312i 0.0909158 + 0.279810i
\(137\) 1.78098 5.48128i 0.152159 0.468298i −0.845703 0.533654i \(-0.820818\pi\)
0.997862 + 0.0653564i \(0.0208184\pi\)
\(138\) 0.455144 + 0.330682i 0.0387445 + 0.0281495i
\(139\) 5.02611 15.4688i 0.426309 1.31204i −0.475426 0.879756i \(-0.657706\pi\)
0.901735 0.432289i \(-0.142294\pi\)
\(140\) 1.16328 3.58021i 0.0983150 0.302583i
\(141\) −0.348908 0.253496i −0.0293833 0.0213482i
\(142\) 0.824755 2.53834i 0.0692119 0.213012i
\(143\) 0.934690 + 2.87668i 0.0781627 + 0.240560i
\(144\) 7.75082 5.63130i 0.645901 0.469275i
\(145\) −0.231412 0.712212i −0.0192177 0.0591460i
\(146\) 1.89870 + 1.37948i 0.157137 + 0.114167i
\(147\) −0.0196793 0.0142978i −0.00162312 0.00117927i
\(148\) 2.69900 1.96094i 0.221857 0.161188i
\(149\) 12.8223 1.05045 0.525223 0.850965i \(-0.323982\pi\)
0.525223 + 0.850965i \(0.323982\pi\)
\(150\) 0.588269 0.0480320
\(151\) 0.579554 0.421071i 0.0471635 0.0342663i −0.563954 0.825806i \(-0.690720\pi\)
0.611117 + 0.791540i \(0.290720\pi\)
\(152\) 2.95215 9.08577i 0.239451 0.736953i
\(153\) −2.38186 7.33062i −0.192562 0.592645i
\(154\) 2.60141 0.209627
\(155\) 3.31904 2.51178i 0.266592 0.201751i
\(156\) −0.775541 −0.0620930
\(157\) −3.58054 11.0198i −0.285758 0.879474i −0.986170 0.165735i \(-0.947000\pi\)
0.700412 0.713739i \(-0.253000\pi\)
\(158\) −0.274077 + 0.843522i −0.0218044 + 0.0671070i
\(159\) −2.40300 + 1.74588i −0.190570 + 0.138458i
\(160\) −2.70367 −0.213744
\(161\) −11.2848 −0.889367
\(162\) 1.96956 1.43097i 0.154743 0.112428i
\(163\) 7.82124 + 5.68247i 0.612607 + 0.445085i 0.850331 0.526248i \(-0.176402\pi\)
−0.237724 + 0.971333i \(0.576402\pi\)
\(164\) −2.84879 2.06977i −0.222453 0.161622i
\(165\) 0.285936 + 0.880022i 0.0222601 + 0.0685096i
\(166\) 3.15828 2.29463i 0.245130 0.178097i
\(167\) −1.99974 6.15458i −0.154745 0.476256i 0.843390 0.537302i \(-0.180556\pi\)
−0.998135 + 0.0610461i \(0.980556\pi\)
\(168\) −0.423626 + 1.30379i −0.0326834 + 0.100589i
\(169\) −0.809017 0.587785i −0.0622321 0.0452143i
\(170\) −0.203485 + 0.626264i −0.0156066 + 0.0480322i
\(171\) −6.63201 + 20.4112i −0.507163 + 1.56089i
\(172\) 8.09154 + 5.87885i 0.616974 + 0.448258i
\(173\) 6.61270 20.3518i 0.502754 1.54732i −0.301759 0.953384i \(-0.597574\pi\)
0.804513 0.593935i \(-0.202426\pi\)
\(174\) 0.0410026 + 0.126193i 0.00310840 + 0.00956668i
\(175\) −9.54632 + 6.93581i −0.721634 + 0.524298i
\(176\) 3.16141 + 9.72981i 0.238300 + 0.733412i
\(177\) 1.81855 + 1.32125i 0.136691 + 0.0993115i
\(178\) 2.92279 + 2.12353i 0.219072 + 0.159165i
\(179\) 2.81996 2.04882i 0.210774 0.153136i −0.477390 0.878692i \(-0.658417\pi\)
0.688164 + 0.725555i \(0.258417\pi\)
\(180\) 4.01323 0.299128
\(181\) 2.94213 0.218687 0.109344 0.994004i \(-0.465125\pi\)
0.109344 + 0.994004i \(0.465125\pi\)
\(182\) −0.695794 + 0.505524i −0.0515757 + 0.0374719i
\(183\) −0.485142 + 1.49311i −0.0358627 + 0.110374i
\(184\) 1.65486 + 5.09313i 0.121998 + 0.375470i
\(185\) 1.31596 0.0967512
\(186\) −0.588084 + 0.445048i −0.0431204 + 0.0326325i
\(187\) 8.23081 0.601896
\(188\) −0.617234 1.89965i −0.0450164 0.138546i
\(189\) 1.95962 6.03108i 0.142541 0.438697i
\(190\) 1.48333 1.07770i 0.107612 0.0781847i
\(191\) −18.8773 −1.36591 −0.682956 0.730460i \(-0.739306\pi\)
−0.682956 + 0.730460i \(0.739306\pi\)
\(192\) −2.28909 −0.165201
\(193\) 11.4130 8.29199i 0.821522 0.596871i −0.0956259 0.995417i \(-0.530485\pi\)
0.917148 + 0.398546i \(0.130485\pi\)
\(194\) −0.309530 0.224887i −0.0222230 0.0161459i
\(195\) −0.247491 0.179813i −0.0177232 0.0128767i
\(196\) −0.0348136 0.107145i −0.00248668 0.00765323i
\(197\) 17.4810 12.7007i 1.24547 0.904886i 0.247519 0.968883i \(-0.420385\pi\)
0.997950 + 0.0639969i \(0.0203848\pi\)
\(198\) 0.857004 + 2.63759i 0.0609046 + 0.187445i
\(199\) 4.54502 13.9881i 0.322188 0.991593i −0.650506 0.759501i \(-0.725443\pi\)
0.972694 0.232092i \(-0.0745570\pi\)
\(200\) 4.53023 + 3.29141i 0.320336 + 0.232738i
\(201\) 0.0892534 0.274694i 0.00629545 0.0193754i
\(202\) −0.393227 + 1.21023i −0.0276674 + 0.0851514i
\(203\) −2.15323 1.56441i −0.151127 0.109800i
\(204\) −0.652145 + 2.00710i −0.0456593 + 0.140525i
\(205\) −0.429222 1.32101i −0.0299781 0.0922632i
\(206\) −2.47335 + 1.79700i −0.172327 + 0.125203i
\(207\) −3.71765 11.4417i −0.258394 0.795256i
\(208\) −2.73634 1.98807i −0.189731 0.137848i
\(209\) −18.5408 13.4707i −1.28250 0.931787i
\(210\) −0.212854 + 0.154648i −0.0146883 + 0.0106717i
\(211\) 4.98285 0.343034 0.171517 0.985181i \(-0.445133\pi\)
0.171517 + 0.985181i \(0.445133\pi\)
\(212\) −13.7566 −0.944807
\(213\) 2.72966 1.98321i 0.187033 0.135887i
\(214\) 1.83197 5.63823i 0.125231 0.385422i
\(215\) 1.21914 + 3.75212i 0.0831445 + 0.255892i
\(216\) −3.00935 −0.204761
\(217\) 4.29611 14.1558i 0.291639 0.960957i
\(218\) 4.02022 0.272283
\(219\) 0.916828 + 2.82171i 0.0619535 + 0.190673i
\(220\) −1.32429 + 4.07576i −0.0892838 + 0.274787i
\(221\) −2.20148 + 1.59947i −0.148088 + 0.107592i
\(222\) −0.233168 −0.0156492
\(223\) −9.52474 −0.637824 −0.318912 0.947784i \(-0.603317\pi\)
−0.318912 + 0.947784i \(0.603317\pi\)
\(224\) −7.77392 + 5.64809i −0.519417 + 0.377379i
\(225\) −10.1772 7.39417i −0.678480 0.492944i
\(226\) 1.64861 + 1.19778i 0.109664 + 0.0796753i
\(227\) 1.01082 + 3.11098i 0.0670905 + 0.206483i 0.978981 0.203949i \(-0.0653778\pi\)
−0.911891 + 0.410432i \(0.865378\pi\)
\(228\) 4.75388 3.45390i 0.314834 0.228740i
\(229\) −5.73082 17.6376i −0.378703 1.16553i −0.940946 0.338556i \(-0.890061\pi\)
0.562243 0.826972i \(-0.309939\pi\)
\(230\) −0.317603 + 0.977483i −0.0209422 + 0.0644533i
\(231\) 2.66056 + 1.93301i 0.175052 + 0.127183i
\(232\) −0.390300 + 1.20122i −0.0256245 + 0.0788640i
\(233\) 4.46892 13.7539i 0.292769 0.901049i −0.691193 0.722670i \(-0.742915\pi\)
0.983962 0.178379i \(-0.0570854\pi\)
\(234\) −0.741775 0.538931i −0.0484914 0.0352310i
\(235\) 0.243471 0.749326i 0.0158823 0.0488806i
\(236\) 3.21710 + 9.90121i 0.209415 + 0.644514i
\(237\) −0.907100 + 0.659047i −0.0589225 + 0.0428097i
\(238\) 0.723206 + 2.22580i 0.0468785 + 0.144277i
\(239\) 20.9919 + 15.2515i 1.35785 + 0.986537i 0.998578 + 0.0533054i \(0.0169757\pi\)
0.359274 + 0.933232i \(0.383024\pi\)
\(240\) −0.837090 0.608181i −0.0540339 0.0392579i
\(241\) −18.0458 + 13.1110i −1.16243 + 0.844555i −0.990083 0.140481i \(-0.955135\pi\)
−0.172347 + 0.985036i \(0.555135\pi\)
\(242\) 0.599180 0.0385168
\(243\) 10.2378 0.656758
\(244\) −5.88246 + 4.27385i −0.376586 + 0.273606i
\(245\) 0.0137324 0.0422639i 0.000877329 0.00270014i
\(246\) 0.0760515 + 0.234062i 0.00484887 + 0.0149233i
\(247\) 7.57680 0.482100
\(248\) −7.01888 + 0.136927i −0.445699 + 0.00869485i
\(249\) 4.93515 0.312753
\(250\) 0.705993 + 2.17282i 0.0446509 + 0.137421i
\(251\) 4.72526 14.5428i 0.298256 0.917937i −0.683853 0.729620i \(-0.739697\pi\)
0.982108 0.188316i \(-0.0603031\pi\)
\(252\) 11.5393 8.38380i 0.726908 0.528130i
\(253\) 12.8468 0.807670
\(254\) 1.87826 0.117852
\(255\) −0.673467 + 0.489302i −0.0421741 + 0.0306413i
\(256\) −6.68280 4.85534i −0.417675 0.303459i
\(257\) 2.93832 + 2.13482i 0.183288 + 0.133166i 0.675646 0.737227i \(-0.263865\pi\)
−0.492358 + 0.870393i \(0.663865\pi\)
\(258\) −0.216012 0.664818i −0.0134483 0.0413898i
\(259\) 3.78380 2.74909i 0.235114 0.170820i
\(260\) −0.437823 1.34748i −0.0271526 0.0835672i
\(261\) 0.876812 2.69855i 0.0542733 0.167036i
\(262\) 0.996803 + 0.724220i 0.0615827 + 0.0447424i
\(263\) −9.09698 + 27.9976i −0.560944 + 1.72641i 0.118761 + 0.992923i \(0.462108\pi\)
−0.679705 + 0.733485i \(0.737892\pi\)
\(264\) 0.482262 1.48425i 0.0296811 0.0913492i
\(265\) −4.39001 3.18953i −0.269676 0.195931i
\(266\) 2.01368 6.19748i 0.123467 0.379992i
\(267\) 1.41133 + 4.34364i 0.0863723 + 0.265827i
\(268\) 1.08222 0.786278i 0.0661070 0.0480296i
\(269\) 9.94189 + 30.5980i 0.606168 + 1.86559i 0.488554 + 0.872533i \(0.337524\pi\)
0.117613 + 0.993059i \(0.462476\pi\)
\(270\) −0.467256 0.339482i −0.0284363 0.0206602i
\(271\) −0.975462 0.708715i −0.0592551 0.0430514i 0.557763 0.830000i \(-0.311660\pi\)
−0.617019 + 0.786949i \(0.711660\pi\)
\(272\) −7.44607 + 5.40989i −0.451484 + 0.328023i
\(273\) −1.08725 −0.0658035
\(274\) −1.86558 −0.112704
\(275\) 10.8677 7.89582i 0.655345 0.476136i
\(276\) −1.01788 + 3.13271i −0.0612691 + 0.188567i
\(277\) −4.74598 14.6066i −0.285159 0.877628i −0.986351 0.164656i \(-0.947349\pi\)
0.701192 0.712972i \(-0.252651\pi\)
\(278\) −5.26486 −0.315766
\(279\) 15.7680 0.307607i 0.944003 0.0184159i
\(280\) −2.50444 −0.149669
\(281\) −2.98404 9.18392i −0.178013 0.547867i 0.821745 0.569855i \(-0.193001\pi\)
−0.999758 + 0.0219878i \(0.993001\pi\)
\(282\) −0.0431393 + 0.132769i −0.00256891 + 0.00790628i
\(283\) 0.418672 0.304183i 0.0248875 0.0180818i −0.575272 0.817962i \(-0.695104\pi\)
0.600159 + 0.799880i \(0.295104\pi\)
\(284\) 15.6266 0.927269
\(285\) 2.31786 0.137298
\(286\) 0.792101 0.575495i 0.0468379 0.0340297i
\(287\) −3.99379 2.90166i −0.235746 0.171280i
\(288\) −8.28767 6.02134i −0.488356 0.354811i
\(289\) −2.96508 9.12557i −0.174416 0.536798i
\(290\) −0.196109 + 0.142482i −0.0115159 + 0.00836682i
\(291\) −0.149464 0.460001i −0.00876171 0.0269658i
\(292\) −4.24622 + 13.0685i −0.248491 + 0.764778i
\(293\) −14.0325 10.1952i −0.819788 0.595611i 0.0968639 0.995298i \(-0.469119\pi\)
−0.916652 + 0.399687i \(0.869119\pi\)
\(294\) −0.00243317 + 0.00748851i −0.000141905 + 0.000436739i
\(295\) −1.26900 + 3.90558i −0.0738840 + 0.227391i
\(296\) −1.79561 1.30459i −0.104368 0.0758277i
\(297\) −2.23085 + 6.86587i −0.129447 + 0.398398i
\(298\) −1.28259 3.94740i −0.0742982 0.228666i
\(299\) −3.43610 + 2.49648i −0.198715 + 0.144375i
\(300\) 1.06434 + 3.27570i 0.0614497 + 0.189123i
\(301\) 11.3437 + 8.24172i 0.653843 + 0.475045i
\(302\) −0.187600 0.136299i −0.0107951 0.00784313i
\(303\) −1.30145 + 0.945557i −0.0747662 + 0.0543208i
\(304\) 25.6270 1.46981
\(305\) −2.86812 −0.164228
\(306\) −2.01850 + 1.46653i −0.115390 + 0.0838359i
\(307\) 7.17800 22.0916i 0.409670 1.26084i −0.507262 0.861792i \(-0.669342\pi\)
0.916932 0.399043i \(-0.130658\pi\)
\(308\) 4.70666 + 14.4856i 0.268187 + 0.825394i
\(309\) −3.86488 −0.219865
\(310\) −1.10525 0.770531i −0.0627742 0.0437632i
\(311\) −30.1064 −1.70718 −0.853588 0.520948i \(-0.825579\pi\)
−0.853588 + 0.520948i \(0.825579\pi\)
\(312\) 0.159440 + 0.490706i 0.00902651 + 0.0277807i
\(313\) 4.50464 13.8639i 0.254618 0.783632i −0.739287 0.673390i \(-0.764837\pi\)
0.993905 0.110242i \(-0.0351626\pi\)
\(314\) −3.03432 + 2.20456i −0.171237 + 0.124411i
\(315\) 5.62625 0.317003
\(316\) −5.19293 −0.292125
\(317\) −9.26502 + 6.73143i −0.520375 + 0.378075i −0.816745 0.576998i \(-0.804224\pi\)
0.296370 + 0.955073i \(0.404224\pi\)
\(318\) 0.777843 + 0.565136i 0.0436193 + 0.0316912i
\(319\) 2.45126 + 1.78095i 0.137244 + 0.0997138i
\(320\) −1.29228 3.97723i −0.0722406 0.222334i
\(321\) 6.06320 4.40517i 0.338415 0.245873i
\(322\) 1.12879 + 3.47406i 0.0629051 + 0.193602i
\(323\) 6.37126 19.6087i 0.354506 1.09106i
\(324\) 11.5316 + 8.37823i 0.640647 + 0.465457i
\(325\) −1.37238 + 4.22376i −0.0761262 + 0.234292i
\(326\) 0.967026 2.97620i 0.0535586 0.164836i
\(327\) 4.11164 + 2.98728i 0.227374 + 0.165197i
\(328\) −0.723927 + 2.22802i −0.0399722 + 0.123022i
\(329\) −0.865318 2.66317i −0.0477065 0.146826i
\(330\) 0.242316 0.176053i 0.0133391 0.00969140i
\(331\) 10.8505 + 33.3944i 0.596397 + 1.83552i 0.547647 + 0.836709i \(0.315524\pi\)
0.0487494 + 0.998811i \(0.484476\pi\)
\(332\) 18.4915 + 13.4349i 1.01485 + 0.737335i
\(333\) 4.03386 + 2.93077i 0.221054 + 0.160605i
\(334\) −1.69468 + 1.23126i −0.0927287 + 0.0673713i
\(335\) 0.527660 0.0288291
\(336\) −3.67742 −0.200620
\(337\) −24.5798 + 17.8583i −1.33895 + 0.972804i −0.339467 + 0.940618i \(0.610247\pi\)
−0.999482 + 0.0321858i \(0.989753\pi\)
\(338\) −0.100028 + 0.307853i −0.00544078 + 0.0167450i
\(339\) 0.796066 + 2.45004i 0.0432364 + 0.133068i
\(340\) −3.85543 −0.209090
\(341\) −4.89075 + 16.1151i −0.264849 + 0.872684i
\(342\) 6.94705 0.375654
\(343\) 5.69852 + 17.5382i 0.307691 + 0.946976i
\(344\) 2.05620 6.32834i 0.110863 0.341201i
\(345\) −1.05116 + 0.763711i −0.0565925 + 0.0411168i
\(346\) −6.92682 −0.372388
\(347\) −8.94672 −0.480285 −0.240142 0.970738i \(-0.577194\pi\)
−0.240142 + 0.970738i \(0.577194\pi\)
\(348\) −0.628506 + 0.456636i −0.0336915 + 0.0244783i
\(349\) −30.0430 21.8275i −1.60816 1.16840i −0.868909 0.494972i \(-0.835178\pi\)
−0.739254 0.673427i \(-0.764822\pi\)
\(350\) 3.09011 + 2.24509i 0.165173 + 0.120005i
\(351\) −0.737541 2.26992i −0.0393670 0.121159i
\(352\) 8.84994 6.42986i 0.471704 0.342713i
\(353\) −10.3177 31.7545i −0.549154 1.69012i −0.710903 0.703290i \(-0.751713\pi\)
0.161749 0.986832i \(-0.448287\pi\)
\(354\) 0.224847 0.692008i 0.0119505 0.0367798i
\(355\) 4.98677 + 3.62310i 0.264670 + 0.192294i
\(356\) −6.53649 + 20.1173i −0.346433 + 1.06621i
\(357\) −0.914260 + 2.81380i −0.0483878 + 0.148922i
\(358\) −0.912811 0.663196i −0.0482435 0.0350510i
\(359\) 2.41796 7.44171i 0.127615 0.392758i −0.866754 0.498737i \(-0.833797\pi\)
0.994368 + 0.105978i \(0.0337975\pi\)
\(360\) −0.825061 2.53928i −0.0434845 0.133832i
\(361\) −31.0726 + 22.5756i −1.63540 + 1.18819i
\(362\) −0.294295 0.905746i −0.0154678 0.0476049i
\(363\) 0.612806 + 0.445230i 0.0321640 + 0.0233685i
\(364\) −4.07383 2.95981i −0.213527 0.155136i
\(365\) −4.38505 + 3.18593i −0.229524 + 0.166759i
\(366\) 0.508187 0.0265634
\(367\) 24.0147 1.25356 0.626779 0.779197i \(-0.284373\pi\)
0.626779 + 0.779197i \(0.284373\pi\)
\(368\) −11.6219 + 8.44384i −0.605836 + 0.440166i
\(369\) 1.62631 5.00526i 0.0846621 0.260563i
\(370\) −0.131632 0.405122i −0.00684323 0.0210613i
\(371\) −19.2858 −1.00127
\(372\) −3.54220 2.46946i −0.183655 0.128035i
\(373\) 2.93584 0.152012 0.0760060 0.997107i \(-0.475783\pi\)
0.0760060 + 0.997107i \(0.475783\pi\)
\(374\) −0.823308 2.53388i −0.0425722 0.131024i
\(375\) −0.892499 + 2.74683i −0.0460885 + 0.141846i
\(376\) −1.07507 + 0.781081i −0.0554423 + 0.0402812i
\(377\) −1.00172 −0.0515912
\(378\) −2.05270 −0.105580
\(379\) −25.4493 + 18.4900i −1.30724 + 0.949767i −0.999998 0.00186367i \(-0.999407\pi\)
−0.307244 + 0.951631i \(0.599407\pi\)
\(380\) 8.68480 + 6.30988i 0.445521 + 0.323690i
\(381\) 1.92097 + 1.39567i 0.0984142 + 0.0715021i
\(382\) 1.88825 + 5.81143i 0.0966112 + 0.297339i
\(383\) −3.05660 + 2.22075i −0.156185 + 0.113475i −0.663133 0.748502i \(-0.730774\pi\)
0.506948 + 0.861977i \(0.330774\pi\)
\(384\) 1.14362 + 3.51971i 0.0583602 + 0.179614i
\(385\) −1.85656 + 5.71391i −0.0946192 + 0.291208i
\(386\) −3.69433 2.68409i −0.188036 0.136616i
\(387\) −4.61927 + 14.2167i −0.234811 + 0.722673i
\(388\) 0.692229 2.13046i 0.0351426 0.108158i
\(389\) −19.3768 14.0780i −0.982441 0.713785i −0.0241882 0.999707i \(-0.507700\pi\)
−0.958253 + 0.285922i \(0.907700\pi\)
\(390\) −0.0306000 + 0.0941772i −0.00154949 + 0.00476885i
\(391\) 3.57148 + 10.9919i 0.180617 + 0.555883i
\(392\) −0.0606365 + 0.0440550i −0.00306260 + 0.00222511i
\(393\) 0.481328 + 1.48138i 0.0242798 + 0.0747256i
\(394\) −5.65853 4.11116i −0.285073 0.207117i
\(395\) −1.65717 1.20400i −0.0833812 0.0605800i
\(396\) −13.1365 + 9.54424i −0.660135 + 0.479616i
\(397\) 21.4003 1.07405 0.537024 0.843567i \(-0.319548\pi\)
0.537024 + 0.843567i \(0.319548\pi\)
\(398\) −4.76093 −0.238644
\(399\) 6.66460 4.84211i 0.333647 0.242409i
\(400\) −4.64182 + 14.2860i −0.232091 + 0.714302i
\(401\) 2.89641 + 8.91423i 0.144640 + 0.445156i 0.996964 0.0778575i \(-0.0248079\pi\)
−0.852325 + 0.523013i \(0.824808\pi\)
\(402\) −0.0934932 −0.00466302
\(403\) −1.82349 5.26069i −0.0908344 0.262054i
\(404\) −7.45047 −0.370675
\(405\) 1.73745 + 5.34733i 0.0863347 + 0.265711i
\(406\) −0.266227 + 0.819362i −0.0132126 + 0.0406643i
\(407\) −4.30753 + 3.12961i −0.213516 + 0.155129i
\(408\) 1.40402 0.0695091
\(409\) 16.3483 0.808371 0.404186 0.914677i \(-0.367555\pi\)
0.404186 + 0.914677i \(0.367555\pi\)
\(410\) −0.363743 + 0.264275i −0.0179640 + 0.0130516i
\(411\) −1.90800 1.38624i −0.0941148 0.0683784i
\(412\) −14.4813 10.5213i −0.713444 0.518347i
\(413\) 4.51014 + 13.8808i 0.221929 + 0.683028i
\(414\) −3.15051 + 2.28898i −0.154839 + 0.112497i
\(415\) 2.78609 + 8.57469i 0.136764 + 0.420915i
\(416\) −1.11758 + 3.43957i −0.0547940 + 0.168639i
\(417\) −5.38459 3.91213i −0.263684 0.191578i
\(418\) −2.29240 + 7.05529i −0.112125 + 0.345086i
\(419\) 12.3728 38.0797i 0.604453 1.86032i 0.103947 0.994583i \(-0.466853\pi\)
0.500506 0.865733i \(-0.333147\pi\)
\(420\) −1.24625 0.905452i −0.0608107 0.0441815i
\(421\) −0.977083 + 3.00715i −0.0476201 + 0.146560i −0.972039 0.234819i \(-0.924550\pi\)
0.924419 + 0.381378i \(0.124550\pi\)
\(422\) −0.498423 1.53399i −0.0242628 0.0746733i
\(423\) 2.41514 1.75470i 0.117428 0.0853166i
\(424\) 2.82816 + 8.70417i 0.137347 + 0.422712i
\(425\) 9.77705 + 7.10344i 0.474257 + 0.344568i
\(426\) −0.883579 0.641958i −0.0428096 0.0311030i
\(427\) −8.24677 + 5.99163i −0.399089 + 0.289955i
\(428\) 34.7104 1.67779
\(429\) 1.23774 0.0597588
\(430\) 1.03315 0.750631i 0.0498232 0.0361986i
\(431\) 3.60971 11.1095i 0.173873 0.535128i −0.825707 0.564100i \(-0.809223\pi\)
0.999580 + 0.0289721i \(0.00922339\pi\)
\(432\) −2.49459 7.67755i −0.120021 0.369386i
\(433\) −18.8730 −0.906978 −0.453489 0.891262i \(-0.649821\pi\)
−0.453489 + 0.891262i \(0.649821\pi\)
\(434\) −4.78763 + 0.0933988i −0.229814 + 0.00448328i
\(435\) −0.306442 −0.0146928
\(436\) 7.27368 + 22.3861i 0.348346 + 1.07210i
\(437\) 9.94436 30.6056i 0.475703 1.46406i
\(438\) 0.776964 0.564497i 0.0371248 0.0269727i
\(439\) 31.3223 1.49493 0.747466 0.664300i \(-0.231270\pi\)
0.747466 + 0.664300i \(0.231270\pi\)
\(440\) 2.85109 0.135921
\(441\) 0.136220 0.0989698i 0.00648668 0.00471285i
\(442\) 0.712610 + 0.517742i 0.0338954 + 0.0246265i
\(443\) 9.38415 + 6.81798i 0.445854 + 0.323932i 0.787957 0.615730i \(-0.211139\pi\)
−0.342102 + 0.939663i \(0.611139\pi\)
\(444\) −0.421864 1.29837i −0.0200208 0.0616177i
\(445\) −6.75020 + 4.90431i −0.319990 + 0.232486i
\(446\) 0.952737 + 2.93222i 0.0451134 + 0.138845i
\(447\) 1.62142 4.99020i 0.0766903 0.236029i
\(448\) −12.0243 8.73618i −0.568095 0.412746i
\(449\) 4.69973 14.4643i 0.221794 0.682611i −0.776807 0.629738i \(-0.783162\pi\)
0.998601 0.0528730i \(-0.0168378\pi\)
\(450\) −1.25832 + 3.87270i −0.0593177 + 0.182561i
\(451\) 4.54659 + 3.30329i 0.214091 + 0.155546i
\(452\) −3.68692 + 11.3472i −0.173418 + 0.533726i
\(453\) −0.0905866 0.278797i −0.00425613 0.0130990i
\(454\) 0.856617 0.622369i 0.0402030 0.0292092i
\(455\) −0.613796 1.88907i −0.0287752 0.0885610i
\(456\) −3.16270 2.29784i −0.148107 0.107606i
\(457\) 11.5513 + 8.39253i 0.540348 + 0.392586i 0.824214 0.566278i \(-0.191617\pi\)
−0.283866 + 0.958864i \(0.591617\pi\)
\(458\) −4.85657 + 3.52850i −0.226933 + 0.164876i
\(459\) −6.49472 −0.303148
\(460\) −6.01762 −0.280573
\(461\) 4.89061 3.55324i 0.227778 0.165491i −0.468043 0.883706i \(-0.655041\pi\)
0.695821 + 0.718215i \(0.255041\pi\)
\(462\) 0.328954 1.01242i 0.0153043 0.0471019i
\(463\) −1.02482 3.15406i −0.0476273 0.146582i 0.924415 0.381389i \(-0.124554\pi\)
−0.972042 + 0.234807i \(0.924554\pi\)
\(464\) −3.38812 −0.157290
\(465\) −0.557834 1.60933i −0.0258689 0.0746308i
\(466\) −4.68121 −0.216853
\(467\) −4.29257 13.2112i −0.198637 0.611340i −0.999915 0.0130486i \(-0.995846\pi\)
0.801278 0.598292i \(-0.204154\pi\)
\(468\) 1.65890 5.10556i 0.0766825 0.236005i
\(469\) 1.51719 1.10230i 0.0700574 0.0508997i
\(470\) −0.255036 −0.0117639
\(471\) −4.74145 −0.218475
\(472\) 5.60337 4.07109i 0.257916 0.187387i
\(473\) −12.9139 9.38248i −0.593781 0.431407i
\(474\) 0.293625 + 0.213331i 0.0134866 + 0.00979862i
\(475\) −10.3983 32.0026i −0.477106 1.46838i
\(476\) −11.0856 + 8.05417i −0.508108 + 0.369162i
\(477\) −6.35347 19.5540i −0.290905 0.895315i
\(478\) 2.59546 7.98799i 0.118713 0.365362i
\(479\) 30.2866 + 22.0045i 1.38383 + 1.00541i 0.996510 + 0.0834679i \(0.0265996\pi\)
0.387321 + 0.921945i \(0.373400\pi\)
\(480\) −0.341886 + 1.05222i −0.0156049 + 0.0480269i
\(481\) 0.543961 1.67414i 0.0248025 0.0763342i
\(482\) 5.84135 + 4.24399i 0.266066 + 0.193308i
\(483\) −1.42699 + 4.39183i −0.0649304 + 0.199835i
\(484\) 1.08408 + 3.33646i 0.0492765 + 0.151657i
\(485\) 0.714861 0.519377i 0.0324602 0.0235837i
\(486\) −1.02407 3.15175i −0.0464526 0.142966i
\(487\) −29.9129 21.7330i −1.35548 0.984816i −0.998718 0.0506217i \(-0.983880\pi\)
−0.356765 0.934194i \(-0.616120\pi\)
\(488\) 3.91353 + 2.84334i 0.177157 + 0.128712i
\(489\) 3.20052 2.32532i 0.144733 0.105154i
\(490\) −0.0143847 −0.000649834
\(491\) 32.1160 1.44937 0.724687 0.689078i \(-0.241984\pi\)
0.724687 + 0.689078i \(0.241984\pi\)
\(492\) −1.16575 + 0.846967i −0.0525561 + 0.0381842i
\(493\) −0.842337 + 2.59245i −0.0379370 + 0.116758i
\(494\) −0.757889 2.33254i −0.0340990 0.104946i
\(495\) −6.40500 −0.287883
\(496\) −6.16759 17.7933i −0.276933 0.798941i
\(497\) 21.9074 0.982680
\(498\) −0.493652 1.51930i −0.0221211 0.0680816i
\(499\) −2.58049 + 7.94194i −0.115519 + 0.355530i −0.992055 0.125806i \(-0.959848\pi\)
0.876536 + 0.481336i \(0.159848\pi\)
\(500\) −10.8218 + 7.86247i −0.483964 + 0.351620i
\(501\) −2.64812 −0.118309
\(502\) −4.94972 −0.220917
\(503\) −21.4914 + 15.6144i −0.958255 + 0.696213i −0.952745 0.303772i \(-0.901754\pi\)
−0.00550992 + 0.999985i \(0.501754\pi\)
\(504\) −7.67697 5.57764i −0.341959 0.248448i
\(505\) −2.37760 1.72742i −0.105802 0.0768694i
\(506\) −1.28503 3.95492i −0.0571267 0.175818i
\(507\) −0.331057 + 0.240527i −0.0147028 + 0.0106822i
\(508\) 3.39828 + 10.4588i 0.150774 + 0.464036i
\(509\) 1.84310 5.67248i 0.0816940 0.251428i −0.901864 0.432020i \(-0.857801\pi\)
0.983558 + 0.180591i \(0.0578012\pi\)
\(510\) 0.217999 + 0.158385i 0.00965314 + 0.00701342i
\(511\) −5.95289 + 18.3211i −0.263340 + 0.810479i
\(512\) −6.41570 + 19.7455i −0.283536 + 0.872635i
\(513\) 14.6301 + 10.6294i 0.645934 + 0.469299i
\(514\) 0.363297 1.11811i 0.0160243 0.0493179i
\(515\) −2.18187 6.71512i −0.0961449 0.295903i
\(516\) 3.31113 2.40568i 0.145764 0.105904i
\(517\) 0.985089 + 3.03179i 0.0433242 + 0.133338i
\(518\) −1.22480 0.889871i −0.0538147 0.0390987i
\(519\) −7.08434 5.14707i −0.310968 0.225931i
\(520\) −0.762577 + 0.554045i −0.0334412 + 0.0242965i
\(521\) 10.2808 0.450409 0.225205 0.974311i \(-0.427695\pi\)
0.225205 + 0.974311i \(0.427695\pi\)
\(522\) −0.918463 −0.0402000
\(523\) −0.0620720 + 0.0450980i −0.00271422 + 0.00197200i −0.589142 0.808030i \(-0.700534\pi\)
0.586427 + 0.810002i \(0.300534\pi\)
\(524\) −2.22924 + 6.86089i −0.0973847 + 0.299719i
\(525\) 1.49213 + 4.59230i 0.0651218 + 0.200424i
\(526\) 9.52911 0.415489
\(527\) −15.1480 + 0.295512i −0.659857 + 0.0128727i
\(528\) 4.18642 0.182191
\(529\) −1.53297 4.71799i −0.0666508 0.205130i
\(530\) −0.542785 + 1.67052i −0.0235771 + 0.0725628i
\(531\) −12.5880 + 9.14573i −0.546273 + 0.396891i
\(532\) 38.1532 1.65415
\(533\) −1.85799 −0.0804784
\(534\) 1.19603 0.868968i 0.0517574 0.0376039i
\(535\) 11.0768 + 8.04775i 0.478891 + 0.347935i
\(536\) −0.719987 0.523101i −0.0310987 0.0225945i
\(537\) −0.440771 1.35655i −0.0190207 0.0585396i
\(538\) 8.42523 6.12129i 0.363238 0.263908i
\(539\) 0.0555615 + 0.171001i 0.00239321 + 0.00736553i
\(540\) 1.04497 3.21608i 0.0449682 0.138398i
\(541\) 10.6129 + 7.71069i 0.456282 + 0.331509i 0.792071 0.610429i \(-0.209003\pi\)
−0.335789 + 0.941937i \(0.609003\pi\)
\(542\) −0.120607 + 0.371190i −0.00518052 + 0.0159440i
\(543\) 0.372040 1.14502i 0.0159658 0.0491376i
\(544\) 7.96181 + 5.78460i 0.341360 + 0.248013i
\(545\) −2.86913 + 8.83029i −0.122900 + 0.378248i
\(546\) 0.108755 + 0.334714i 0.00465430 + 0.0143245i
\(547\) −13.8638 + 10.0726i −0.592772 + 0.430674i −0.843306 0.537434i \(-0.819394\pi\)
0.250534 + 0.968108i \(0.419394\pi\)
\(548\) −3.37534 10.3882i −0.144188 0.443764i
\(549\) −8.79177 6.38759i −0.375223 0.272616i
\(550\) −3.51782 2.55585i −0.150000 0.108982i
\(551\) 6.14031 4.46119i 0.261586 0.190053i
\(552\) 2.19141 0.0932726
\(553\) −7.28011 −0.309582
\(554\) −4.02197 + 2.92213i −0.170877 + 0.124150i
\(555\) 0.166406 0.512146i 0.00706355 0.0217394i
\(556\) −9.52559 29.3167i −0.403975 1.24331i
\(557\) 15.3828 0.651788 0.325894 0.945406i \(-0.394335\pi\)
0.325894 + 0.945406i \(0.394335\pi\)
\(558\) −1.67193 4.82345i −0.0707784 0.204193i
\(559\) 5.27732 0.223207
\(560\) −2.07604 6.38941i −0.0877289 0.270002i
\(561\) 1.04081 3.20327i 0.0439429 0.135242i
\(562\) −2.52882 + 1.83729i −0.106672 + 0.0775015i
\(563\) 17.5591 0.740026 0.370013 0.929027i \(-0.379353\pi\)
0.370013 + 0.929027i \(0.379353\pi\)
\(564\) −0.817359 −0.0344170
\(565\) −3.80746 + 2.76628i −0.160181 + 0.116378i
\(566\) −0.135523 0.0984629i −0.00569644 0.00413870i
\(567\) 16.1665 + 11.7457i 0.678931 + 0.493272i
\(568\) −3.21260 9.88738i −0.134798 0.414865i
\(569\) 16.2321 11.7933i 0.680483 0.494400i −0.193035 0.981192i \(-0.561833\pi\)
0.873518 + 0.486792i \(0.161833\pi\)
\(570\) −0.231850 0.713561i −0.00971113 0.0298878i
\(571\) 6.75442 20.7880i 0.282664 0.869949i −0.704426 0.709778i \(-0.748795\pi\)
0.987089 0.160171i \(-0.0512046\pi\)
\(572\) 4.63770 + 3.36949i 0.193912 + 0.140885i
\(573\) −2.38708 + 7.34667i −0.0997217 + 0.306912i
\(574\) −0.493796 + 1.51975i −0.0206107 + 0.0634331i
\(575\) 15.2602 + 11.0872i 0.636393 + 0.462367i
\(576\) 4.89640 15.0696i 0.204017 0.627899i
\(577\) −12.6092 38.8071i −0.524927 1.61556i −0.764459 0.644672i \(-0.776994\pi\)
0.239532 0.970889i \(-0.423006\pi\)
\(578\) −2.51275 + 1.82562i −0.104516 + 0.0759357i
\(579\) −1.78389 5.49025i −0.0741359 0.228167i
\(580\) −1.14821 0.834222i −0.0476768 0.0346392i
\(581\) 25.9238 + 18.8347i 1.07550 + 0.781396i
\(582\) −0.126662 + 0.0920257i −0.00525033 + 0.00381459i
\(583\) 21.9552 0.909290
\(584\) 9.14176 0.378289
\(585\) 1.71313 1.24467i 0.0708294 0.0514606i
\(586\) −1.73499 + 5.33976i −0.0716719 + 0.220583i
\(587\) −12.4571 38.3391i −0.514161 1.58243i −0.784803 0.619745i \(-0.787236\pi\)
0.270642 0.962680i \(-0.412764\pi\)
\(588\) −0.0461011 −0.00190118
\(589\) 34.6062 + 24.1258i 1.42592 + 0.994087i
\(590\) 1.32928 0.0547256
\(591\) −2.73235 8.40930i −0.112394 0.345912i
\(592\) 1.83984 5.66245i 0.0756170 0.232725i
\(593\) −13.7379 + 9.98120i −0.564150 + 0.409879i −0.832975 0.553310i \(-0.813364\pi\)
0.268826 + 0.963189i \(0.413364\pi\)
\(594\) 2.33683 0.0958812
\(595\) −5.40504 −0.221585
\(596\) 19.6600 14.2839i 0.805306 0.585089i
\(597\) −4.86919 3.53767i −0.199283 0.144787i
\(598\) 1.11225 + 0.808100i 0.0454834 + 0.0330457i
\(599\) −12.9613 39.8909i −0.529586 1.62990i −0.755065 0.655650i \(-0.772395\pi\)
0.225479 0.974248i \(-0.427605\pi\)
\(600\) 1.85381 1.34687i 0.0756816 0.0549859i
\(601\) 2.61668 + 8.05332i 0.106737 + 0.328502i 0.990134 0.140123i \(-0.0447497\pi\)
−0.883397 + 0.468625i \(0.844750\pi\)
\(602\) 1.40255 4.31661i 0.0571637 0.175932i
\(603\) 1.61746 + 1.17515i 0.0658679 + 0.0478558i
\(604\) 0.419545 1.29123i 0.0170710 0.0525393i
\(605\) −0.427621 + 1.31608i −0.0173853 + 0.0535063i
\(606\) 0.421274 + 0.306073i 0.0171131 + 0.0124334i
\(607\) 6.21047 19.1139i 0.252075 0.775808i −0.742316 0.670049i \(-0.766273\pi\)
0.994392 0.105759i \(-0.0337271\pi\)
\(608\) −8.46770 26.0609i −0.343411 1.05691i
\(609\) −0.881119 + 0.640171i −0.0357048 + 0.0259410i
\(610\) 0.286892 + 0.882961i 0.0116159 + 0.0357501i
\(611\) −0.852640 0.619479i −0.0344941 0.0250614i
\(612\) −11.8182 8.58643i −0.477723 0.347086i
\(613\) −13.8250 + 10.0445i −0.558388 + 0.405692i −0.830868 0.556469i \(-0.812156\pi\)
0.272481 + 0.962161i \(0.412156\pi\)
\(614\) −7.51898 −0.303441
\(615\) −0.568387 −0.0229196
\(616\) 8.19781 5.95606i 0.330299 0.239976i
\(617\) 7.24235 22.2897i 0.291566 0.897348i −0.692787 0.721142i \(-0.743618\pi\)
0.984353 0.176206i \(-0.0563824\pi\)
\(618\) 0.386595 + 1.18982i 0.0155511 + 0.0478614i
\(619\) −9.39717 −0.377704 −0.188852 0.982006i \(-0.560477\pi\)
−0.188852 + 0.982006i \(0.560477\pi\)
\(620\) 2.29090 7.54858i 0.0920047 0.303158i
\(621\) −10.1371 −0.406786
\(622\) 3.01147 + 9.26835i 0.120749 + 0.371627i
\(623\) −9.16368 + 28.2029i −0.367135 + 1.12993i
\(624\) −1.11974 + 0.813535i −0.0448253 + 0.0325675i
\(625\) 16.9292 0.677170
\(626\) −4.71863 −0.188594
\(627\) −7.58707 + 5.51233i −0.302998 + 0.220141i
\(628\) −17.7658 12.9076i −0.708931 0.515069i
\(629\) −3.87525 2.81554i −0.154517 0.112263i
\(630\) −0.562780 1.73206i −0.0224217 0.0690069i
\(631\) −10.2270 + 7.43037i −0.407132 + 0.295798i −0.772440 0.635088i \(-0.780964\pi\)
0.365308 + 0.930887i \(0.380964\pi\)
\(632\) 1.06759 + 3.28570i 0.0424665 + 0.130698i
\(633\) 0.630094 1.93923i 0.0250440 0.0770775i
\(634\) 2.99905 + 2.17894i 0.119108 + 0.0865367i
\(635\) −1.34047 + 4.12553i −0.0531948 + 0.163717i
\(636\) −1.73956 + 5.35381i −0.0689779 + 0.212292i
\(637\) −0.0480910 0.0349402i −0.00190544 0.00138438i
\(638\) 0.303076 0.932773i 0.0119989 0.0369288i
\(639\) 7.21714 + 22.2121i 0.285505 + 0.878695i
\(640\) −5.46977 + 3.97402i −0.216212 + 0.157087i
\(641\) 13.2030 + 40.6346i 0.521486 + 1.60497i 0.771161 + 0.636640i \(0.219676\pi\)
−0.249675 + 0.968330i \(0.580324\pi\)
\(642\) −1.96264 1.42594i −0.0774590 0.0562773i
\(643\) 13.4033 + 9.73808i 0.528575 + 0.384032i 0.819825 0.572615i \(-0.194071\pi\)
−0.291249 + 0.956647i \(0.594071\pi\)
\(644\) −17.3026 + 12.5711i −0.681818 + 0.495370i
\(645\) 1.61442 0.0635676
\(646\) −6.67391 −0.262581
\(647\) 34.5133 25.0754i 1.35686 0.985814i 0.358218 0.933638i \(-0.383384\pi\)
0.998638 0.0521761i \(-0.0166157\pi\)
\(648\) 2.93039 9.01882i 0.115117 0.354293i
\(649\) −5.13440 15.8021i −0.201543 0.620286i
\(650\) 1.43758 0.0563864
\(651\) −4.96591 3.46200i −0.194629 0.135686i
\(652\) 18.3222 0.717553
\(653\) −0.895971 2.75752i −0.0350621 0.107910i 0.931994 0.362474i \(-0.118068\pi\)
−0.967056 + 0.254564i \(0.918068\pi\)
\(654\) 0.508367 1.56459i 0.0198787 0.0611804i
\(655\) −2.30212 + 1.67259i −0.0899513 + 0.0653535i
\(656\) −6.28428 −0.245360
\(657\) −20.5370 −0.801226
\(658\) −0.733311 + 0.532782i −0.0285874 + 0.0207700i
\(659\) 6.10905 + 4.43849i 0.237975 + 0.172899i 0.700381 0.713770i \(-0.253014\pi\)
−0.462406 + 0.886668i \(0.653014\pi\)
\(660\) 1.41875 + 1.03078i 0.0552246 + 0.0401230i
\(661\) 5.32467 + 16.3876i 0.207106 + 0.637405i 0.999620 + 0.0275526i \(0.00877137\pi\)
−0.792515 + 0.609853i \(0.791229\pi\)
\(662\) 9.19522 6.68072i 0.357382 0.259653i
\(663\) 0.344100 + 1.05903i 0.0133637 + 0.0411293i
\(664\) 4.69902 14.4621i 0.182357 0.561239i
\(665\) 12.1755 + 8.84599i 0.472144 + 0.343033i
\(666\) 0.498750 1.53499i 0.0193262 0.0594798i
\(667\) −1.31473 + 4.04633i −0.0509067 + 0.156675i
\(668\) −9.92223 7.20893i −0.383903 0.278922i
\(669\) −1.20443 + 3.70685i −0.0465658 + 0.143315i
\(670\) −0.0527805 0.162442i −0.00203909 0.00627567i
\(671\) 9.38824 6.82096i 0.362429 0.263320i
\(672\) 1.21509 + 3.73968i 0.0468733 + 0.144261i
\(673\) −39.1960 28.4776i −1.51090 1.09773i −0.965778 0.259370i \(-0.916485\pi\)
−0.545117 0.838360i \(-0.683515\pi\)
\(674\) 7.95640 + 5.78066i 0.306469 + 0.222663i
\(675\) −8.57540 + 6.23039i −0.330067 + 0.239808i
\(676\) −1.89522 −0.0728931
\(677\) 43.4534 1.67005 0.835025 0.550212i \(-0.185453\pi\)
0.835025 + 0.550212i \(0.185453\pi\)
\(678\) 0.674624 0.490143i 0.0259088 0.0188238i
\(679\) 0.970455 2.98675i 0.0372426 0.114621i
\(680\) 0.792621 + 2.43944i 0.0303956 + 0.0935481i
\(681\) 1.33856 0.0512936
\(682\) 5.45031 0.106326i 0.208703 0.00407145i
\(683\) −21.5576 −0.824878 −0.412439 0.910985i \(-0.635323\pi\)
−0.412439 + 0.910985i \(0.635323\pi\)
\(684\) 12.5691 + 38.6838i 0.480593 + 1.47911i
\(685\) 1.33142 4.09769i 0.0508709 0.156565i
\(686\) 4.82919 3.50862i 0.184380 0.133960i
\(687\) −7.58891 −0.289535
\(688\) 17.8495 0.680506
\(689\) −5.87231 + 4.26648i −0.223717 + 0.162540i
\(690\) 0.340256 + 0.247210i 0.0129533 + 0.00941114i
\(691\) −20.0706 14.5822i −0.763522 0.554731i 0.136467 0.990645i \(-0.456425\pi\)
−0.899989 + 0.435914i \(0.856425\pi\)
\(692\) −12.5325 38.5712i −0.476415 1.46626i
\(693\) −18.4164 + 13.3803i −0.699583 + 0.508276i
\(694\) 0.894919 + 2.75428i 0.0339706 + 0.104551i
\(695\) 3.75741 11.5641i 0.142527 0.438652i
\(696\) 0.418138 + 0.303795i 0.0158495 + 0.0115153i
\(697\) −1.56236 + 4.80846i −0.0591787 + 0.182133i
\(698\) −3.71454 + 11.4322i −0.140597 + 0.432714i
\(699\) −4.78766 3.47844i −0.181086 0.131567i
\(700\) −6.91068 + 21.2689i −0.261199 + 0.803888i
\(701\) −2.15836 6.64274i −0.0815200 0.250893i 0.901987 0.431763i \(-0.142108\pi\)
−0.983507 + 0.180871i \(0.942108\pi\)
\(702\) −0.625027 + 0.454109i −0.0235901 + 0.0171392i
\(703\) 4.12148 + 12.6846i 0.155445 + 0.478410i
\(704\) 13.6886 + 9.94538i 0.515910 + 0.374831i
\(705\) −0.260836 0.189508i −0.00982365 0.00713730i
\(706\) −8.74368 + 6.35266i −0.329073 + 0.239085i
\(707\) −10.4450 −0.392825
\(708\) 4.26017 0.160107
\(709\) −3.49503 + 2.53929i −0.131259 + 0.0953650i −0.651477 0.758668i \(-0.725850\pi\)
0.520219 + 0.854033i \(0.325850\pi\)
\(710\) 0.616569 1.89760i 0.0231394 0.0712158i
\(711\) −2.39835 7.38136i −0.0899451 0.276822i
\(712\) 14.0725 0.527390
\(713\) −23.6432 + 0.461240i −0.885446 + 0.0172736i
\(714\) 0.957690 0.0358406
\(715\) 0.698754 + 2.15054i 0.0261319 + 0.0804258i
\(716\) 2.04140 6.28278i 0.0762906 0.234798i
\(717\) 8.59007 6.24105i 0.320802 0.233076i
\(718\) −2.53282 −0.0945239
\(719\) 21.8865 0.816230 0.408115 0.912930i \(-0.366186\pi\)
0.408115 + 0.912930i \(0.366186\pi\)
\(720\) 5.79434 4.20983i 0.215942 0.156891i
\(721\) −20.3018 14.7501i −0.756077 0.549322i
\(722\) 10.0581 + 7.30763i 0.374323 + 0.271962i
\(723\) 2.82063 + 8.68100i 0.104900 + 0.322850i
\(724\) 4.51107 3.27749i 0.167653 0.121807i
\(725\) 1.37475 + 4.23103i 0.0510568 + 0.157137i
\(726\) 0.0757679 0.233190i 0.00281201 0.00865448i
\(727\) −3.45375 2.50930i −0.128093 0.0930648i 0.521894 0.853010i \(-0.325226\pi\)
−0.649987 + 0.759945i \(0.725226\pi\)
\(728\) −1.03523 + 3.18611i −0.0383682 + 0.118085i
\(729\) −5.67772 + 17.4742i −0.210286 + 0.647194i
\(730\) 1.41942 + 1.03127i 0.0525352 + 0.0381691i
\(731\) 4.43765 13.6577i 0.164132 0.505148i
\(732\) 0.919451 + 2.82978i 0.0339839 + 0.104592i
\(733\) 0.583435 0.423890i 0.0215496 0.0156567i −0.576958 0.816774i \(-0.695760\pi\)
0.598508 + 0.801117i \(0.295760\pi\)
\(734\) −2.40214 7.39301i −0.0886645 0.272881i
\(735\) −0.0147118 0.0106888i −0.000542653 0.000394261i
\(736\) 12.4269 + 9.02869i 0.458063 + 0.332802i
\(737\) −1.72719 + 1.25488i −0.0636219 + 0.0462240i
\(738\) −1.70356 −0.0627089
\(739\) −25.2323 −0.928186 −0.464093 0.885786i \(-0.653620\pi\)
−0.464093 + 0.885786i \(0.653620\pi\)
\(740\) 2.01771 1.46595i 0.0741726 0.0538896i
\(741\) 0.958105 2.94875i 0.0351969 0.108325i
\(742\) 1.92911 + 5.93718i 0.0708198 + 0.217961i
\(743\) −2.91117 −0.106800 −0.0534002 0.998573i \(-0.517006\pi\)
−0.0534002 + 0.998573i \(0.517006\pi\)
\(744\) −0.834266 + 2.74893i −0.0305857 + 0.100781i
\(745\) 9.58569 0.351192
\(746\) −0.293665 0.903808i −0.0107518 0.0330908i
\(747\) −10.5564 + 32.4892i −0.386238 + 1.18872i
\(748\) 12.6200 9.16898i 0.461433 0.335251i
\(749\) 48.6614 1.77805
\(750\) 0.934896 0.0341376
\(751\) 6.81468 4.95116i 0.248671 0.180670i −0.456466 0.889741i \(-0.650885\pi\)
0.705138 + 0.709070i \(0.250885\pi\)
\(752\) −2.88389 2.09527i −0.105165 0.0764065i
\(753\) −5.06228 3.67796i −0.184480 0.134032i
\(754\) 0.100200 + 0.308383i 0.00364906 + 0.0112307i
\(755\) 0.433262 0.314783i 0.0157680 0.0114561i
\(756\) −3.71391 11.4302i −0.135073 0.415713i
\(757\) 2.11810 6.51884i 0.0769836 0.236931i −0.905158 0.425076i \(-0.860247\pi\)
0.982141 + 0.188145i \(0.0602474\pi\)
\(758\) 8.23784 + 5.98514i 0.299212 + 0.217390i
\(759\) 1.62451 4.99972i 0.0589659 0.181478i
\(760\) 2.20696 6.79232i 0.0800548 0.246383i
\(761\) 38.9942 + 28.3309i 1.41354 + 1.02700i 0.992796 + 0.119815i \(0.0382303\pi\)
0.420742 + 0.907180i \(0.361770\pi\)
\(762\) 0.237510 0.730982i 0.00860409 0.0264807i
\(763\) 10.1972 +