Properties

Label 400.8.c
Level $400$
Weight $8$
Character orbit 400.c
Rep. character $\chi_{400}(49,\cdot)$
Character field $\Q$
Dimension $62$
Newform subspaces $21$
Sturm bound $480$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 21 \)
Sturm bound: \(480\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(400, [\chi])\).

Total New Old
Modular forms 438 64 374
Cusp forms 402 62 340
Eisenstein series 36 2 34

Trace form

\( 62 q - 43738 q^{9} + 7988 q^{11} + 19428 q^{19} - 2032 q^{21} + 67604 q^{29} + 89280 q^{31} - 510776 q^{39} + 474984 q^{41} - 4531126 q^{49} + 5103980 q^{51} - 2778856 q^{59} - 2723700 q^{61} - 8414528 q^{69}+ \cdots + 5997048 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(400, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
400.8.c.a 400.c 5.b $2$ $124.954$ \(\Q(\sqrt{-1}) \) None 50.8.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+87 i q^{3}-1366 i q^{7}-5382 q^{9}+\cdots\)
400.8.c.b 400.c 5.b $2$ $124.954$ \(\Q(\sqrt{-1}) \) None 8.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+42\beta q^{3}-228\beta q^{7}-4869 q^{9}+\cdots\)
400.8.c.c 400.c 5.b $2$ $124.954$ \(\Q(\sqrt{-1}) \) None 200.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+69 i q^{3}+174 i q^{7}-2574 q^{9}+\cdots\)
400.8.c.d 400.c 5.b $2$ $124.954$ \(\Q(\sqrt{-1}) \) None 50.8.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+57 i q^{3}+1174 i q^{7}-1062 q^{9}+\cdots\)
400.8.c.e 400.c 5.b $2$ $124.954$ \(\Q(\sqrt{-1}) \) None 5.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+24\beta q^{3}-822\beta q^{7}-117 q^{9}+\cdots\)
400.8.c.f 400.c 5.b $2$ $124.954$ \(\Q(\sqrt{-1}) \) None 8.8.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+22\beta q^{3}+612\beta q^{7}+251 q^{9}+\cdots\)
400.8.c.g 400.c 5.b $2$ $124.954$ \(\Q(\sqrt{-1}) \) None 50.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+43 i q^{3}-974 i q^{7}+338 q^{9}+\cdots\)
400.8.c.h 400.c 5.b $2$ $124.954$ \(\Q(\sqrt{-1}) \) None 40.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+18\beta q^{3}+388\beta q^{7}+891 q^{9}+\cdots\)
400.8.c.i 400.c 5.b $2$ $124.954$ \(\Q(\sqrt{-1}) \) None 10.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+14\beta q^{3}-52\beta q^{7}+1403 q^{9}+\cdots\)
400.8.c.j 400.c 5.b $2$ $124.954$ \(\Q(\sqrt{-1}) \) None 2.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+6\beta q^{3}-508\beta q^{7}+2043 q^{9}+\cdots\)
400.8.c.k 400.c 5.b $2$ $124.954$ \(\Q(\sqrt{-1}) \) None 200.8.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+9 i q^{3}+694 i q^{7}+2106 q^{9}+\cdots\)
400.8.c.l 400.c 5.b $2$ $124.954$ \(\Q(\sqrt{-1}) \) None 20.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta q^{3}-353\beta q^{7}+2151 q^{9}+\cdots\)
400.8.c.m 400.c 5.b $4$ $124.954$ \(\Q(i, \sqrt{19})\) None 5.8.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{3})q^{3}+(5\beta _{1}-7\beta _{3})q^{7}+(-2777+\cdots)q^{9}+\cdots\)
400.8.c.n 400.c 5.b $4$ $124.954$ \(\Q(i, \sqrt{1129})\) None 20.8.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{2})q^{3}+(9\beta _{1}+83\beta _{2})q^{7}+(-2429+\cdots)q^{9}+\cdots\)
400.8.c.o 400.c 5.b $4$ $124.954$ \(\Q(i, \sqrt{3889})\) None 200.8.a.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2\beta _{1}-\beta _{2})q^{3}+(-572\beta _{1}+2\beta _{2}+\cdots)q^{7}+\cdots\)
400.8.c.p 400.c 5.b $4$ $124.954$ \(\Q(i, \sqrt{601})\) None 40.8.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-19\beta _{1}+\beta _{2})q^{3}+(199\beta _{1}-7\beta _{2}+\cdots)q^{7}+\cdots\)
400.8.c.q 400.c 5.b $4$ $124.954$ \(\Q(i, \sqrt{46})\) None 40.8.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{2})q^{3}+(-211\beta _{1}-17\beta _{2}+\cdots)q^{7}+\cdots\)
400.8.c.r 400.c 5.b $4$ $124.954$ \(\Q(i, \sqrt{2521})\) None 100.8.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+4\beta _{2})q^{3}+(6\beta _{1}-28\beta _{2})q^{7}+\cdots\)
400.8.c.s 400.c 5.b $4$ $124.954$ \(\Q(i, \sqrt{649})\) None 25.8.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+4\beta _{2})q^{3}+(-42\beta _{1}+60\beta _{2}+\cdots)q^{7}+\cdots\)
400.8.c.t 400.c 5.b $4$ $124.954$ \(\Q(i, \sqrt{6})\) None 40.8.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(9\beta _{1}+\beta _{2})q^{3}+(101\beta _{1}+63\beta _{2})q^{7}+\cdots\)
400.8.c.u 400.c 5.b $6$ $124.954$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 200.8.a.o \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2^{5}\beta _{1}+\beta _{2})q^{3}+(-543\beta _{1}+2\beta _{2}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(400, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(400, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)