Properties

Label 403.2.k.e.66.12
Level 403
Weight 2
Character 403.66
Analytic conductor 3.218
Analytic rank 0
Dimension 68
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.k (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 66.12
Character \(\chi\) \(=\) 403.66
Dual form 403.2.k.e.287.12

$q$-expansion

\(f(q)\) \(=\) \(q+(0.455627 + 1.40228i) q^{2} +(0.322084 - 0.991272i) q^{3} +(-0.140749 + 0.102260i) q^{4} -2.15722 q^{5} +1.53679 q^{6} +(0.0381524 - 0.0277193i) q^{7} +(2.17817 + 1.58253i) q^{8} +(1.54817 + 1.12481i) q^{9} +O(q^{10})\) \(q+(0.455627 + 1.40228i) q^{2} +(0.322084 - 0.991272i) q^{3} +(-0.140749 + 0.102260i) q^{4} -2.15722 q^{5} +1.53679 q^{6} +(0.0381524 - 0.0277193i) q^{7} +(2.17817 + 1.58253i) q^{8} +(1.54817 + 1.12481i) q^{9} +(-0.982888 - 3.02502i) q^{10} +(4.86569 - 3.53513i) q^{11} +(0.0560346 + 0.172457i) q^{12} +(0.309017 - 0.951057i) q^{13} +(0.0562534 + 0.0408705i) q^{14} +(-0.694806 + 2.13839i) q^{15} +(-1.33424 + 4.10636i) q^{16} +(-0.746337 - 0.542246i) q^{17} +(-0.871907 + 2.68345i) q^{18} +(0.533884 + 1.64313i) q^{19} +(0.303626 - 0.220597i) q^{20} +(-0.0151891 - 0.0467474i) q^{21} +(7.17418 + 5.21234i) q^{22} +(3.50203 + 2.54437i) q^{23} +(2.27027 - 1.64945i) q^{24} -0.346403 q^{25} +1.47444 q^{26} +(4.14331 - 3.01029i) q^{27} +(-0.00253533 + 0.00780293i) q^{28} +(1.63880 + 5.04369i) q^{29} -3.31519 q^{30} +(-3.38515 - 4.42049i) q^{31} -0.981437 q^{32} +(-1.93712 - 5.96184i) q^{33} +(0.420327 - 1.29363i) q^{34} +(-0.0823031 + 0.0597967i) q^{35} -0.332926 q^{36} -2.43446 q^{37} +(-2.06087 + 1.49731i) q^{38} +(-0.843227 - 0.612640i) q^{39} +(-4.69879 - 3.41387i) q^{40} +(-3.39319 - 10.4432i) q^{41} +(0.0586321 - 0.0425987i) q^{42} +(1.30718 + 4.02308i) q^{43} +(-0.323338 + 0.995132i) q^{44} +(-3.33974 - 2.42646i) q^{45} +(-1.97229 + 6.07010i) q^{46} +(-2.03901 + 6.27543i) q^{47} +(3.64079 + 2.64519i) q^{48} +(-2.16243 + 6.65528i) q^{49} +(-0.157831 - 0.485753i) q^{50} +(-0.777897 + 0.565175i) q^{51} +(0.0537613 + 0.165460i) q^{52} +(-4.98478 - 3.62165i) q^{53} +(6.10907 + 4.43850i) q^{54} +(-10.4964 + 7.62606i) q^{55} +0.126969 q^{56} +1.80074 q^{57} +(-6.32597 + 4.59609i) q^{58} +(2.87855 - 8.85927i) q^{59} +(-0.120879 - 0.372027i) q^{60} -5.11730 q^{61} +(4.65638 - 6.76102i) q^{62} +0.0902453 q^{63} +(2.22131 + 6.83648i) q^{64} +(-0.666618 + 2.05164i) q^{65} +(7.47754 - 5.43275i) q^{66} -11.8698 q^{67} +0.160496 q^{68} +(3.65011 - 2.65196i) q^{69} +(-0.121351 - 0.0881667i) q^{70} +(-8.93798 - 6.49383i) q^{71} +(1.59212 + 4.90005i) q^{72} +(1.31730 - 0.957071i) q^{73} +(-1.10920 - 3.41378i) q^{74} +(-0.111571 + 0.343380i) q^{75} +(-0.243170 - 0.176673i) q^{76} +(0.0876463 - 0.269748i) q^{77} +(0.474894 - 1.46157i) q^{78} +(-4.71540 - 3.42594i) q^{79} +(2.87824 - 8.85832i) q^{80} +(0.124517 + 0.383223i) q^{81} +(13.0982 - 9.51637i) q^{82} +(1.96501 + 6.04769i) q^{83} +(0.00691824 + 0.00502640i) q^{84} +(1.61001 + 1.16974i) q^{85} +(-5.04588 + 3.66605i) q^{86} +5.52751 q^{87} +16.1928 q^{88} +(-2.39167 + 1.73765i) q^{89} +(1.88089 - 5.78880i) q^{90} +(-0.0145729 - 0.0448508i) q^{91} -0.753094 q^{92} +(-5.47221 + 1.93184i) q^{93} -9.72892 q^{94} +(-1.15171 - 3.54458i) q^{95} +(-0.316105 + 0.972871i) q^{96} +(-2.39509 + 1.74013i) q^{97} -10.3178 q^{98} +11.5093 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68q - 3q^{2} - 2q^{3} - 23q^{4} + 12q^{5} + 4q^{6} + 2q^{7} - 3q^{8} - 23q^{9} + O(q^{10}) \) \( 68q - 3q^{2} - 2q^{3} - 23q^{4} + 12q^{5} + 4q^{6} + 2q^{7} - 3q^{8} - 23q^{9} - 13q^{10} - 5q^{11} - 28q^{12} - 17q^{13} - 3q^{14} - 14q^{15} + 9q^{16} + 12q^{17} - 19q^{18} - 4q^{19} - 53q^{20} - 13q^{21} - 14q^{22} - 9q^{23} + 2q^{24} + 96q^{25} + 12q^{26} + 25q^{27} - 25q^{28} - 78q^{30} - 2q^{31} + 76q^{32} + 29q^{33} - 15q^{34} - 36q^{35} + 52q^{36} + 24q^{37} - 19q^{38} + 3q^{39} - 12q^{40} - 40q^{41} + 11q^{42} - 22q^{43} + 4q^{44} + 63q^{45} - 24q^{46} + 3q^{47} + 68q^{48} + 33q^{49} - 76q^{50} - 59q^{51} - 13q^{52} - q^{53} + 18q^{54} - 22q^{55} + 78q^{56} - 16q^{57} + 5q^{58} - 18q^{59} + 43q^{60} - 32q^{61} - 39q^{62} + 20q^{63} + 23q^{64} + 2q^{65} + 11q^{66} + 114q^{67} + 98q^{68} - 46q^{69} + 32q^{70} - 2q^{71} + 28q^{72} + 10q^{73} - 43q^{74} - 12q^{75} - 35q^{76} - 3q^{77} - 6q^{78} - 10q^{79} + 68q^{80} - 54q^{81} - 80q^{82} - 22q^{83} - 14q^{84} - 50q^{85} - 66q^{86} + 76q^{87} - 34q^{88} - 10q^{89} - 63q^{90} - 8q^{91} - 64q^{92} - 16q^{93} + 30q^{94} + 15q^{95} + 34q^{96} - 7q^{97} + 138q^{98} - 48q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.455627 + 1.40228i 0.322177 + 0.991559i 0.972699 + 0.232071i \(0.0745503\pi\)
−0.650522 + 0.759488i \(0.725450\pi\)
\(3\) 0.322084 0.991272i 0.185955 0.572311i −0.814008 0.580853i \(-0.802719\pi\)
0.999964 + 0.00854188i \(0.00271900\pi\)
\(4\) −0.140749 + 0.102260i −0.0703744 + 0.0511300i
\(5\) −2.15722 −0.964738 −0.482369 0.875968i \(-0.660224\pi\)
−0.482369 + 0.875968i \(0.660224\pi\)
\(6\) 1.53679 0.627391
\(7\) 0.0381524 0.0277193i 0.0144202 0.0104769i −0.580552 0.814223i \(-0.697163\pi\)
0.594972 + 0.803746i \(0.297163\pi\)
\(8\) 2.17817 + 1.58253i 0.770099 + 0.559510i
\(9\) 1.54817 + 1.12481i 0.516056 + 0.374937i
\(10\) −0.982888 3.02502i −0.310816 0.956595i
\(11\) 4.86569 3.53513i 1.46706 1.06588i 0.485610 0.874176i \(-0.338598\pi\)
0.981452 0.191707i \(-0.0614024\pi\)
\(12\) 0.0560346 + 0.172457i 0.0161758 + 0.0497840i
\(13\) 0.309017 0.951057i 0.0857059 0.263776i
\(14\) 0.0562534 + 0.0408705i 0.0150344 + 0.0109231i
\(15\) −0.694806 + 2.13839i −0.179398 + 0.552131i
\(16\) −1.33424 + 4.10636i −0.333559 + 1.02659i
\(17\) −0.746337 0.542246i −0.181013 0.131514i 0.493589 0.869695i \(-0.335685\pi\)
−0.674602 + 0.738181i \(0.735685\pi\)
\(18\) −0.871907 + 2.68345i −0.205510 + 0.632496i
\(19\) 0.533884 + 1.64313i 0.122481 + 0.376959i 0.993434 0.114408i \(-0.0364972\pi\)
−0.870952 + 0.491367i \(0.836497\pi\)
\(20\) 0.303626 0.220597i 0.0678929 0.0493271i
\(21\) −0.0151891 0.0467474i −0.00331454 0.0102011i
\(22\) 7.17418 + 5.21234i 1.52954 + 1.11128i
\(23\) 3.50203 + 2.54437i 0.730223 + 0.530538i 0.889634 0.456674i \(-0.150959\pi\)
−0.159411 + 0.987212i \(0.550959\pi\)
\(24\) 2.27027 1.64945i 0.463418 0.336693i
\(25\) −0.346403 −0.0692806
\(26\) 1.47444 0.289162
\(27\) 4.14331 3.01029i 0.797381 0.579331i
\(28\) −0.00253533 + 0.00780293i −0.000479132 + 0.00147462i
\(29\) 1.63880 + 5.04369i 0.304317 + 0.936591i 0.979931 + 0.199336i \(0.0638784\pi\)
−0.675615 + 0.737255i \(0.736122\pi\)
\(30\) −3.31519 −0.605268
\(31\) −3.38515 4.42049i −0.607991 0.793944i
\(32\) −0.981437 −0.173495
\(33\) −1.93712 5.96184i −0.337209 1.03782i
\(34\) 0.420327 1.29363i 0.0720855 0.221856i
\(35\) −0.0823031 + 0.0597967i −0.0139118 + 0.0101075i
\(36\) −0.332926 −0.0554877
\(37\) −2.43446 −0.400222 −0.200111 0.979773i \(-0.564130\pi\)
−0.200111 + 0.979773i \(0.564130\pi\)
\(38\) −2.06087 + 1.49731i −0.334316 + 0.242895i
\(39\) −0.843227 0.612640i −0.135024 0.0981009i
\(40\) −4.69879 3.41387i −0.742944 0.539780i
\(41\) −3.39319 10.4432i −0.529927 1.63095i −0.754363 0.656458i \(-0.772054\pi\)
0.224436 0.974489i \(-0.427946\pi\)
\(42\) 0.0586321 0.0425987i 0.00904714 0.00657313i
\(43\) 1.30718 + 4.02308i 0.199343 + 0.613514i 0.999898 + 0.0142554i \(0.00453778\pi\)
−0.800556 + 0.599258i \(0.795462\pi\)
\(44\) −0.323338 + 0.995132i −0.0487450 + 0.150022i
\(45\) −3.33974 2.42646i −0.497859 0.361716i
\(46\) −1.97229 + 6.07010i −0.290799 + 0.894987i
\(47\) −2.03901 + 6.27543i −0.297421 + 0.915366i 0.684977 + 0.728565i \(0.259812\pi\)
−0.982398 + 0.186802i \(0.940188\pi\)
\(48\) 3.64079 + 2.64519i 0.525502 + 0.381800i
\(49\) −2.16243 + 6.65528i −0.308919 + 0.950754i
\(50\) −0.157831 0.485753i −0.0223206 0.0686958i
\(51\) −0.777897 + 0.565175i −0.108927 + 0.0791403i
\(52\) 0.0537613 + 0.165460i 0.00745535 + 0.0229452i
\(53\) −4.98478 3.62165i −0.684712 0.497472i 0.190206 0.981744i \(-0.439084\pi\)
−0.874917 + 0.484272i \(0.839084\pi\)
\(54\) 6.10907 + 4.43850i 0.831339 + 0.604003i
\(55\) −10.4964 + 7.62606i −1.41533 + 1.02830i
\(56\) 0.126969 0.0169670
\(57\) 1.80074 0.238514
\(58\) −6.32597 + 4.59609i −0.830641 + 0.603496i
\(59\) 2.87855 8.85927i 0.374756 1.15338i −0.568888 0.822415i \(-0.692626\pi\)
0.943643 0.330964i \(-0.107374\pi\)
\(60\) −0.120879 0.372027i −0.0156054 0.0480285i
\(61\) −5.11730 −0.655203 −0.327601 0.944816i \(-0.606240\pi\)
−0.327601 + 0.944816i \(0.606240\pi\)
\(62\) 4.65638 6.76102i 0.591361 0.858650i
\(63\) 0.0902453 0.0113698
\(64\) 2.22131 + 6.83648i 0.277663 + 0.854559i
\(65\) −0.666618 + 2.05164i −0.0826837 + 0.254474i
\(66\) 7.47754 5.43275i 0.920422 0.668725i
\(67\) −11.8698 −1.45013 −0.725066 0.688680i \(-0.758191\pi\)
−0.725066 + 0.688680i \(0.758191\pi\)
\(68\) 0.160496 0.0194630
\(69\) 3.65011 2.65196i 0.439422 0.319259i
\(70\) −0.121351 0.0881667i −0.0145042 0.0105379i
\(71\) −8.93798 6.49383i −1.06074 0.770675i −0.0865178 0.996250i \(-0.527574\pi\)
−0.974226 + 0.225575i \(0.927574\pi\)
\(72\) 1.59212 + 4.90005i 0.187634 + 0.577477i
\(73\) 1.31730 0.957071i 0.154178 0.112017i −0.508022 0.861344i \(-0.669623\pi\)
0.662200 + 0.749327i \(0.269623\pi\)
\(74\) −1.10920 3.41378i −0.128942 0.396844i
\(75\) −0.111571 + 0.343380i −0.0128831 + 0.0396501i
\(76\) −0.243170 0.176673i −0.0278935 0.0202658i
\(77\) 0.0876463 0.269748i 0.00998822 0.0307406i
\(78\) 0.474894 1.46157i 0.0537711 0.165490i
\(79\) −4.71540 3.42594i −0.530524 0.385448i 0.290030 0.957018i \(-0.406335\pi\)
−0.820554 + 0.571569i \(0.806335\pi\)
\(80\) 2.87824 8.85832i 0.321797 0.990390i
\(81\) 0.124517 + 0.383223i 0.0138352 + 0.0425803i
\(82\) 13.0982 9.51637i 1.44645 1.05091i
\(83\) 1.96501 + 6.04769i 0.215688 + 0.663820i 0.999104 + 0.0423219i \(0.0134755\pi\)
−0.783416 + 0.621498i \(0.786524\pi\)
\(84\) 0.00691824 + 0.00502640i 0.000754842 + 0.000548425i
\(85\) 1.61001 + 1.16974i 0.174630 + 0.126876i
\(86\) −5.04588 + 3.66605i −0.544112 + 0.395320i
\(87\) 5.52751 0.592611
\(88\) 16.1928 1.72615
\(89\) −2.39167 + 1.73765i −0.253517 + 0.184191i −0.707284 0.706929i \(-0.750080\pi\)
0.453767 + 0.891120i \(0.350080\pi\)
\(90\) 1.88089 5.78880i 0.198264 0.610193i
\(91\) −0.0145729 0.0448508i −0.00152766 0.00470164i
\(92\) −0.753094 −0.0785155
\(93\) −5.47221 + 1.93184i −0.567442 + 0.200322i
\(94\) −9.72892 −1.00346
\(95\) −1.15171 3.54458i −0.118162 0.363667i
\(96\) −0.316105 + 0.972871i −0.0322623 + 0.0992933i
\(97\) −2.39509 + 1.74013i −0.243184 + 0.176684i −0.702701 0.711486i \(-0.748023\pi\)
0.459516 + 0.888169i \(0.348023\pi\)
\(98\) −10.3178 −1.04226
\(99\) 11.5093 1.15672
\(100\) 0.0487559 0.0354232i 0.00487559 0.00354232i
\(101\) −10.2935 7.47868i −1.02424 0.744156i −0.0570946 0.998369i \(-0.518184\pi\)
−0.967148 + 0.254213i \(0.918184\pi\)
\(102\) −1.14696 0.833317i −0.113566 0.0825107i
\(103\) 1.74625 + 5.37440i 0.172063 + 0.529555i 0.999487 0.0320222i \(-0.0101947\pi\)
−0.827424 + 0.561577i \(0.810195\pi\)
\(104\) 2.17817 1.58253i 0.213587 0.155180i
\(105\) 0.0327663 + 0.100844i 0.00319766 + 0.00984140i
\(106\) 2.80736 8.64016i 0.272675 0.839206i
\(107\) 7.45517 + 5.41650i 0.720718 + 0.523633i 0.886614 0.462511i \(-0.153051\pi\)
−0.165895 + 0.986143i \(0.553051\pi\)
\(108\) −0.275334 + 0.847391i −0.0264940 + 0.0815402i
\(109\) −4.33062 + 13.3283i −0.414799 + 1.27662i 0.497632 + 0.867388i \(0.334203\pi\)
−0.912431 + 0.409231i \(0.865797\pi\)
\(110\) −15.4763 11.2442i −1.47560 1.07209i
\(111\) −0.784099 + 2.41321i −0.0744234 + 0.229052i
\(112\) 0.0629212 + 0.193652i 0.00594550 + 0.0182984i
\(113\) 1.46642 1.06542i 0.137949 0.100226i −0.516670 0.856184i \(-0.672829\pi\)
0.654620 + 0.755958i \(0.272829\pi\)
\(114\) 0.820467 + 2.52514i 0.0768438 + 0.236501i
\(115\) −7.55464 5.48877i −0.704474 0.511830i
\(116\) −0.746427 0.542311i −0.0693040 0.0503523i
\(117\) 1.54817 1.12481i 0.143128 0.103989i
\(118\) 13.7347 1.26438
\(119\) −0.0435052 −0.00398812
\(120\) −4.89748 + 3.55823i −0.447077 + 0.324820i
\(121\) 7.77862 23.9401i 0.707147 2.17638i
\(122\) −2.33158 7.17587i −0.211091 0.649673i
\(123\) −11.4449 −1.03195
\(124\) 0.928496 + 0.276013i 0.0833814 + 0.0247867i
\(125\) 11.5334 1.03158
\(126\) 0.0411182 + 0.126549i 0.00366310 + 0.0112739i
\(127\) −2.36583 + 7.28129i −0.209934 + 0.646110i 0.789541 + 0.613698i \(0.210319\pi\)
−0.999475 + 0.0324118i \(0.989681\pi\)
\(128\) −10.1625 + 7.38352i −0.898250 + 0.652617i
\(129\) 4.40899 0.388190
\(130\) −3.18069 −0.278965
\(131\) 11.7743 8.55455i 1.02873 0.747414i 0.0606737 0.998158i \(-0.480675\pi\)
0.968054 + 0.250744i \(0.0806751\pi\)
\(132\) 0.882305 + 0.641032i 0.0767948 + 0.0557947i
\(133\) 0.0659153 + 0.0478903i 0.00571558 + 0.00415261i
\(134\) −5.40822 16.6448i −0.467199 1.43789i
\(135\) −8.93804 + 6.49386i −0.769264 + 0.558903i
\(136\) −0.767527 2.36221i −0.0658149 0.202557i
\(137\) 3.51248 10.8103i 0.300091 0.923586i −0.681372 0.731937i \(-0.738616\pi\)
0.981464 0.191649i \(-0.0613835\pi\)
\(138\) 5.38188 + 3.91016i 0.458136 + 0.332855i
\(139\) −3.82413 + 11.7695i −0.324358 + 0.998272i 0.647371 + 0.762175i \(0.275868\pi\)
−0.971729 + 0.236097i \(0.924132\pi\)
\(140\) 0.00546925 0.0168326i 0.000462236 0.00142262i
\(141\) 5.56393 + 4.04243i 0.468568 + 0.340434i
\(142\) 5.03375 15.4923i 0.422423 1.30008i
\(143\) −1.85853 5.71997i −0.155418 0.478328i
\(144\) −6.68450 + 4.85657i −0.557042 + 0.404714i
\(145\) −3.53524 10.8804i −0.293586 0.903564i
\(146\) 1.94227 + 1.41114i 0.160744 + 0.116787i
\(147\) 5.90071 + 4.28712i 0.486682 + 0.353596i
\(148\) 0.342647 0.248948i 0.0281654 0.0204634i
\(149\) 18.9028 1.54858 0.774291 0.632830i \(-0.218107\pi\)
0.774291 + 0.632830i \(0.218107\pi\)
\(150\) −0.532348 −0.0434661
\(151\) −1.88778 + 1.37155i −0.153625 + 0.111615i −0.661943 0.749555i \(-0.730268\pi\)
0.508317 + 0.861170i \(0.330268\pi\)
\(152\) −1.43741 + 4.42390i −0.116589 + 0.358825i
\(153\) −0.545532 1.67898i −0.0441037 0.135737i
\(154\) 0.418195 0.0336991
\(155\) 7.30252 + 9.53597i 0.586552 + 0.765948i
\(156\) 0.181332 0.0145182
\(157\) 1.54906 + 4.76752i 0.123629 + 0.380490i 0.993649 0.112526i \(-0.0358943\pi\)
−0.870020 + 0.493016i \(0.835894\pi\)
\(158\) 2.65565 8.17324i 0.211272 0.650228i
\(159\) −5.19556 + 3.77480i −0.412035 + 0.299361i
\(160\) 2.11717 0.167377
\(161\) 0.204139 0.0160884
\(162\) −0.480651 + 0.349213i −0.0377635 + 0.0274368i
\(163\) −11.2685 8.18707i −0.882620 0.641261i 0.0513237 0.998682i \(-0.483656\pi\)
−0.933943 + 0.357421i \(0.883656\pi\)
\(164\) 1.54550 + 1.12287i 0.120684 + 0.0876818i
\(165\) 4.17879 + 12.8610i 0.325318 + 1.00123i
\(166\) −7.58521 + 5.51098i −0.588727 + 0.427735i
\(167\) 3.57322 + 10.9972i 0.276504 + 0.850992i 0.988817 + 0.149131i \(0.0476475\pi\)
−0.712313 + 0.701862i \(0.752352\pi\)
\(168\) 0.0408947 0.125861i 0.00315510 0.00971039i
\(169\) −0.809017 0.587785i −0.0622321 0.0452143i
\(170\) −0.906737 + 2.79065i −0.0695436 + 0.214033i
\(171\) −1.02166 + 3.14435i −0.0781285 + 0.240455i
\(172\) −0.595384 0.432572i −0.0453976 0.0329833i
\(173\) −7.03509 + 21.6518i −0.534868 + 1.64615i 0.209066 + 0.977901i \(0.432958\pi\)
−0.743934 + 0.668253i \(0.767042\pi\)
\(174\) 2.51848 + 7.75109i 0.190926 + 0.587609i
\(175\) −0.0132161 + 0.00960206i −0.000999044 + 0.000725848i
\(176\) 8.02454 + 24.6970i 0.604873 + 1.86161i
\(177\) −7.85482 5.70686i −0.590404 0.428954i
\(178\) −3.52638 2.56207i −0.264313 0.192035i
\(179\) 2.39899 1.74297i 0.179309 0.130276i −0.494510 0.869172i \(-0.664653\pi\)
0.673819 + 0.738896i \(0.264653\pi\)
\(180\) 0.718195 0.0535311
\(181\) 12.1829 0.905548 0.452774 0.891625i \(-0.350434\pi\)
0.452774 + 0.891625i \(0.350434\pi\)
\(182\) 0.0562534 0.0408705i 0.00416978 0.00302952i
\(183\) −1.64820 + 5.07264i −0.121838 + 0.374980i
\(184\) 3.60146 + 11.0841i 0.265503 + 0.817134i
\(185\) 5.25166 0.386109
\(186\) −5.20226 6.79336i −0.381448 0.498113i
\(187\) −5.54836 −0.405736
\(188\) −0.354738 1.09177i −0.0258719 0.0796255i
\(189\) 0.0746340 0.229700i 0.00542882 0.0167082i
\(190\) 4.44574 3.23002i 0.322528 0.234330i
\(191\) 5.15675 0.373129 0.186565 0.982443i \(-0.440265\pi\)
0.186565 + 0.982443i \(0.440265\pi\)
\(192\) 7.49226 0.540707
\(193\) −15.2536 + 11.0824i −1.09798 + 0.797729i −0.980729 0.195373i \(-0.937408\pi\)
−0.117251 + 0.993102i \(0.537408\pi\)
\(194\) −3.53141 2.56572i −0.253541 0.184208i
\(195\) 1.81903 + 1.32160i 0.130263 + 0.0946417i
\(196\) −0.376209 1.15785i −0.0268721 0.0827038i
\(197\) 12.1542 8.83055i 0.865952 0.629151i −0.0635458 0.997979i \(-0.520241\pi\)
0.929498 + 0.368828i \(0.120241\pi\)
\(198\) 5.24393 + 16.1392i 0.372670 + 1.14696i
\(199\) 2.62184 8.06921i 0.185858 0.572011i −0.814104 0.580718i \(-0.802772\pi\)
0.999962 + 0.00870755i \(0.00277174\pi\)
\(200\) −0.754525 0.548194i −0.0533529 0.0387632i
\(201\) −3.82308 + 11.7662i −0.269660 + 0.829927i
\(202\) 5.79717 17.8418i 0.407887 1.25535i
\(203\) 0.202332 + 0.147003i 0.0142009 + 0.0103176i
\(204\) 0.0516933 0.159095i 0.00361925 0.0111389i
\(205\) 7.31985 + 22.5282i 0.511240 + 1.57344i
\(206\) −6.74075 + 4.89744i −0.469650 + 0.341221i
\(207\) 2.55979 + 7.87823i 0.177918 + 0.547575i
\(208\) 3.49308 + 2.53787i 0.242201 + 0.175970i
\(209\) 8.40639 + 6.10760i 0.581482 + 0.422471i
\(210\) −0.126482 + 0.0918948i −0.00872812 + 0.00634135i
\(211\) −16.0874 −1.10750 −0.553750 0.832683i \(-0.686804\pi\)
−0.553750 + 0.832683i \(0.686804\pi\)
\(212\) 1.07195 0.0736220
\(213\) −9.31593 + 6.76842i −0.638317 + 0.463765i
\(214\) −4.19865 + 12.9221i −0.287014 + 0.883337i
\(215\) −2.81987 8.67866i −0.192313 0.591880i
\(216\) 13.7887 0.938204
\(217\) −0.251685 0.0748181i −0.0170855 0.00507898i
\(218\) −20.6631 −1.39948
\(219\) −0.524438 1.61406i −0.0354383 0.109068i
\(220\) 0.697511 2.14672i 0.0470262 0.144732i
\(221\) −0.746337 + 0.542246i −0.0502041 + 0.0364754i
\(222\) −3.74124 −0.251096
\(223\) −21.0305 −1.40831 −0.704155 0.710046i \(-0.748674\pi\)
−0.704155 + 0.710046i \(0.748674\pi\)
\(224\) −0.0374442 + 0.0272048i −0.00250184 + 0.00181770i
\(225\) −0.536290 0.389638i −0.0357527 0.0259758i
\(226\) 2.16215 + 1.57089i 0.143824 + 0.104494i
\(227\) 4.64711 + 14.3023i 0.308440 + 0.949280i 0.978371 + 0.206857i \(0.0663234\pi\)
−0.669932 + 0.742423i \(0.733677\pi\)
\(228\) −0.253452 + 0.184144i −0.0167853 + 0.0121952i
\(229\) 2.18205 + 6.71567i 0.144194 + 0.443784i 0.996906 0.0785967i \(-0.0250439\pi\)
−0.852712 + 0.522381i \(0.825044\pi\)
\(230\) 4.25467 13.0945i 0.280545 0.863428i
\(231\) −0.239164 0.173763i −0.0157358 0.0114327i
\(232\) −4.41224 + 13.5795i −0.289678 + 0.891536i
\(233\) 7.50003 23.0827i 0.491344 1.51220i −0.331235 0.943548i \(-0.607465\pi\)
0.822578 0.568652i \(-0.192535\pi\)
\(234\) 2.28268 + 1.65847i 0.149224 + 0.108417i
\(235\) 4.39860 13.5375i 0.286933 0.883089i
\(236\) 0.500797 + 1.54129i 0.0325991 + 0.100330i
\(237\) −4.91479 + 3.57081i −0.319250 + 0.231949i
\(238\) −0.0198222 0.0610064i −0.00128488 0.00395446i
\(239\) −19.0424 13.8351i −1.23175 0.894920i −0.234731 0.972060i \(-0.575421\pi\)
−0.997020 + 0.0771407i \(0.975421\pi\)
\(240\) −7.85397 5.70625i −0.506972 0.368337i
\(241\) 23.5459 17.1071i 1.51672 1.10197i 0.553644 0.832754i \(-0.313237\pi\)
0.963081 0.269211i \(-0.0867630\pi\)
\(242\) 37.1148 2.38583
\(243\) 15.7842 1.01256
\(244\) 0.720254 0.523295i 0.0461095 0.0335005i
\(245\) 4.66484 14.3569i 0.298026 0.917229i
\(246\) −5.21461 16.0489i −0.332471 1.02324i
\(247\) 1.72769 0.109930
\(248\) −0.377866 14.9857i −0.0239945 0.951592i
\(249\) 6.62780 0.420020
\(250\) 5.25492 + 16.1730i 0.332350 + 1.02287i
\(251\) −6.47496 + 19.9279i −0.408696 + 1.25784i 0.509074 + 0.860723i \(0.329988\pi\)
−0.917770 + 0.397113i \(0.870012\pi\)
\(252\) −0.0127019 + 0.00922849i −0.000800146 + 0.000581340i
\(253\) 26.0345 1.63677
\(254\) −11.2883 −0.708292
\(255\) 1.67809 1.21921i 0.105086 0.0763497i
\(256\) −3.35315 2.43621i −0.209572 0.152263i
\(257\) −12.7062 9.23162i −0.792593 0.575852i 0.116139 0.993233i \(-0.462948\pi\)
−0.908732 + 0.417381i \(0.862948\pi\)
\(258\) 2.00885 + 6.18262i 0.125066 + 0.384913i
\(259\) −0.0928803 + 0.0674815i −0.00577130 + 0.00419310i
\(260\) −0.115975 0.356934i −0.00719246 0.0221361i
\(261\) −3.13607 + 9.65182i −0.194118 + 0.597433i
\(262\) 17.3605 + 12.6132i 1.07254 + 0.779244i
\(263\) −9.11158 + 28.0426i −0.561844 + 1.72918i 0.115302 + 0.993330i \(0.463216\pi\)
−0.677146 + 0.735848i \(0.736784\pi\)
\(264\) 5.21543 16.0514i 0.320988 0.987898i
\(265\) 10.7533 + 7.81270i 0.660567 + 0.479930i
\(266\) −0.0371226 + 0.114252i −0.00227613 + 0.00700522i
\(267\) 0.952167 + 2.93047i 0.0582717 + 0.179342i
\(268\) 1.67067 1.21381i 0.102052 0.0741453i
\(269\) −1.92904 5.93698i −0.117616 0.361984i 0.874868 0.484362i \(-0.160948\pi\)
−0.992484 + 0.122378i \(0.960948\pi\)
\(270\) −13.1786 9.57482i −0.802024 0.582705i
\(271\) −12.8610 9.34408i −0.781252 0.567613i 0.124103 0.992269i \(-0.460395\pi\)
−0.905354 + 0.424657i \(0.860395\pi\)
\(272\) 3.22245 2.34125i 0.195390 0.141959i
\(273\) −0.0491531 −0.00297488
\(274\) 16.7594 1.01247
\(275\) −1.68549 + 1.22458i −0.101639 + 0.0738450i
\(276\) −0.242560 + 0.746521i −0.0146004 + 0.0449353i
\(277\) −2.04841 6.30435i −0.123077 0.378792i 0.870469 0.492223i \(-0.163816\pi\)
−0.993546 + 0.113432i \(0.963816\pi\)
\(278\) −18.2464 −1.09435
\(279\) −0.268574 10.6513i −0.0160791 0.637678i
\(280\) −0.273900 −0.0163687
\(281\) 0.666369 + 2.05087i 0.0397522 + 0.122345i 0.968963 0.247205i \(-0.0795120\pi\)
−0.929211 + 0.369549i \(0.879512\pi\)
\(282\) −3.13353 + 9.64401i −0.186599 + 0.574293i
\(283\) 0.848479 0.616456i 0.0504369 0.0366445i −0.562281 0.826946i \(-0.690076\pi\)
0.612718 + 0.790302i \(0.290076\pi\)
\(284\) 1.92207 0.114054
\(285\) −3.88460 −0.230104
\(286\) 7.17418 5.21234i 0.424218 0.308212i
\(287\) −0.418935 0.304374i −0.0247290 0.0179667i
\(288\) −1.51943 1.10393i −0.0895332 0.0650497i
\(289\) −4.99030 15.3586i −0.293547 0.903445i
\(290\) 13.6465 9.91477i 0.801351 0.582216i
\(291\) 0.953526 + 2.93465i 0.0558967 + 0.172032i
\(292\) −0.0875377 + 0.269413i −0.00512276 + 0.0157662i
\(293\) −20.6356 14.9926i −1.20554 0.875879i −0.210726 0.977545i \(-0.567583\pi\)
−0.994819 + 0.101666i \(0.967583\pi\)
\(294\) −3.32320 + 10.2278i −0.193813 + 0.596495i
\(295\) −6.20967 + 19.1114i −0.361541 + 1.11271i
\(296\) −5.30266 3.85261i −0.308211 0.223928i
\(297\) 9.51831 29.2943i 0.552308 1.69983i
\(298\) 8.61265 + 26.5070i 0.498918 + 1.53551i
\(299\) 3.50203 2.54437i 0.202528 0.147145i
\(300\) −0.0194106 0.0597396i −0.00112067 0.00344907i
\(301\) 0.161389 + 0.117256i 0.00930231 + 0.00675852i
\(302\) −2.78342 2.02227i −0.160168 0.116369i
\(303\) −10.7288 + 7.79492i −0.616352 + 0.447806i
\(304\) −7.45960 −0.427837
\(305\) 11.0391 0.632099
\(306\) 2.10583 1.52997i 0.120382 0.0874628i
\(307\) 8.75349 26.9405i 0.499588 1.53757i −0.310094 0.950706i \(-0.600361\pi\)
0.809682 0.586868i \(-0.199639\pi\)
\(308\) 0.0152483 + 0.0469294i 0.000868851 + 0.00267405i
\(309\) 5.88993 0.335066
\(310\) −10.0448 + 14.5850i −0.570508 + 0.828372i
\(311\) 12.6162 0.715399 0.357700 0.933837i \(-0.383561\pi\)
0.357700 + 0.933837i \(0.383561\pi\)
\(312\) −0.867168 2.66887i −0.0490937 0.151095i
\(313\) 2.12624 6.54388i 0.120182 0.369882i −0.872811 0.488059i \(-0.837705\pi\)
0.992993 + 0.118177i \(0.0377050\pi\)
\(314\) −5.97959 + 4.34443i −0.337448 + 0.245170i
\(315\) −0.194679 −0.0109689
\(316\) 1.01402 0.0570433
\(317\) 0.494643 0.359379i 0.0277819 0.0201847i −0.573808 0.818990i \(-0.694534\pi\)
0.601590 + 0.798805i \(0.294534\pi\)
\(318\) −7.66055 5.56571i −0.429582 0.312110i
\(319\) 25.8040 + 18.7477i 1.44475 + 1.04967i
\(320\) −4.79184 14.7478i −0.267872 0.824426i
\(321\) 7.77042 5.64554i 0.433702 0.315103i
\(322\) 0.0930113 + 0.286259i 0.00518332 + 0.0159526i
\(323\) 0.492521 1.51582i 0.0274046 0.0843426i
\(324\) −0.0567139 0.0412051i −0.00315077 0.00228917i
\(325\) −0.107044 + 0.329449i −0.00593776 + 0.0182745i
\(326\) 6.34628 19.5318i 0.351488 1.08177i
\(327\) 11.8171 + 8.58566i 0.653489 + 0.474788i
\(328\) 9.13570 28.1168i 0.504435 1.55249i
\(329\) 0.0961577 + 0.295943i 0.00530134 + 0.0163159i
\(330\) −16.1307 + 11.7196i −0.887966 + 0.645145i
\(331\) 3.98217 + 12.2558i 0.218880 + 0.673642i 0.998855 + 0.0478326i \(0.0152314\pi\)
−0.779976 + 0.625810i \(0.784769\pi\)
\(332\) −0.895010 0.650263i −0.0491200 0.0356878i
\(333\) −3.76895 2.73830i −0.206537 0.150058i
\(334\) −13.7931 + 10.0213i −0.754726 + 0.548341i
\(335\) 25.6059 1.39900
\(336\) 0.212227 0.0115780
\(337\) 25.1850 18.2980i 1.37191 0.996754i 0.374329 0.927296i \(-0.377873\pi\)
0.997585 0.0694582i \(-0.0221271\pi\)
\(338\) 0.455627 1.40228i 0.0247829 0.0762738i
\(339\) −0.583808 1.79678i −0.0317081 0.0975875i
\(340\) −0.346226 −0.0187767
\(341\) −32.0981 9.54179i −1.73821 0.516717i
\(342\) −4.87475 −0.263596
\(343\) 0.203988 + 0.627812i 0.0110143 + 0.0338987i
\(344\) −3.51940 + 10.8316i −0.189753 + 0.584001i
\(345\) −7.87410 + 5.72087i −0.423927 + 0.308001i
\(346\) −33.5672 −1.80458
\(347\) −10.9826 −0.589577 −0.294789 0.955562i \(-0.595249\pi\)
−0.294789 + 0.955562i \(0.595249\pi\)
\(348\) −0.777990 + 0.565243i −0.0417046 + 0.0303002i
\(349\) 4.42764 + 3.21687i 0.237006 + 0.172195i 0.699948 0.714193i \(-0.253206\pi\)
−0.462942 + 0.886388i \(0.653206\pi\)
\(350\) −0.0194864 0.0141577i −0.00104159 0.000756759i
\(351\) −1.58260 4.87076i −0.0844732 0.259982i
\(352\) −4.77537 + 3.46951i −0.254528 + 0.184926i
\(353\) 4.47668 + 13.7778i 0.238269 + 0.733318i 0.996671 + 0.0815303i \(0.0259807\pi\)
−0.758401 + 0.651788i \(0.774019\pi\)
\(354\) 4.42372 13.6148i 0.235118 0.723620i
\(355\) 19.2812 + 14.0086i 1.02334 + 0.743500i
\(356\) 0.158933 0.489145i 0.00842343 0.0259247i
\(357\) −0.0140123 + 0.0431255i −0.000741612 + 0.00228245i
\(358\) 3.53717 + 2.56991i 0.186945 + 0.135824i
\(359\) 11.0696 34.0686i 0.584229 1.79807i −0.0181142 0.999836i \(-0.505766\pi\)
0.602343 0.798237i \(-0.294234\pi\)
\(360\) −3.43456 10.5705i −0.181017 0.557114i
\(361\) 12.9565 9.41344i 0.681921 0.495444i
\(362\) 5.55086 + 17.0838i 0.291747 + 0.897904i
\(363\) −21.2258 15.4215i −1.11407 0.809417i
\(364\) 0.00663757 + 0.00482248i 0.000347903 + 0.000252766i
\(365\) −2.84170 + 2.06461i −0.148741 + 0.108067i
\(366\) −7.86420 −0.411069
\(367\) −11.4286 −0.596571 −0.298285 0.954477i \(-0.596415\pi\)
−0.298285 + 0.954477i \(0.596415\pi\)
\(368\) −15.1206 + 10.9858i −0.788218 + 0.572674i
\(369\) 6.49334 19.9844i 0.338030 1.04035i
\(370\) 2.39280 + 7.36427i 0.124396 + 0.382850i
\(371\) −0.290571 −0.0150857
\(372\) 0.572658 0.831493i 0.0296909 0.0431109i
\(373\) 22.5258 1.16634 0.583170 0.812350i \(-0.301812\pi\)
0.583170 + 0.812350i \(0.301812\pi\)
\(374\) −2.52798 7.78033i −0.130719 0.402311i
\(375\) 3.71471 11.4327i 0.191827 0.590383i
\(376\) −14.3724 + 10.4422i −0.741200 + 0.538513i
\(377\) 5.30325 0.273131
\(378\) 0.356108 0.0183162
\(379\) −11.0867 + 8.05498i −0.569487 + 0.413756i −0.834919 0.550373i \(-0.814485\pi\)
0.265432 + 0.964130i \(0.414485\pi\)
\(380\) 0.524571 + 0.381123i 0.0269099 + 0.0195512i
\(381\) 6.45574 + 4.69037i 0.330738 + 0.240295i
\(382\) 2.34956 + 7.23119i 0.120214 + 0.369980i
\(383\) −18.8553 + 13.6992i −0.963461 + 0.699995i −0.953952 0.299959i \(-0.903027\pi\)
−0.00950893 + 0.999955i \(0.503027\pi\)
\(384\) 4.04589 + 12.4520i 0.206466 + 0.635436i
\(385\) −0.189072 + 0.581905i −0.00963602 + 0.0296566i
\(386\) −22.4906 16.3404i −1.14474 0.831702i
\(387\) −2.50147 + 7.69873i −0.127157 + 0.391348i
\(388\) 0.159160 0.489843i 0.00808011 0.0248680i
\(389\) −0.224680 0.163240i −0.0113917 0.00827659i 0.582075 0.813135i \(-0.302241\pi\)
−0.593467 + 0.804859i \(0.702241\pi\)
\(390\) −1.02445 + 3.15293i −0.0518750 + 0.159655i
\(391\) −1.23402 3.79792i −0.0624070 0.192069i
\(392\) −15.2423 + 11.0742i −0.769854 + 0.559332i
\(393\) −4.68757 14.4268i −0.236456 0.727738i
\(394\) 17.9207 + 13.0201i 0.902830 + 0.655944i
\(395\) 10.1722 + 7.39050i 0.511816 + 0.371856i
\(396\) −1.61992 + 1.17694i −0.0814038 + 0.0591434i
\(397\) −19.5846 −0.982924 −0.491462 0.870899i \(-0.663537\pi\)
−0.491462 + 0.870899i \(0.663537\pi\)
\(398\) 12.5098 0.627062
\(399\) 0.0687026 0.0499154i 0.00343943 0.00249889i
\(400\) 0.462184 1.42246i 0.0231092 0.0711228i
\(401\) −4.29169 13.2085i −0.214317 0.659599i −0.999201 0.0399573i \(-0.987278\pi\)
0.784885 0.619642i \(-0.212722\pi\)
\(402\) −18.2414 −0.909800
\(403\) −5.25021 + 1.85347i −0.261531 + 0.0923277i
\(404\) 2.21357 0.110129
\(405\) −0.268610 0.826695i −0.0133473 0.0410788i
\(406\) −0.113950 + 0.350704i −0.00565527 + 0.0174051i
\(407\) −11.8453 + 8.60613i −0.587150 + 0.426590i
\(408\) −2.58880 −0.128165
\(409\) −15.3061 −0.756837 −0.378418 0.925635i \(-0.623532\pi\)
−0.378418 + 0.925635i \(0.623532\pi\)
\(410\) −28.2556 + 20.5289i −1.39545 + 1.01385i
\(411\) −9.58464 6.96365i −0.472775 0.343491i
\(412\) −0.795368 0.577869i −0.0391850 0.0284696i
\(413\) −0.135749 0.417794i −0.00667979 0.0205583i
\(414\) −9.88115 + 7.17907i −0.485632 + 0.352832i
\(415\) −4.23896 13.0462i −0.208082 0.640412i
\(416\) −0.303281 + 0.933402i −0.0148696 + 0.0457638i
\(417\) 10.4350 + 7.58150i 0.511006 + 0.371268i
\(418\) −4.73436 + 14.5709i −0.231565 + 0.712684i
\(419\) −9.63447 + 29.6519i −0.470675 + 1.44859i 0.381028 + 0.924563i \(0.375570\pi\)
−0.851703 + 0.524025i \(0.824430\pi\)
\(420\) −0.0149242 0.0108430i −0.000728225 0.000529086i
\(421\) −0.0366994 + 0.112949i −0.00178862 + 0.00550480i −0.951947 0.306263i \(-0.900921\pi\)
0.950158 + 0.311768i \(0.100921\pi\)
\(422\) −7.32984 22.5589i −0.356811 1.09815i
\(423\) −10.2154 + 7.42193i −0.496690 + 0.360866i
\(424\) −5.12630 15.7771i −0.248955 0.766206i
\(425\) 0.258534 + 0.187836i 0.0125407 + 0.00911137i
\(426\) −13.7358 9.97963i −0.665501 0.483515i
\(427\) −0.195237 + 0.141848i −0.00944819 + 0.00686451i
\(428\) −1.60320 −0.0774935
\(429\) −6.26865 −0.302653
\(430\) 10.8851 7.90847i 0.524925 0.381380i
\(431\) 10.0997 31.0838i 0.486487 1.49725i −0.343329 0.939215i \(-0.611555\pi\)
0.829816 0.558037i \(-0.188445\pi\)
\(432\) 6.83319 + 21.0304i 0.328762 + 1.01182i
\(433\) 3.25063 0.156215 0.0781077 0.996945i \(-0.475112\pi\)
0.0781077 + 0.996945i \(0.475112\pi\)
\(434\) −0.00975877 0.387021i −0.000468436 0.0185776i
\(435\) −11.9240 −0.571714
\(436\) −0.753421 2.31879i −0.0360823 0.111050i
\(437\) −2.31105 + 7.11268i −0.110552 + 0.340245i
\(438\) 2.02440 1.47082i 0.0967297 0.0702783i
\(439\) −4.39087 −0.209565 −0.104782 0.994495i \(-0.533415\pi\)
−0.104782 + 0.994495i \(0.533415\pi\)
\(440\) −34.9314 −1.66529
\(441\) −10.8337 + 7.87117i −0.515892 + 0.374818i
\(442\) −1.10043 0.799509i −0.0523421 0.0380288i
\(443\) 16.8983 + 12.2773i 0.802863 + 0.583314i 0.911753 0.410740i \(-0.134730\pi\)
−0.108890 + 0.994054i \(0.534730\pi\)
\(444\) −0.136414 0.419838i −0.00647391 0.0199246i
\(445\) 5.15937 3.74850i 0.244577 0.177696i
\(446\) −9.58209 29.4906i −0.453725 1.39642i
\(447\) 6.08830 18.7379i 0.287967 0.886271i
\(448\) 0.274251 + 0.199255i 0.0129571 + 0.00941390i
\(449\) −4.71686 + 14.5170i −0.222602 + 0.685100i 0.775924 + 0.630827i \(0.217284\pi\)
−0.998526 + 0.0542731i \(0.982716\pi\)
\(450\) 0.302031 0.929557i 0.0142379 0.0438197i
\(451\) −53.4282 38.8178i −2.51583 1.82786i
\(452\) −0.0974475 + 0.299913i −0.00458355 + 0.0141067i
\(453\) 0.751558 + 2.31306i 0.0353113 + 0.108677i
\(454\) −17.9385 + 13.0331i −0.841895 + 0.611672i
\(455\) 0.0314370 + 0.0967531i 0.00147379 + 0.00453585i
\(456\) 3.92232 + 2.84973i 0.183679 + 0.133451i
\(457\) 23.5165 + 17.0858i 1.10006 + 0.799238i 0.981069 0.193658i \(-0.0620352\pi\)
0.118987 + 0.992896i \(0.462035\pi\)
\(458\) −8.42303 + 6.11969i −0.393582 + 0.285954i
\(459\) −4.72463 −0.220527
\(460\) 1.62459 0.0757469
\(461\) −2.13758 + 1.55304i −0.0995569 + 0.0723323i −0.636450 0.771318i \(-0.719598\pi\)
0.536893 + 0.843650i \(0.319598\pi\)
\(462\) 0.134694 0.414545i 0.00626652 0.0192864i
\(463\) 8.20265 + 25.2452i 0.381209 + 1.17324i 0.939193 + 0.343390i \(0.111575\pi\)
−0.557984 + 0.829852i \(0.688425\pi\)
\(464\) −22.8978 −1.06300
\(465\) 11.8048 4.16740i 0.547433 0.193259i
\(466\) 35.7856 1.65774
\(467\) −0.565729 1.74114i −0.0261788 0.0805702i 0.937114 0.349025i \(-0.113487\pi\)
−0.963292 + 0.268455i \(0.913487\pi\)
\(468\) −0.102880 + 0.316631i −0.00475562 + 0.0146363i
\(469\) −0.452863 + 0.329024i −0.0209113 + 0.0151929i
\(470\) 20.9874 0.968078
\(471\) 5.22484 0.240748
\(472\) 20.2901 14.7416i 0.933926 0.678537i
\(473\) 20.5824 + 14.9540i 0.946382 + 0.687587i
\(474\) −7.24657 5.26494i −0.332846 0.241827i
\(475\) −0.184939 0.569184i −0.00848559 0.0261160i
\(476\) 0.00612331 0.00444885i 0.000280662 0.000203913i
\(477\) −3.64360 11.2139i −0.166829 0.513447i
\(478\) 10.7244 33.0064i 0.490524 1.50968i
\(479\) 6.03118 + 4.38191i 0.275572 + 0.200215i 0.716984 0.697090i \(-0.245522\pi\)
−0.441412 + 0.897305i \(0.645522\pi\)
\(480\) 0.681908 2.09870i 0.0311247 0.0957920i
\(481\) −0.752288 + 2.31530i −0.0343014 + 0.105569i
\(482\) 34.7170 + 25.2234i 1.58132 + 1.14889i
\(483\) 0.0657499 0.202357i 0.00299172 0.00920758i
\(484\) 1.35329 + 4.16499i 0.0615130 + 0.189318i
\(485\) 5.16673 3.75385i 0.234609 0.170453i
\(486\) 7.19173 + 22.1339i 0.326223 + 1.00401i
\(487\) 29.7128 + 21.5876i 1.34642 + 0.978228i 0.999182 + 0.0404490i \(0.0128788\pi\)
0.347233 + 0.937779i \(0.387121\pi\)
\(488\) −11.1463 8.09829i −0.504571 0.366592i
\(489\) −11.7450 + 8.53326i −0.531129 + 0.385887i
\(490\) 22.2578 1.00550
\(491\) −9.80456 −0.442473 −0.221237 0.975220i \(-0.571009\pi\)
−0.221237 + 0.975220i \(0.571009\pi\)
\(492\) 1.61086 1.17036i 0.0726231 0.0527637i
\(493\) 1.51183 4.65293i 0.0680893 0.209557i
\(494\) 0.787180 + 2.42269i 0.0354169 + 0.109002i
\(495\) −24.8280 −1.11594
\(496\) 22.6687 8.00268i 1.01786 0.359331i
\(497\) −0.521010 −0.0233705
\(498\) 3.01981 + 9.29401i 0.135321 + 0.416475i
\(499\) 12.4788 38.4059i 0.558629 1.71928i −0.127534 0.991834i \(-0.540706\pi\)
0.686163 0.727448i \(-0.259294\pi\)
\(500\) −1.62331 + 1.17940i −0.0725966 + 0.0527445i
\(501\) 12.0521 0.538450
\(502\) −30.8945 −1.37889
\(503\) 23.6648 17.1935i 1.05516 0.766621i 0.0819754 0.996634i \(-0.473877\pi\)
0.973187 + 0.230014i \(0.0738771\pi\)
\(504\) 0.196570 + 0.142816i 0.00875590 + 0.00636154i
\(505\) 22.2054 + 16.1331i 0.988126 + 0.717916i
\(506\) 11.8620 + 36.5076i 0.527331 + 1.62296i
\(507\) −0.843227 + 0.612640i −0.0374490 + 0.0272083i
\(508\) −0.411596 1.26676i −0.0182616 0.0562035i
\(509\) 1.10024 3.38619i 0.0487673 0.150090i −0.923707 0.383099i \(-0.874857\pi\)
0.972475 + 0.233008i \(0.0748569\pi\)
\(510\) 2.47425 + 1.79765i 0.109562 + 0.0796012i
\(511\) 0.0237286 0.0730291i 0.00104969 0.00323062i
\(512\) −5.87504 + 18.0815i −0.259642 + 0.799097i
\(513\) 7.15834 + 5.20084i 0.316049 + 0.229623i
\(514\) 7.15597 22.0238i 0.315636 0.971429i
\(515\) −3.76704 11.5938i −0.165996 0.510882i
\(516\) −0.620560 + 0.450863i −0.0273186 + 0.0198482i
\(517\) 12.2633 + 37.7425i 0.539339 + 1.65991i
\(518\) −0.136946 0.0994974i −0.00601708 0.00437167i
\(519\) 19.1969 + 13.9474i 0.842651 + 0.612222i
\(520\) −4.69879 + 3.41387i −0.206056 + 0.149708i
\(521\) 25.1419 1.10149 0.550744 0.834674i \(-0.314344\pi\)
0.550744 + 0.834674i \(0.314344\pi\)
\(522\) −14.9634 −0.654930
\(523\) −13.2160 + 9.60196i −0.577894 + 0.419865i −0.837964 0.545725i \(-0.816254\pi\)
0.260070 + 0.965590i \(0.416254\pi\)
\(524\) −0.782434 + 2.40809i −0.0341808 + 0.105198i
\(525\) 0.00526157 + 0.0161934i 0.000229634 + 0.000706739i
\(526\) −43.4749 −1.89560
\(527\) 0.129474 + 5.13476i 0.00563996 + 0.223674i
\(528\) 27.0660 1.17790
\(529\) −1.31702 4.05337i −0.0572618 0.176234i
\(530\) −6.05609 + 18.6387i −0.263060 + 0.809614i
\(531\) 14.4215 10.4778i 0.625839 0.454699i
\(532\) −0.0141748 −0.000614554
\(533\) −10.9806 −0.475622
\(534\) −3.67550 + 2.67040i −0.159054 + 0.115560i
\(535\) −16.0824 11.6846i −0.695304 0.505168i
\(536\) −25.8545 18.7844i −1.11675 0.811363i
\(537\) −0.955082 2.93944i −0.0412148 0.126846i
\(538\) 7.44636 5.41010i 0.321035 0.233246i
\(539\) 13.0056 + 40.0270i 0.560190 + 1.72409i
\(540\) 0.593956 1.82801i 0.0255598 0.0786649i
\(541\) 5.13662 + 3.73198i 0.220841 + 0.160450i 0.692705 0.721221i \(-0.256419\pi\)
−0.471864 + 0.881671i \(0.656419\pi\)
\(542\) 7.24315 22.2921i 0.311120 0.957529i
\(543\) 3.92392 12.0766i 0.168391 0.518255i
\(544\) 0.732483 + 0.532180i 0.0314049 + 0.0228170i
\(545\) 9.34211 28.7520i 0.400172 1.23160i
\(546\) −0.0223955 0.0689262i −0.000958438 0.00294977i
\(547\) −7.03679 + 5.11253i −0.300871 + 0.218596i −0.727970 0.685609i \(-0.759536\pi\)
0.427098 + 0.904205i \(0.359536\pi\)
\(548\) 0.611084 + 1.88072i 0.0261042 + 0.0803405i
\(549\) −7.92244 5.75599i −0.338121 0.245660i
\(550\) −2.48516 1.80557i −0.105967 0.0769899i
\(551\) −7.41250 + 5.38550i −0.315783 + 0.229430i
\(552\) 12.1474 0.517027
\(553\) −0.274868 −0.0116886
\(554\) 7.90713 5.74487i 0.335942 0.244076i
\(555\) 1.69147 5.20582i 0.0717991 0.220975i
\(556\) −0.665303 2.04759i −0.0282151 0.0868373i
\(557\) 22.7075 0.962146 0.481073 0.876681i \(-0.340247\pi\)
0.481073 + 0.876681i \(0.340247\pi\)
\(558\) 14.8137 5.22964i 0.627115 0.221389i
\(559\) 4.23012 0.178915
\(560\) −0.135735 0.417749i −0.00573585 0.0176531i
\(561\) −1.78704 + 5.49994i −0.0754488 + 0.232207i
\(562\) −2.57227 + 1.86887i −0.108505 + 0.0788334i
\(563\) −1.24554 −0.0524931 −0.0262466 0.999655i \(-0.508355\pi\)
−0.0262466 + 0.999655i \(0.508355\pi\)
\(564\) −1.19650 −0.0503816
\(565\) −3.16339 + 2.29834i −0.133085 + 0.0966919i
\(566\) 1.25103 + 0.908928i 0.0525848 + 0.0382051i
\(567\) 0.0153733 + 0.0111693i 0.000645617 + 0.000469068i
\(568\) −9.19175 28.2893i −0.385677 1.18699i
\(569\) 10.1288 7.35902i 0.424623 0.308506i −0.354873 0.934915i \(-0.615476\pi\)
0.779495 + 0.626408i \(0.215476\pi\)
\(570\) −1.76993 5.44728i −0.0741341 0.228161i
\(571\) −6.02200 + 18.5338i −0.252013 + 0.775616i 0.742390 + 0.669967i \(0.233692\pi\)
−0.994403 + 0.105649i \(0.966308\pi\)
\(572\) 0.846510 + 0.615026i 0.0353944 + 0.0257155i
\(573\) 1.66091 5.11174i 0.0693854 0.213546i
\(574\) 0.235939 0.726145i 0.00984789 0.0303087i
\(575\) −1.21311 0.881379i −0.0505903 0.0367560i
\(576\) −4.25078 + 13.0826i −0.177116 + 0.545107i
\(577\) 6.68639 + 20.5786i 0.278358 + 0.856698i 0.988311 + 0.152449i \(0.0487161\pi\)
−0.709953 + 0.704249i \(0.751284\pi\)
\(578\) 19.2632 13.9956i 0.801245 0.582139i
\(579\) 6.07274 + 18.6900i 0.252374 + 0.776729i
\(580\) 1.61021 + 1.16988i 0.0668602 + 0.0485768i
\(581\) 0.242608 + 0.176265i 0.0100651 + 0.00731270i
\(582\) −3.68074 + 2.67422i −0.152572 + 0.110850i
\(583\) −37.0574 −1.53476
\(584\) 4.38389 0.181407
\(585\) −3.33974 + 2.42646i −0.138081 + 0.100322i
\(586\) 11.6217 35.7679i 0.480087 1.47756i
\(587\) 4.29080 + 13.2057i 0.177100 + 0.545058i 0.999723 0.0235291i \(-0.00749023\pi\)
−0.822623 + 0.568587i \(0.807490\pi\)
\(588\) −1.26892 −0.0523294
\(589\) 5.45615 7.92226i 0.224817 0.326431i
\(590\) −29.6288 −1.21980
\(591\) −4.83881 14.8923i −0.199042 0.612588i
\(592\) 3.24814 9.99675i 0.133498 0.410864i
\(593\) 22.4554 16.3148i 0.922133 0.669969i −0.0219211 0.999760i \(-0.506978\pi\)
0.944054 + 0.329791i \(0.106978\pi\)
\(594\) 45.4155 1.86342
\(595\) 0.0938504 0.00384749
\(596\) −2.66055 + 1.93301i −0.108981 + 0.0791790i
\(597\) −7.15433 5.19792i −0.292807 0.212737i
\(598\) 5.16353 + 3.75153i 0.211153 + 0.153411i
\(599\) −1.56978 4.83129i −0.0641396 0.197401i 0.913851 0.406049i \(-0.133094\pi\)
−0.977991 + 0.208648i \(0.933094\pi\)
\(600\) −0.786430 + 0.571375i −0.0321059 + 0.0233263i
\(601\) −13.9472 42.9251i −0.568919 1.75095i −0.656011 0.754752i \(-0.727757\pi\)
0.0870917 0.996200i \(-0.472243\pi\)
\(602\) −0.0908921 + 0.279737i −0.00370448 + 0.0114012i
\(603\) −18.3765 13.3513i −0.748349 0.543707i
\(604\) 0.125448 0.386089i 0.00510440 0.0157097i
\(605\) −16.7802 + 51.6441i −0.682212 + 2.09963i
\(606\) −15.8189 11.4931i −0.642601 0.466877i
\(607\) 10.1900 31.3615i 0.413598 1.27292i −0.499900 0.866083i \(-0.666630\pi\)
0.913499 0.406842i \(-0.133370\pi\)
\(608\) −0.523974 1.61262i −0.0212499 0.0654006i
\(609\) 0.210888 0.153219i 0.00854559 0.00620874i
\(610\) 5.02973 + 15.4799i 0.203648 + 0.626764i
\(611\) 5.33820 + 3.87843i 0.215961 + 0.156905i
\(612\) 0.248475 + 0.180528i 0.0100440 + 0.00729740i
\(613\) 18.7566 13.6274i 0.757571 0.550407i −0.140593 0.990067i \(-0.544901\pi\)
0.898164 + 0.439660i \(0.144901\pi\)
\(614\) 41.7663 1.68555
\(615\) 24.6892 0.995563
\(616\) 0.617793 0.448853i 0.0248916 0.0180848i
\(617\) −10.7551 + 33.1007i −0.432983 + 1.33259i 0.462156 + 0.886799i \(0.347076\pi\)
−0.895139 + 0.445787i \(0.852924\pi\)
\(618\) 2.68361 + 8.25931i 0.107951 + 0.332238i
\(619\) −13.1279 −0.527654 −0.263827 0.964570i \(-0.584985\pi\)
−0.263827 + 0.964570i \(0.584985\pi\)
\(620\) −2.00297 0.595421i −0.0804412 0.0239127i
\(621\) 22.1693 0.889624
\(622\) 5.74829 + 17.6914i 0.230485 + 0.709361i
\(623\) −0.0430815 + 0.132591i −0.00172602 + 0.00531215i
\(624\) 3.64079 2.64519i 0.145748 0.105892i
\(625\) −23.1480 −0.925920
\(626\) 10.1451 0.405480
\(627\) 8.76186 6.36586i 0.349915 0.254228i
\(628\) −0.705556 0.512616i −0.0281547 0.0204556i
\(629\) 1.81692 + 1.32007i 0.0724455 + 0.0526348i
\(630\) −0.0887010 0.272994i −0.00353393 0.0108763i
\(631\) 5.57591 4.05113i 0.221973 0.161273i −0.471241 0.882004i \(-0.656194\pi\)
0.693214 + 0.720731i \(0.256194\pi\)
\(632\) −4.84928 14.9245i −0.192894 0.593666i
\(633\) −5.18148 + 15.9470i −0.205945 + 0.633834i
\(634\) 0.729321 + 0.529883i 0.0289650 + 0.0210443i
\(635\) 5.10362 15.7073i 0.202531 0.623327i
\(636\) 0.345259 1.06260i 0.0136904 0.0421347i
\(637\) 5.66132 + 4.11319i 0.224310 + 0.162971i
\(638\) −14.5325 + 44.7263i −0.575346 + 1.77073i
\(639\) −6.53318 20.1071i −0.258449 0.795423i
\(640\) 21.9228 15.9279i 0.866576 0.629604i
\(641\) 6.46768 + 19.9055i 0.255458 + 0.786219i 0.993739 + 0.111726i \(0.0356379\pi\)
−0.738281 + 0.674493i \(0.764362\pi\)
\(642\) 11.4570 + 8.32401i 0.452172 + 0.328522i
\(643\) 21.2447 + 15.4352i 0.837809 + 0.608704i 0.921758 0.387766i \(-0.126753\pi\)
−0.0839485 + 0.996470i \(0.526753\pi\)
\(644\) −0.0287323 + 0.0208753i −0.00113221 + 0.000822601i
\(645\) −9.51116 −0.374501
\(646\) 2.35001 0.0924599
\(647\) −22.9914 + 16.7043i −0.903887 + 0.656712i −0.939461 0.342655i \(-0.888674\pi\)
0.0355747 + 0.999367i \(0.488674\pi\)
\(648\) −0.335244 + 1.03178i −0.0131696 + 0.0405320i
\(649\) −17.3126 53.2826i −0.679577 2.09152i
\(650\) −0.510751 −0.0200333
\(651\) −0.155229 + 0.225390i −0.00608389 + 0.00883375i
\(652\) 2.42324 0.0949015
\(653\) −1.77227 5.45448i −0.0693542 0.213450i 0.910372 0.413790i \(-0.135795\pi\)
−0.979726 + 0.200340i \(0.935795\pi\)
\(654\) −6.65525 + 20.4828i −0.260241 + 0.800939i
\(655\) −25.3998 + 18.4540i −0.992452 + 0.721059i
\(656\) 47.4107 1.85108
\(657\) 3.11592 0.121564
\(658\) −0.371182 + 0.269679i −0.0144702 + 0.0105132i
\(659\) 30.0855 + 21.8584i 1.17196 + 0.851482i 0.991243 0.132052i \(-0.0421566\pi\)
0.180722 + 0.983534i \(0.442157\pi\)
\(660\) −1.90333 1.38285i −0.0740869 0.0538273i
\(661\) 3.72982 + 11.4792i 0.145073 + 0.446489i 0.997020 0.0771384i \(-0.0245783\pi\)
−0.851947 + 0.523628i \(0.824578\pi\)
\(662\) −15.3717 + 11.1682i −0.597438 + 0.434064i
\(663\) 0.297130 + 0.914472i 0.0115396 + 0.0355152i
\(664\) −5.29053 + 16.2826i −0.205312 + 0.631887i
\(665\) −0.142194 0.103310i −0.00551404 0.00400619i
\(666\) 2.12262 6.53275i 0.0822498 0.253139i
\(667\) −7.09393 + 21.8329i −0.274678 + 0.845372i
\(668\) −1.62751 1.18245i −0.0629701 0.0457504i
\(669\) −6.77360 + 20.8470i −0.261883 + 0.805992i
\(670\) 11.6667 + 35.9065i 0.450725 + 1.38719i
\(671\) −24.8992 + 18.0903i −0.961223 + 0.698370i
\(672\) 0.0149072 + 0.0458796i 0.000575057 + 0.00176984i
\(673\) −2.33061 1.69329i −0.0898384 0.0652714i 0.541959 0.840405i \(-0.317683\pi\)
−0.631798 + 0.775133i \(0.717683\pi\)
\(674\) 37.1338 + 26.9793i 1.43034 + 1.03920i
\(675\) −1.43526 + 1.04278i −0.0552431 + 0.0401364i
\(676\) 0.173975 0.00669135
\(677\) −12.4768 −0.479521 −0.239760 0.970832i \(-0.577069\pi\)
−0.239760 + 0.970832i \(0.577069\pi\)
\(678\) 2.25358 1.63732i 0.0865482 0.0628809i
\(679\) −0.0431430 + 0.132780i −0.00165568 + 0.00509565i
\(680\) 1.65572 + 5.09580i 0.0634942 + 0.195415i
\(681\) 15.6743 0.600640
\(682\) −1.24457 49.3580i −0.0476569 1.89001i
\(683\) 48.8646 1.86975 0.934876 0.354973i \(-0.115510\pi\)
0.934876 + 0.354973i \(0.115510\pi\)
\(684\) −0.177744 0.547040i −0.00679621 0.0209166i
\(685\) −7.57719 + 23.3202i −0.289509 + 0.891019i
\(686\) −0.787423 + 0.572096i −0.0300639 + 0.0218427i
\(687\) 7.35987 0.280796
\(688\) −18.2643 −0.696320
\(689\) −4.98478 + 3.62165i −0.189905 + 0.137974i
\(690\) −11.6099 8.43508i −0.441981 0.321118i
\(691\) 6.15257 + 4.47010i 0.234055 + 0.170051i 0.698630 0.715483i \(-0.253793\pi\)
−0.464576 + 0.885533i \(0.653793\pi\)
\(692\) −1.22393 3.76687i −0.0465269 0.143195i
\(693\) 0.439106 0.319029i 0.0166803 0.0121189i
\(694\) −5.00397 15.4006i −0.189948 0.584601i
\(695\) 8.24948 25.3893i 0.312921 0.963071i
\(696\) 12.0398 + 8.74746i 0.456369 + 0.331571i
\(697\) −3.13029 + 9.63406i −0.118568 + 0.364916i
\(698\) −2.49359 + 7.67447i −0.0943836 + 0.290483i
\(699\) −20.4656 14.8692i −0.774081 0.562403i
\(700\) 0.000878245 0.00270296i 3.31945e−5 0.000102162i
\(701\) −4.89485 15.0648i −0.184876 0.568990i 0.815070 0.579362i \(-0.196698\pi\)
−0.999946 + 0.0103722i \(0.996698\pi\)
\(702\) 6.10907 4.43850i 0.230572 0.167520i
\(703\) −1.29972 4.00012i −0.0490198 0.150867i
\(704\) 34.9760 + 25.4116i 1.31821 + 0.957735i
\(705\) −12.0026 8.72042i −0.452045 0.328430i
\(706\) −17.2806 + 12.5551i −0.650363 + 0.472517i
\(707\) −0.600026 −0.0225663
\(708\) 1.68914 0.0634818
\(709\) 27.5711 20.0316i 1.03546 0.752303i 0.0660627 0.997815i \(-0.478956\pi\)
0.969393 + 0.245513i \(0.0789563\pi\)
\(710\) −10.8589 + 33.4203i −0.407527 + 1.25424i
\(711\) −3.44670 10.6079i −0.129261 0.397826i
\(712\) −7.95936 −0.298290
\(713\) −0.607527 24.0938i −0.0227521 0.902319i
\(714\) −0.0668583 −0.00250211
\(715\) 4.00926 + 12.3392i 0.149938 + 0.461461i
\(716\) −0.159419 + 0.490642i −0.00595778 + 0.0183362i
\(717\) −19.8476 + 14.4201i −0.741223 + 0.538530i
\(718\) 52.8172 1.97112
\(719\) 21.1714 0.789560 0.394780 0.918776i \(-0.370821\pi\)
0.394780 + 0.918776i \(0.370821\pi\)
\(720\) 14.4199 10.4767i 0.537399 0.390443i
\(721\) 0.215598 + 0.156641i 0.00802930 + 0.00583363i
\(722\) 19.1036 + 13.8796i 0.710961 + 0.516544i
\(723\) −9.37404 28.8503i −0.348624 1.07296i
\(724\) −1.71473 + 1.24582i −0.0637274 + 0.0463007i
\(725\) −0.567684 1.74715i −0.0210833 0.0648876i
\(726\) 11.9541 36.7909i 0.443658 1.36544i
\(727\) 2.32539 + 1.68949i 0.0862438 + 0.0626598i 0.630072 0.776537i \(-0.283026\pi\)
−0.543828 + 0.839197i \(0.683026\pi\)
\(728\) 0.0392356 0.120755i 0.00145417 0.00447547i
\(729\) 4.71030 14.4968i 0.174455 0.536919i
\(730\) −4.18991 3.04415i −0.155076 0.112669i
\(731\) 1.20590 3.71139i 0.0446019 0.137271i
\(732\) −0.286746 0.882513i −0.0105984 0.0326186i
\(733\) −21.3929 + 15.5428i −0.790164 + 0.574088i −0.908012 0.418944i \(-0.862400\pi\)
0.117848 + 0.993032i \(0.462400\pi\)
\(734\) −5.20720 16.0261i −0.192201 0.591535i
\(735\) −12.7291 9.24826i −0.469521 0.341127i
\(736\) −3.43702 2.49714i −0.126690 0.0920458i
\(737\) −57.7550 + 41.9615i −2.12743 + 1.54567i
\(738\) 30.9823 1.14047
\(739\) −11.6366 −0.428060 −0.214030 0.976827i \(-0.568659\pi\)
−0.214030 + 0.976827i \(0.568659\pi\)
\(740\) −0.739165 + 0.537035i −0.0271722 + 0.0197418i
\(741\) 0.556460 1.71261i 0.0204421 0.0629142i
\(742\) −0.132392 0.407461i −0.00486026 0.0149584i
\(743\) −51.8210 −1.90113 −0.950565 0.310526i \(-0.899495\pi\)
−0.950565 + 0.310526i \(0.899495\pi\)
\(744\) −14.9766 4.45208i −0.549069 0.163221i
\(745\) −40.7776 −1.49398
\(746\) 10.2634 + 31.5873i 0.375768 + 1.15649i
\(747\) −3.76033 + 11.5731i −0.137583 + 0.423438i
\(748\) 0.780925 0.567376i 0.0285535 0.0207453i
\(749\) 0.434574 0.0158790
\(750\) 17.7243 0.647201
\(751\) −20.2054 + 14.6801i −0.737304 + 0.535683i −0.891866 0.452300i \(-0.850603\pi\)
0.154562 + 0.987983i \(0.450603\pi\)
\(752\) −23.0487 16.7458i −0.840499 0.610658i
\(753\) 17.6685 + 12.8369i 0.643875 + 0.467802i
\(754\) 2.41631 + 7.43663i 0.0879967 + 0.270826i
\(755\) 4.07235 2.95874i 0.148208 0.107679i
\(756\) 0.0129845 + 0.0399621i 0.000472240 + 0.00145341i
\(757\) −3.60140 + 11.0840i −0.130895 + 0.402853i −0.994929 0.100580i \(-0.967930\pi\)
0.864034 + 0.503433i \(0.167930\pi\)
\(758\) −16.3467 11.8766i −0.593739 0.431377i
\(759\) 8.38529 25.8073i 0.304367 0.936745i
\(760\) 3.10081 9.54332i 0.112478 0.346172i
\(761\) −16.4154 11.9265i −0.595058 0.432335i 0.249064 0.968487i \(-0.419877\pi\)
−0.844121 + 0.536152i \(0.819877\pi\)
\(762\) −3.63579 + 11.1898i −0.131711 + 0.405364i
\(763\) 0.204228 + 0.628548i 0.00739354 +