Properties

Label 400.8.c.s.49.1
Level $400$
Weight $8$
Character 400.49
Analytic conductor $124.954$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,8,Mod(49,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,4552] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.954010194\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{649})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 325x^{2} + 26244 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(12.2377i\) of defining polynomial
Character \(\chi\) \(=\) 400.49
Dual form 400.8.c.s.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-45.4755i q^{3} -1369.97i q^{7} +118.981 q^{9} +1012.43 q^{11} +3643.00i q^{13} +5532.37i q^{17} +23238.9 q^{19} -62300.0 q^{21} -96310.5i q^{23} -104866. i q^{27} +139729. q^{29} +208208. q^{31} -46041.0i q^{33} -448306. i q^{37} +165667. q^{39} -79718.5 q^{41} -227324. i q^{43} +719892. i q^{47} -1.05328e6 q^{49} +251587. q^{51} -495702. i q^{53} -1.05680e6i q^{57} -81006.9 q^{59} +3.15701e6 q^{61} -163000. i q^{63} +1.06340e6i q^{67} -4.37976e6 q^{69} +3.00099e6 q^{71} +405758. i q^{73} -1.38701e6i q^{77} -4.71733e6 q^{79} -4.50860e6 q^{81} -5.14106e6i q^{83} -6.35423e6i q^{87} +8.62652e6 q^{89} +4.99080e6 q^{91} -9.46835e6i q^{93} +6.99663e6i q^{97} +120460. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4552 q^{9} - 8688 q^{11} + 36400 q^{19} - 133032 q^{21} - 111600 q^{29} + 603552 q^{31} + 177616 q^{39} - 216972 q^{41} - 1645172 q^{49} + 638992 q^{51} + 4135200 q^{59} + 1164088 q^{61} - 9582936 q^{69}+ \cdots - 22866944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 45.4755i − 0.972418i −0.873843 0.486209i \(-0.838379\pi\)
0.873843 0.486209i \(-0.161621\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 1369.97i − 1.50962i −0.655943 0.754811i \(-0.727729\pi\)
0.655943 0.754811i \(-0.272271\pi\)
\(8\) 0 0
\(9\) 118.981 0.0544037
\(10\) 0 0
\(11\) 1012.43 0.229347 0.114673 0.993403i \(-0.463418\pi\)
0.114673 + 0.993403i \(0.463418\pi\)
\(12\) 0 0
\(13\) 3643.00i 0.459894i 0.973203 + 0.229947i \(0.0738553\pi\)
−0.973203 + 0.229947i \(0.926145\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5532.37i 0.273111i 0.990632 + 0.136556i \(0.0436033\pi\)
−0.990632 + 0.136556i \(0.956397\pi\)
\(18\) 0 0
\(19\) 23238.9 0.777281 0.388640 0.921390i \(-0.372945\pi\)
0.388640 + 0.921390i \(0.372945\pi\)
\(20\) 0 0
\(21\) −62300.0 −1.46798
\(22\) 0 0
\(23\) − 96310.5i − 1.65054i −0.564738 0.825270i \(-0.691023\pi\)
0.564738 0.825270i \(-0.308977\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 104866.i − 1.02532i
\(28\) 0 0
\(29\) 139729. 1.06388 0.531940 0.846782i \(-0.321463\pi\)
0.531940 + 0.846782i \(0.321463\pi\)
\(30\) 0 0
\(31\) 208208. 1.25525 0.627626 0.778515i \(-0.284027\pi\)
0.627626 + 0.778515i \(0.284027\pi\)
\(32\) 0 0
\(33\) − 46041.0i − 0.223021i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 448306.i − 1.45502i −0.686098 0.727509i \(-0.740678\pi\)
0.686098 0.727509i \(-0.259322\pi\)
\(38\) 0 0
\(39\) 165667. 0.447209
\(40\) 0 0
\(41\) −79718.5 −0.180641 −0.0903203 0.995913i \(-0.528789\pi\)
−0.0903203 + 0.995913i \(0.528789\pi\)
\(42\) 0 0
\(43\) − 227324.i − 0.436020i −0.975947 0.218010i \(-0.930043\pi\)
0.975947 0.218010i \(-0.0699565\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 719892.i 1.01140i 0.862708 + 0.505702i \(0.168766\pi\)
−0.862708 + 0.505702i \(0.831234\pi\)
\(48\) 0 0
\(49\) −1.05328e6 −1.27896
\(50\) 0 0
\(51\) 251587. 0.265578
\(52\) 0 0
\(53\) − 495702.i − 0.457357i −0.973502 0.228678i \(-0.926560\pi\)
0.973502 0.228678i \(-0.0734404\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 1.05680e6i − 0.755841i
\(58\) 0 0
\(59\) −81006.9 −0.0513500 −0.0256750 0.999670i \(-0.508173\pi\)
−0.0256750 + 0.999670i \(0.508173\pi\)
\(60\) 0 0
\(61\) 3.15701e6 1.78083 0.890414 0.455151i \(-0.150415\pi\)
0.890414 + 0.455151i \(0.150415\pi\)
\(62\) 0 0
\(63\) − 163000.i − 0.0821290i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.06340e6i 0.431950i 0.976399 + 0.215975i \(0.0692929\pi\)
−0.976399 + 0.215975i \(0.930707\pi\)
\(68\) 0 0
\(69\) −4.37976e6 −1.60501
\(70\) 0 0
\(71\) 3.00099e6 0.995087 0.497543 0.867439i \(-0.334235\pi\)
0.497543 + 0.867439i \(0.334235\pi\)
\(72\) 0 0
\(73\) 405758.i 0.122078i 0.998135 + 0.0610389i \(0.0194414\pi\)
−0.998135 + 0.0610389i \(0.980559\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 1.38701e6i − 0.346227i
\(78\) 0 0
\(79\) −4.71733e6 −1.07647 −0.538235 0.842795i \(-0.680909\pi\)
−0.538235 + 0.842795i \(0.680909\pi\)
\(80\) 0 0
\(81\) −4.50860e6 −0.942637
\(82\) 0 0
\(83\) − 5.14106e6i − 0.986914i −0.869770 0.493457i \(-0.835733\pi\)
0.869770 0.493457i \(-0.164267\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 6.35423e6i − 1.03454i
\(88\) 0 0
\(89\) 8.62652e6 1.29709 0.648546 0.761175i \(-0.275377\pi\)
0.648546 + 0.761175i \(0.275377\pi\)
\(90\) 0 0
\(91\) 4.99080e6 0.694266
\(92\) 0 0
\(93\) − 9.46835e6i − 1.22063i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 6.99663e6i 0.778373i 0.921159 + 0.389187i \(0.127244\pi\)
−0.921159 + 0.389187i \(0.872756\pi\)
\(98\) 0 0
\(99\) 120460. 0.0124773
\(100\) 0 0
\(101\) 5.34837e6 0.516531 0.258266 0.966074i \(-0.416849\pi\)
0.258266 + 0.966074i \(0.416849\pi\)
\(102\) 0 0
\(103\) − 7.09826e6i − 0.640061i −0.947407 0.320031i \(-0.896307\pi\)
0.947407 0.320031i \(-0.103693\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1.01014e7i − 0.797145i −0.917137 0.398573i \(-0.869506\pi\)
0.917137 0.398573i \(-0.130494\pi\)
\(108\) 0 0
\(109\) 1.20315e6 0.0889874 0.0444937 0.999010i \(-0.485833\pi\)
0.0444937 + 0.999010i \(0.485833\pi\)
\(110\) 0 0
\(111\) −2.03869e7 −1.41489
\(112\) 0 0
\(113\) − 529610.i − 0.0345288i −0.999851 0.0172644i \(-0.994504\pi\)
0.999851 0.0172644i \(-0.00549570\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 433448.i 0.0250199i
\(118\) 0 0
\(119\) 7.57918e6 0.412295
\(120\) 0 0
\(121\) −1.84621e7 −0.947400
\(122\) 0 0
\(123\) 3.62524e6i 0.175658i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.90420e7i 0.824897i 0.910981 + 0.412448i \(0.135326\pi\)
−0.910981 + 0.412448i \(0.864674\pi\)
\(128\) 0 0
\(129\) −1.03377e7 −0.423993
\(130\) 0 0
\(131\) −4.51565e7 −1.75498 −0.877488 0.479599i \(-0.840782\pi\)
−0.877488 + 0.479599i \(0.840782\pi\)
\(132\) 0 0
\(133\) − 3.18366e7i − 1.17340i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.51625e7i 1.16831i 0.811642 + 0.584155i \(0.198574\pi\)
−0.811642 + 0.584155i \(0.801426\pi\)
\(138\) 0 0
\(139\) −4.10740e7 −1.29722 −0.648612 0.761119i \(-0.724650\pi\)
−0.648612 + 0.761119i \(0.724650\pi\)
\(140\) 0 0
\(141\) 3.27374e7 0.983507
\(142\) 0 0
\(143\) 3.68830e6i 0.105475i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 4.78982e7i 1.24368i
\(148\) 0 0
\(149\) −5.46024e7 −1.35226 −0.676129 0.736783i \(-0.736344\pi\)
−0.676129 + 0.736783i \(0.736344\pi\)
\(150\) 0 0
\(151\) 7.68654e6 0.181682 0.0908409 0.995865i \(-0.471045\pi\)
0.0908409 + 0.995865i \(0.471045\pi\)
\(152\) 0 0
\(153\) 658246.i 0.0148583i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.63213e6i 0.0955283i 0.998859 + 0.0477641i \(0.0152096\pi\)
−0.998859 + 0.0477641i \(0.984790\pi\)
\(158\) 0 0
\(159\) −2.25423e7 −0.444742
\(160\) 0 0
\(161\) −1.31942e8 −2.49169
\(162\) 0 0
\(163\) − 2.15892e7i − 0.390462i −0.980757 0.195231i \(-0.937454\pi\)
0.980757 0.195231i \(-0.0625457\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.71330e7i 0.616953i 0.951232 + 0.308476i \(0.0998191\pi\)
−0.951232 + 0.308476i \(0.900181\pi\)
\(168\) 0 0
\(169\) 4.94771e7 0.788498
\(170\) 0 0
\(171\) 2.76498e6 0.0422869
\(172\) 0 0
\(173\) 6.07796e7i 0.892476i 0.894914 + 0.446238i \(0.147237\pi\)
−0.894914 + 0.446238i \(0.852763\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3.68383e6i 0.0499336i
\(178\) 0 0
\(179\) 3.05526e7 0.398164 0.199082 0.979983i \(-0.436204\pi\)
0.199082 + 0.979983i \(0.436204\pi\)
\(180\) 0 0
\(181\) −1.18125e8 −1.48070 −0.740349 0.672223i \(-0.765340\pi\)
−0.740349 + 0.672223i \(0.765340\pi\)
\(182\) 0 0
\(183\) − 1.43567e8i − 1.73171i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.60116e6i 0.0626372i
\(188\) 0 0
\(189\) −1.43663e8 −1.54785
\(190\) 0 0
\(191\) −8.20283e7 −0.851818 −0.425909 0.904766i \(-0.640046\pi\)
−0.425909 + 0.904766i \(0.640046\pi\)
\(192\) 0 0
\(193\) − 1.98988e8i − 1.99240i −0.0871152 0.996198i \(-0.527765\pi\)
0.0871152 0.996198i \(-0.472235\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.48880e7i 0.791069i 0.918451 + 0.395535i \(0.129441\pi\)
−0.918451 + 0.395535i \(0.870559\pi\)
\(198\) 0 0
\(199\) −4.12974e7 −0.371481 −0.185741 0.982599i \(-0.559468\pi\)
−0.185741 + 0.982599i \(0.559468\pi\)
\(200\) 0 0
\(201\) 4.83584e7 0.420036
\(202\) 0 0
\(203\) − 1.91424e8i − 1.60605i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 1.14591e7i − 0.0897955i
\(208\) 0 0
\(209\) 2.35279e7 0.178267
\(210\) 0 0
\(211\) 1.55077e7 0.113647 0.0568236 0.998384i \(-0.481903\pi\)
0.0568236 + 0.998384i \(0.481903\pi\)
\(212\) 0 0
\(213\) − 1.36472e8i − 0.967640i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 2.85238e8i − 1.89496i
\(218\) 0 0
\(219\) 1.84520e7 0.118711
\(220\) 0 0
\(221\) −2.01544e7 −0.125602
\(222\) 0 0
\(223\) − 4.16316e6i − 0.0251395i −0.999921 0.0125697i \(-0.995999\pi\)
0.999921 0.0125697i \(-0.00400118\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.41270e7i 0.363873i 0.983310 + 0.181937i \(0.0582366\pi\)
−0.983310 + 0.181937i \(0.941763\pi\)
\(228\) 0 0
\(229\) −5.41678e7 −0.298069 −0.149035 0.988832i \(-0.547617\pi\)
−0.149035 + 0.988832i \(0.547617\pi\)
\(230\) 0 0
\(231\) −6.30747e7 −0.336677
\(232\) 0 0
\(233\) − 2.74855e8i − 1.42350i −0.702431 0.711752i \(-0.747902\pi\)
0.702431 0.711752i \(-0.252098\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.14523e8i 1.04678i
\(238\) 0 0
\(239\) −1.86000e8 −0.881291 −0.440646 0.897681i \(-0.645250\pi\)
−0.440646 + 0.897681i \(0.645250\pi\)
\(240\) 0 0
\(241\) 2.37791e8 1.09430 0.547150 0.837034i \(-0.315713\pi\)
0.547150 + 0.837034i \(0.315713\pi\)
\(242\) 0 0
\(243\) − 2.43102e7i − 0.108684i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.46593e7i 0.357467i
\(248\) 0 0
\(249\) −2.33792e8 −0.959693
\(250\) 0 0
\(251\) −3.28304e8 −1.31044 −0.655221 0.755438i \(-0.727424\pi\)
−0.655221 + 0.755438i \(0.727424\pi\)
\(252\) 0 0
\(253\) − 9.75081e7i − 0.378546i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.01567e8i 0.373238i 0.982432 + 0.186619i \(0.0597530\pi\)
−0.982432 + 0.186619i \(0.940247\pi\)
\(258\) 0 0
\(259\) −6.14166e8 −2.19653
\(260\) 0 0
\(261\) 1.66250e7 0.0578790
\(262\) 0 0
\(263\) − 1.98884e8i − 0.674147i −0.941478 0.337073i \(-0.890563\pi\)
0.941478 0.337073i \(-0.109437\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 3.92295e8i − 1.26132i
\(268\) 0 0
\(269\) −2.44943e8 −0.767242 −0.383621 0.923491i \(-0.625323\pi\)
−0.383621 + 0.923491i \(0.625323\pi\)
\(270\) 0 0
\(271\) 3.91023e8 1.19347 0.596733 0.802440i \(-0.296465\pi\)
0.596733 + 0.802440i \(0.296465\pi\)
\(272\) 0 0
\(273\) − 2.26959e8i − 0.675116i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5.08902e8i 1.43865i 0.694674 + 0.719325i \(0.255549\pi\)
−0.694674 + 0.719325i \(0.744451\pi\)
\(278\) 0 0
\(279\) 2.47727e7 0.0682904
\(280\) 0 0
\(281\) −1.55563e8 −0.418248 −0.209124 0.977889i \(-0.567061\pi\)
−0.209124 + 0.977889i \(0.567061\pi\)
\(282\) 0 0
\(283\) − 1.14570e8i − 0.300481i −0.988649 0.150241i \(-0.951995\pi\)
0.988649 0.150241i \(-0.0480049\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.09212e8i 0.272699i
\(288\) 0 0
\(289\) 3.79732e8 0.925410
\(290\) 0 0
\(291\) 3.18175e8 0.756904
\(292\) 0 0
\(293\) 8.42345e8i 1.95638i 0.207713 + 0.978190i \(0.433398\pi\)
−0.207713 + 0.978190i \(0.566602\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1.06170e8i − 0.235154i
\(298\) 0 0
\(299\) 3.50859e8 0.759073
\(300\) 0 0
\(301\) −3.11427e8 −0.658225
\(302\) 0 0
\(303\) − 2.43220e8i − 0.502284i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.38090e7i 0.0469631i 0.999724 + 0.0234816i \(0.00747510\pi\)
−0.999724 + 0.0234816i \(0.992525\pi\)
\(308\) 0 0
\(309\) −3.22797e8 −0.622407
\(310\) 0 0
\(311\) −7.31704e8 −1.37935 −0.689674 0.724120i \(-0.742246\pi\)
−0.689674 + 0.724120i \(0.742246\pi\)
\(312\) 0 0
\(313\) − 9.21577e8i − 1.69874i −0.527799 0.849369i \(-0.676983\pi\)
0.527799 0.849369i \(-0.323017\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.85353e7i 0.138471i 0.997600 + 0.0692353i \(0.0220559\pi\)
−0.997600 + 0.0692353i \(0.977944\pi\)
\(318\) 0 0
\(319\) 1.41466e8 0.243997
\(320\) 0 0
\(321\) −4.59365e8 −0.775158
\(322\) 0 0
\(323\) 1.28566e8i 0.212284i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 5.47140e7i − 0.0865329i
\(328\) 0 0
\(329\) 9.86230e8 1.52684
\(330\) 0 0
\(331\) −3.78878e8 −0.574250 −0.287125 0.957893i \(-0.592700\pi\)
−0.287125 + 0.957893i \(0.592700\pi\)
\(332\) 0 0
\(333\) − 5.33398e7i − 0.0791584i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 1.08031e9i − 1.53760i −0.639489 0.768800i \(-0.720854\pi\)
0.639489 0.768800i \(-0.279146\pi\)
\(338\) 0 0
\(339\) −2.40843e7 −0.0335764
\(340\) 0 0
\(341\) 2.10797e8 0.287888
\(342\) 0 0
\(343\) 3.14726e8i 0.421117i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.77465e8i 1.12740i 0.825981 + 0.563698i \(0.190622\pi\)
−0.825981 + 0.563698i \(0.809378\pi\)
\(348\) 0 0
\(349\) −3.31907e8 −0.417953 −0.208976 0.977921i \(-0.567013\pi\)
−0.208976 + 0.977921i \(0.567013\pi\)
\(350\) 0 0
\(351\) 3.82026e8 0.471539
\(352\) 0 0
\(353\) 9.88344e8i 1.19590i 0.801532 + 0.597952i \(0.204019\pi\)
−0.801532 + 0.597952i \(0.795981\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 3.44667e8i − 0.400923i
\(358\) 0 0
\(359\) 1.41167e9 1.61028 0.805140 0.593084i \(-0.202090\pi\)
0.805140 + 0.593084i \(0.202090\pi\)
\(360\) 0 0
\(361\) −3.53826e8 −0.395835
\(362\) 0 0
\(363\) 8.39575e8i 0.921269i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 7.57010e8i 0.799412i 0.916643 + 0.399706i \(0.130888\pi\)
−0.916643 + 0.399706i \(0.869112\pi\)
\(368\) 0 0
\(369\) −9.48497e6 −0.00982752
\(370\) 0 0
\(371\) −6.79097e8 −0.690435
\(372\) 0 0
\(373\) 2.96259e8i 0.295591i 0.989018 + 0.147796i \(0.0472178\pi\)
−0.989018 + 0.147796i \(0.952782\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.09032e8i 0.489272i
\(378\) 0 0
\(379\) 1.32923e9 1.25419 0.627093 0.778944i \(-0.284244\pi\)
0.627093 + 0.778944i \(0.284244\pi\)
\(380\) 0 0
\(381\) 8.65944e8 0.802144
\(382\) 0 0
\(383\) 8.35565e8i 0.759949i 0.924997 + 0.379974i \(0.124067\pi\)
−0.924997 + 0.379974i \(0.875933\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 2.70472e7i − 0.0237211i
\(388\) 0 0
\(389\) −1.65397e8 −0.142464 −0.0712320 0.997460i \(-0.522693\pi\)
−0.0712320 + 0.997460i \(0.522693\pi\)
\(390\) 0 0
\(391\) 5.32825e8 0.450781
\(392\) 0 0
\(393\) 2.05351e9i 1.70657i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 2.01752e8i − 0.161827i −0.996721 0.0809134i \(-0.974216\pi\)
0.996721 0.0809134i \(-0.0257837\pi\)
\(398\) 0 0
\(399\) −1.44778e9 −1.14103
\(400\) 0 0
\(401\) −2.44937e8 −0.189692 −0.0948462 0.995492i \(-0.530236\pi\)
−0.0948462 + 0.995492i \(0.530236\pi\)
\(402\) 0 0
\(403\) 7.58502e8i 0.577283i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 4.53881e8i − 0.333704i
\(408\) 0 0
\(409\) −1.72583e8 −0.124728 −0.0623642 0.998053i \(-0.519864\pi\)
−0.0623642 + 0.998053i \(0.519864\pi\)
\(410\) 0 0
\(411\) 1.59903e9 1.13608
\(412\) 0 0
\(413\) 1.10977e8i 0.0775190i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.86786e9i 1.26144i
\(418\) 0 0
\(419\) −2.64174e9 −1.75445 −0.877225 0.480079i \(-0.840608\pi\)
−0.877225 + 0.480079i \(0.840608\pi\)
\(420\) 0 0
\(421\) 1.11997e9 0.731509 0.365754 0.930711i \(-0.380811\pi\)
0.365754 + 0.930711i \(0.380811\pi\)
\(422\) 0 0
\(423\) 8.56533e7i 0.0550241i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 4.32501e9i − 2.68838i
\(428\) 0 0
\(429\) 1.67727e8 0.102566
\(430\) 0 0
\(431\) 2.56747e9 1.54466 0.772332 0.635219i \(-0.219090\pi\)
0.772332 + 0.635219i \(0.219090\pi\)
\(432\) 0 0
\(433\) 9.65650e8i 0.571626i 0.958285 + 0.285813i \(0.0922637\pi\)
−0.958285 + 0.285813i \(0.907736\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 2.23815e9i − 1.28293i
\(438\) 0 0
\(439\) 2.67168e9 1.50716 0.753580 0.657356i \(-0.228325\pi\)
0.753580 + 0.657356i \(0.228325\pi\)
\(440\) 0 0
\(441\) −1.25320e8 −0.0695799
\(442\) 0 0
\(443\) − 9.25736e8i − 0.505911i −0.967478 0.252955i \(-0.918597\pi\)
0.967478 0.252955i \(-0.0814026\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2.48307e9i 1.31496i
\(448\) 0 0
\(449\) 3.43969e9 1.79332 0.896658 0.442724i \(-0.145988\pi\)
0.896658 + 0.442724i \(0.145988\pi\)
\(450\) 0 0
\(451\) −8.07098e7 −0.0414294
\(452\) 0 0
\(453\) − 3.49549e8i − 0.176671i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.40856e8i 0.216068i 0.994147 + 0.108034i \(0.0344555\pi\)
−0.994147 + 0.108034i \(0.965544\pi\)
\(458\) 0 0
\(459\) 5.80155e8 0.280027
\(460\) 0 0
\(461\) 2.97064e9 1.41220 0.706100 0.708112i \(-0.250453\pi\)
0.706100 + 0.708112i \(0.250453\pi\)
\(462\) 0 0
\(463\) 1.59975e9i 0.749062i 0.927214 + 0.374531i \(0.122196\pi\)
−0.927214 + 0.374531i \(0.877804\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 1.62694e9i − 0.739201i −0.929191 0.369600i \(-0.879495\pi\)
0.929191 0.369600i \(-0.120505\pi\)
\(468\) 0 0
\(469\) 1.45682e9 0.652080
\(470\) 0 0
\(471\) 2.10648e8 0.0928934
\(472\) 0 0
\(473\) − 2.30151e8i − 0.0999998i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 5.89790e7i − 0.0248819i
\(478\) 0 0
\(479\) −3.93755e8 −0.163701 −0.0818507 0.996645i \(-0.526083\pi\)
−0.0818507 + 0.996645i \(0.526083\pi\)
\(480\) 0 0
\(481\) 1.63318e9 0.669154
\(482\) 0 0
\(483\) 6.00015e9i 2.42296i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 2.90720e9i − 1.14058i −0.821445 0.570288i \(-0.806832\pi\)
0.821445 0.570288i \(-0.193168\pi\)
\(488\) 0 0
\(489\) −9.81777e8 −0.379692
\(490\) 0 0
\(491\) −1.49340e9 −0.569364 −0.284682 0.958622i \(-0.591888\pi\)
−0.284682 + 0.958622i \(0.591888\pi\)
\(492\) 0 0
\(493\) 7.73030e8i 0.290558i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 4.11127e9i − 1.50220i
\(498\) 0 0
\(499\) 2.32305e9 0.836965 0.418482 0.908225i \(-0.362562\pi\)
0.418482 + 0.908225i \(0.362562\pi\)
\(500\) 0 0
\(501\) 1.68864e9 0.599936
\(502\) 0 0
\(503\) − 4.58290e9i − 1.60566i −0.596210 0.802828i \(-0.703328\pi\)
0.596210 0.802828i \(-0.296672\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 2.24999e9i − 0.766749i
\(508\) 0 0
\(509\) 3.08836e9 1.03804 0.519022 0.854761i \(-0.326296\pi\)
0.519022 + 0.854761i \(0.326296\pi\)
\(510\) 0 0
\(511\) 5.55876e8 0.184291
\(512\) 0 0
\(513\) − 2.43696e9i − 0.796962i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 7.28843e8i 0.231962i
\(518\) 0 0
\(519\) 2.76398e9 0.867860
\(520\) 0 0
\(521\) 3.95517e9 1.22527 0.612637 0.790364i \(-0.290109\pi\)
0.612637 + 0.790364i \(0.290109\pi\)
\(522\) 0 0
\(523\) − 2.97750e9i − 0.910113i −0.890463 0.455057i \(-0.849619\pi\)
0.890463 0.455057i \(-0.150381\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.15188e9i 0.342824i
\(528\) 0 0
\(529\) −5.87088e9 −1.72428
\(530\) 0 0
\(531\) −9.63828e6 −0.00279363
\(532\) 0 0
\(533\) − 2.90415e8i − 0.0830756i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 1.38939e9i − 0.387182i
\(538\) 0 0
\(539\) −1.06637e9 −0.293324
\(540\) 0 0
\(541\) −4.75653e9 −1.29152 −0.645758 0.763542i \(-0.723459\pi\)
−0.645758 + 0.763542i \(0.723459\pi\)
\(542\) 0 0
\(543\) 5.37179e9i 1.43986i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4.58098e9i 1.19675i 0.801217 + 0.598374i \(0.204186\pi\)
−0.801217 + 0.598374i \(0.795814\pi\)
\(548\) 0 0
\(549\) 3.75624e8 0.0968836
\(550\) 0 0
\(551\) 3.24714e9 0.826933
\(552\) 0 0
\(553\) 6.46260e9i 1.62506i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 1.98969e9i − 0.487856i −0.969793 0.243928i \(-0.921564\pi\)
0.969793 0.243928i \(-0.0784361\pi\)
\(558\) 0 0
\(559\) 8.28143e8 0.200523
\(560\) 0 0
\(561\) 2.54716e8 0.0609096
\(562\) 0 0
\(563\) 1.51071e9i 0.356781i 0.983960 + 0.178390i \(0.0570890\pi\)
−0.983960 + 0.178390i \(0.942911\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 6.17665e9i 1.42302i
\(568\) 0 0
\(569\) −1.75619e8 −0.0399650 −0.0199825 0.999800i \(-0.506361\pi\)
−0.0199825 + 0.999800i \(0.506361\pi\)
\(570\) 0 0
\(571\) 2.21767e8 0.0498506 0.0249253 0.999689i \(-0.492065\pi\)
0.0249253 + 0.999689i \(0.492065\pi\)
\(572\) 0 0
\(573\) 3.73028e9i 0.828323i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 7.51519e9i 1.62864i 0.580418 + 0.814319i \(0.302889\pi\)
−0.580418 + 0.814319i \(0.697111\pi\)
\(578\) 0 0
\(579\) −9.04906e9 −1.93744
\(580\) 0 0
\(581\) −7.04310e9 −1.48987
\(582\) 0 0
\(583\) − 5.01866e8i − 0.104893i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 5.57215e9i − 1.13708i −0.822657 0.568538i \(-0.807509\pi\)
0.822657 0.568538i \(-0.192491\pi\)
\(588\) 0 0
\(589\) 4.83852e9 0.975683
\(590\) 0 0
\(591\) 3.86032e9 0.769250
\(592\) 0 0
\(593\) 2.27962e9i 0.448922i 0.974483 + 0.224461i \(0.0720621\pi\)
−0.974483 + 0.224461i \(0.927938\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.87802e9i 0.361235i
\(598\) 0 0
\(599\) 3.90822e9 0.742993 0.371497 0.928434i \(-0.378845\pi\)
0.371497 + 0.928434i \(0.378845\pi\)
\(600\) 0 0
\(601\) −2.15505e9 −0.404946 −0.202473 0.979288i \(-0.564898\pi\)
−0.202473 + 0.979288i \(0.564898\pi\)
\(602\) 0 0
\(603\) 1.26524e8i 0.0234997i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 5.06857e9i 0.919867i 0.887953 + 0.459933i \(0.152127\pi\)
−0.887953 + 0.459933i \(0.847873\pi\)
\(608\) 0 0
\(609\) −8.70510e9 −1.56176
\(610\) 0 0
\(611\) −2.62257e9 −0.465138
\(612\) 0 0
\(613\) − 6.56079e9i − 1.15039i −0.818017 0.575194i \(-0.804927\pi\)
0.818017 0.575194i \(-0.195073\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 1.11814e8i − 0.0191645i −0.999954 0.00958223i \(-0.996950\pi\)
0.999954 0.00958223i \(-0.00305017\pi\)
\(618\) 0 0
\(619\) 1.48440e9 0.251556 0.125778 0.992058i \(-0.459857\pi\)
0.125778 + 0.992058i \(0.459857\pi\)
\(620\) 0 0
\(621\) −1.00997e10 −1.69233
\(622\) 0 0
\(623\) − 1.18181e10i − 1.95812i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 1.06994e9i − 0.173350i
\(628\) 0 0
\(629\) 2.48019e9 0.397382
\(630\) 0 0
\(631\) −6.22722e9 −0.986714 −0.493357 0.869827i \(-0.664230\pi\)
−0.493357 + 0.869827i \(0.664230\pi\)
\(632\) 0 0
\(633\) − 7.05220e8i − 0.110513i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 3.83708e9i − 0.588184i
\(638\) 0 0
\(639\) 3.57061e8 0.0541364
\(640\) 0 0
\(641\) 6.72145e9 1.00800 0.503999 0.863704i \(-0.331861\pi\)
0.503999 + 0.863704i \(0.331861\pi\)
\(642\) 0 0
\(643\) 6.13000e9i 0.909332i 0.890662 + 0.454666i \(0.150241\pi\)
−0.890662 + 0.454666i \(0.849759\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.10514e10i 1.60418i 0.597204 + 0.802089i \(0.296278\pi\)
−0.597204 + 0.802089i \(0.703722\pi\)
\(648\) 0 0
\(649\) −8.20142e7 −0.0117769
\(650\) 0 0
\(651\) −1.29714e10 −1.84269
\(652\) 0 0
\(653\) − 1.90379e9i − 0.267561i −0.991011 0.133781i \(-0.957288\pi\)
0.991011 0.133781i \(-0.0427117\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4.82774e7i 0.00664149i
\(658\) 0 0
\(659\) 1.16276e9 0.158268 0.0791339 0.996864i \(-0.474785\pi\)
0.0791339 + 0.996864i \(0.474785\pi\)
\(660\) 0 0
\(661\) −2.20847e9 −0.297431 −0.148716 0.988880i \(-0.547514\pi\)
−0.148716 + 0.988880i \(0.547514\pi\)
\(662\) 0 0
\(663\) 9.16532e8i 0.122138i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 1.34573e10i − 1.75598i
\(668\) 0 0
\(669\) −1.89322e8 −0.0244461
\(670\) 0 0
\(671\) 3.19627e9 0.408427
\(672\) 0 0
\(673\) − 9.22930e9i − 1.16712i −0.812070 0.583561i \(-0.801659\pi\)
0.812070 0.583561i \(-0.198341\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.75119e9i 0.712357i 0.934418 + 0.356178i \(0.115920\pi\)
−0.934418 + 0.356178i \(0.884080\pi\)
\(678\) 0 0
\(679\) 9.58518e9 1.17505
\(680\) 0 0
\(681\) 2.91620e9 0.353837
\(682\) 0 0
\(683\) − 2.96482e9i − 0.356063i −0.984025 0.178031i \(-0.943027\pi\)
0.984025 0.178031i \(-0.0569729\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 2.46331e9i 0.289848i
\(688\) 0 0
\(689\) 1.80584e9 0.210336
\(690\) 0 0
\(691\) −1.35266e10 −1.55961 −0.779805 0.626023i \(-0.784682\pi\)
−0.779805 + 0.626023i \(0.784682\pi\)
\(692\) 0 0
\(693\) − 1.65027e8i − 0.0188360i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 4.41032e8i − 0.0493350i
\(698\) 0 0
\(699\) −1.24992e10 −1.38424
\(700\) 0 0
\(701\) 8.89669e9 0.975473 0.487737 0.872991i \(-0.337823\pi\)
0.487737 + 0.872991i \(0.337823\pi\)
\(702\) 0 0
\(703\) − 1.04181e10i − 1.13096i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 7.32710e9i − 0.779766i
\(708\) 0 0
\(709\) 4.02759e9 0.424408 0.212204 0.977225i \(-0.431936\pi\)
0.212204 + 0.977225i \(0.431936\pi\)
\(710\) 0 0
\(711\) −5.61272e8 −0.0585639
\(712\) 0 0
\(713\) − 2.00526e10i − 2.07184i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 8.45842e9i 0.856983i
\(718\) 0 0
\(719\) −9.22714e9 −0.925798 −0.462899 0.886411i \(-0.653191\pi\)
−0.462899 + 0.886411i \(0.653191\pi\)
\(720\) 0 0
\(721\) −9.72440e9 −0.966250
\(722\) 0 0
\(723\) − 1.08137e10i − 1.06412i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 9.12103e9i 0.880386i 0.897903 + 0.440193i \(0.145090\pi\)
−0.897903 + 0.440193i \(0.854910\pi\)
\(728\) 0 0
\(729\) −1.09658e10 −1.04832
\(730\) 0 0
\(731\) 1.25764e9 0.119082
\(732\) 0 0
\(733\) − 1.72029e10i − 1.61338i −0.590974 0.806691i \(-0.701256\pi\)
0.590974 0.806691i \(-0.298744\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.07662e9i 0.0990663i
\(738\) 0 0
\(739\) −1.73905e10 −1.58510 −0.792552 0.609805i \(-0.791248\pi\)
−0.792552 + 0.609805i \(0.791248\pi\)
\(740\) 0 0
\(741\) 3.84992e9 0.347607
\(742\) 0 0
\(743\) 4.62464e9i 0.413635i 0.978380 + 0.206817i \(0.0663106\pi\)
−0.978380 + 0.206817i \(0.933689\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 6.11688e8i − 0.0536918i
\(748\) 0 0
\(749\) −1.38386e10 −1.20339
\(750\) 0 0
\(751\) 1.36007e10 1.17171 0.585856 0.810415i \(-0.300758\pi\)
0.585856 + 0.810415i \(0.300758\pi\)
\(752\) 0 0
\(753\) 1.49298e10i 1.27430i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 1.78432e10i − 1.49499i −0.664269 0.747493i \(-0.731257\pi\)
0.664269 0.747493i \(-0.268743\pi\)
\(758\) 0 0
\(759\) −4.43423e9 −0.368105
\(760\) 0 0
\(761\) −1.41211e10 −1.16151 −0.580754 0.814079i \(-0.697242\pi\)
−0.580754 + 0.814079i \(0.697242\pi\)
\(762\) 0 0
\(763\) − 1.64829e9i − 0.134337i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 2.95108e8i − 0.0236155i
\(768\) 0 0
\(769\) 6.98040e9 0.553526 0.276763 0.960938i \(-0.410738\pi\)
0.276763 + 0.960938i \(0.410738\pi\)
\(770\) 0 0
\(771\) 4.61880e9 0.362943
\(772\) 0 0
\(773\) 5.57792e9i 0.434354i 0.976132 + 0.217177i \(0.0696849\pi\)
−0.976132 + 0.217177i \(0.930315\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2.79295e10i 2.13594i
\(778\) 0 0
\(779\) −1.85257e9 −0.140408
\(780\) 0 0
\(781\) 3.03831e9 0.228220
\(782\) 0 0
\(783\) − 1.46527e10i − 1.09082i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 1.26349e10i − 0.923978i −0.886886 0.461989i \(-0.847136\pi\)
0.886886 0.461989i \(-0.152864\pi\)
\(788\) 0 0
\(789\) −9.04434e9 −0.655552
\(790\) 0 0
\(791\) −7.25550e8 −0.0521254
\(792\) 0 0
\(793\) 1.15010e10i 0.818992i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.24597e9i 0.646916i 0.946242 + 0.323458i \(0.104846\pi\)
−0.946242 + 0.323458i \(0.895154\pi\)
\(798\) 0 0
\(799\) −3.98271e9 −0.276226
\(800\) 0 0
\(801\) 1.02639e9 0.0705666
\(802\) 0 0
\(803\) 4.10803e8i 0.0279982i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.11389e10i 0.746080i
\(808\) 0 0
\(809\) −3.77594e9 −0.250729 −0.125365 0.992111i \(-0.540010\pi\)
−0.125365 + 0.992111i \(0.540010\pi\)
\(810\) 0 0
\(811\) 8.24089e9 0.542502 0.271251 0.962509i \(-0.412563\pi\)
0.271251 + 0.962509i \(0.412563\pi\)
\(812\) 0 0
\(813\) − 1.77820e10i − 1.16055i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 5.28276e9i − 0.338910i
\(818\) 0 0
\(819\) 5.93810e8 0.0377706
\(820\) 0 0
\(821\) 8.07649e9 0.509356 0.254678 0.967026i \(-0.418031\pi\)
0.254678 + 0.967026i \(0.418031\pi\)
\(822\) 0 0
\(823\) − 1.76555e10i − 1.10403i −0.833834 0.552016i \(-0.813859\pi\)
0.833834 0.552016i \(-0.186141\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 2.60329e9i − 0.160049i −0.996793 0.0800246i \(-0.974500\pi\)
0.996793 0.0800246i \(-0.0254999\pi\)
\(828\) 0 0
\(829\) −9.16053e9 −0.558444 −0.279222 0.960227i \(-0.590077\pi\)
−0.279222 + 0.960227i \(0.590077\pi\)
\(830\) 0 0
\(831\) 2.31426e10 1.39897
\(832\) 0 0
\(833\) − 5.82711e9i − 0.349297i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 2.18338e10i − 1.28704i
\(838\) 0 0
\(839\) 2.51395e10 1.46957 0.734784 0.678301i \(-0.237283\pi\)
0.734784 + 0.678301i \(0.237283\pi\)
\(840\) 0 0
\(841\) 2.27422e9 0.131840
\(842\) 0 0
\(843\) 7.07430e9i 0.406712i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.52926e10i 1.43022i
\(848\) 0 0
\(849\) −5.21012e9 −0.292193
\(850\) 0 0
\(851\) −4.31766e10 −2.40157
\(852\) 0 0
\(853\) − 1.37385e10i − 0.757908i −0.925415 0.378954i \(-0.876284\pi\)
0.925415 0.378954i \(-0.123716\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 2.41390e10i − 1.31004i −0.755610 0.655022i \(-0.772659\pi\)
0.755610 0.655022i \(-0.227341\pi\)
\(858\) 0 0
\(859\) −2.62094e10 −1.41085 −0.705426 0.708783i \(-0.749244\pi\)
−0.705426 + 0.708783i \(0.749244\pi\)
\(860\) 0 0
\(861\) 4.96646e9 0.265177
\(862\) 0 0
\(863\) − 1.61957e10i − 0.857750i −0.903364 0.428875i \(-0.858910\pi\)
0.903364 0.428875i \(-0.141090\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 1.72685e10i − 0.899885i
\(868\) 0 0
\(869\) −4.77599e9 −0.246885
\(870\) 0 0
\(871\) −3.87395e9 −0.198651
\(872\) 0 0
\(873\) 8.32465e8i 0.0423464i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 1.25717e10i − 0.629356i −0.949198 0.314678i \(-0.898103\pi\)
0.949198 0.314678i \(-0.101897\pi\)
\(878\) 0 0
\(879\) 3.83060e10 1.90242
\(880\) 0 0
\(881\) −3.40786e10 −1.67906 −0.839530 0.543313i \(-0.817170\pi\)
−0.839530 + 0.543313i \(0.817170\pi\)
\(882\) 0 0
\(883\) 2.78949e10i 1.36352i 0.731574 + 0.681762i \(0.238786\pi\)
−0.731574 + 0.681762i \(0.761214\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.29903e10i 1.58728i 0.608387 + 0.793641i \(0.291817\pi\)
−0.608387 + 0.793641i \(0.708183\pi\)
\(888\) 0 0
\(889\) 2.60870e10 1.24528
\(890\) 0 0
\(891\) −4.56466e9 −0.216191
\(892\) 0 0
\(893\) 1.67295e10i 0.786144i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 1.59555e10i − 0.738136i
\(898\) 0 0
\(899\) 2.90926e10 1.33544
\(900\) 0 0
\(901\) 2.74241e9 0.124909
\(902\) 0 0
\(903\) 1.41623e10i 0.640069i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 1.66008e10i − 0.738759i −0.929279 0.369380i \(-0.879570\pi\)
0.929279 0.369380i \(-0.120430\pi\)
\(908\) 0 0
\(909\) 6.36353e8 0.0281012
\(910\) 0 0
\(911\) 2.80189e9 0.122782 0.0613912 0.998114i \(-0.480446\pi\)
0.0613912 + 0.998114i \(0.480446\pi\)
\(912\) 0 0
\(913\) − 5.20499e9i − 0.226346i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.18631e10i 2.64935i
\(918\) 0 0
\(919\) −7.97528e9 −0.338955 −0.169477 0.985534i \(-0.554208\pi\)
−0.169477 + 0.985534i \(0.554208\pi\)
\(920\) 0 0
\(921\) 1.08273e9 0.0456678
\(922\) 0 0
\(923\) 1.09326e10i 0.457635i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 8.44557e8i − 0.0348217i
\(928\) 0 0
\(929\) 4.40021e10 1.80061 0.900303 0.435264i \(-0.143345\pi\)
0.900303 + 0.435264i \(0.143345\pi\)
\(930\) 0 0
\(931\) −2.44769e10 −0.994107
\(932\) 0 0
\(933\) 3.32746e10i 1.34130i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 1.85516e10i − 0.736702i −0.929687 0.368351i \(-0.879922\pi\)
0.929687 0.368351i \(-0.120078\pi\)
\(938\) 0 0
\(939\) −4.19092e10 −1.65188
\(940\) 0 0
\(941\) −3.98382e8 −0.0155860 −0.00779302 0.999970i \(-0.502481\pi\)
−0.00779302 + 0.999970i \(0.502481\pi\)
\(942\) 0 0
\(943\) 7.67772e9i 0.298155i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1.22967e10i − 0.470504i −0.971934 0.235252i \(-0.924409\pi\)
0.971934 0.235252i \(-0.0755915\pi\)
\(948\) 0 0
\(949\) −1.47818e9 −0.0561429
\(950\) 0 0
\(951\) 3.57143e9 0.134651
\(952\) 0 0
\(953\) − 2.00329e10i − 0.749754i −0.927075 0.374877i \(-0.877685\pi\)
0.927075 0.374877i \(-0.122315\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 6.43324e9i − 0.237267i
\(958\) 0 0
\(959\) 4.81716e10 1.76370
\(960\) 0 0
\(961\) 1.58379e10 0.575659
\(962\) 0 0
\(963\) − 1.20187e9i − 0.0433676i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.01344e10i 0.716055i 0.933711 + 0.358027i \(0.116551\pi\)
−0.933711 + 0.358027i \(0.883449\pi\)
\(968\) 0 0
\(969\) 5.84661e9 0.206429
\(970\) 0 0
\(971\) 5.02424e10 1.76118 0.880589 0.473881i \(-0.157147\pi\)
0.880589 + 0.473881i \(0.157147\pi\)
\(972\) 0 0
\(973\) 5.62702e10i 1.95832i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.03613e10i 1.04157i 0.853687 + 0.520786i \(0.174361\pi\)
−0.853687 + 0.520786i \(0.825639\pi\)
\(978\) 0 0
\(979\) 8.73379e9 0.297484
\(980\) 0 0
\(981\) 1.43152e8 0.00484124
\(982\) 0 0
\(983\) 3.64309e10i 1.22330i 0.791129 + 0.611650i \(0.209494\pi\)
−0.791129 + 0.611650i \(0.790506\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 4.48493e10i − 1.48472i
\(988\) 0 0
\(989\) −2.18937e10 −0.719668
\(990\) 0 0
\(991\) 2.79867e10 0.913470 0.456735 0.889603i \(-0.349019\pi\)
0.456735 + 0.889603i \(0.349019\pi\)
\(992\) 0 0
\(993\) 1.72296e10i 0.558411i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 3.06088e10i 0.978169i 0.872236 + 0.489084i \(0.162669\pi\)
−0.872236 + 0.489084i \(0.837331\pi\)
\(998\) 0 0
\(999\) −4.70119e10 −1.49186
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.8.c.s.49.1 4
4.3 odd 2 25.8.b.b.24.1 4
5.2 odd 4 400.8.a.v.1.1 2
5.3 odd 4 400.8.a.bd.1.2 2
5.4 even 2 inner 400.8.c.s.49.4 4
12.11 even 2 225.8.b.l.199.4 4
20.3 even 4 25.8.a.c.1.1 2
20.7 even 4 25.8.a.e.1.2 yes 2
20.19 odd 2 25.8.b.b.24.4 4
60.23 odd 4 225.8.a.v.1.2 2
60.47 odd 4 225.8.a.k.1.1 2
60.59 even 2 225.8.b.l.199.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.8.a.c.1.1 2 20.3 even 4
25.8.a.e.1.2 yes 2 20.7 even 4
25.8.b.b.24.1 4 4.3 odd 2
25.8.b.b.24.4 4 20.19 odd 2
225.8.a.k.1.1 2 60.47 odd 4
225.8.a.v.1.2 2 60.23 odd 4
225.8.b.l.199.1 4 60.59 even 2
225.8.b.l.199.4 4 12.11 even 2
400.8.a.v.1.1 2 5.2 odd 4
400.8.a.bd.1.2 2 5.3 odd 4
400.8.c.s.49.1 4 1.1 even 1 trivial
400.8.c.s.49.4 4 5.4 even 2 inner