Properties

Label 400.8.c.s
Level $400$
Weight $8$
Character orbit 400.c
Analytic conductor $124.954$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,8,Mod(49,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,4552] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.954010194\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{649})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 325x^{2} + 26244 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (4 \beta_{2} - \beta_1) q^{3} + (60 \beta_{2} - 42 \beta_1) q^{7} + ( - 8 \beta_{3} + 1138) q^{9} + (25 \beta_{3} - 2172) q^{11} + ( - 1768 \beta_{2} - 204 \beta_1) q^{13} + (687 \beta_{2} + 352 \beta_1) q^{17}+ \cdots + (45826 \beta_{3} - 5716736) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4552 q^{9} - 8688 q^{11} + 36400 q^{19} - 133032 q^{21} - 111600 q^{29} + 603552 q^{31} + 177616 q^{39} - 216972 q^{41} - 1645172 q^{49} + 638992 q^{51} + 4135200 q^{59} + 1164088 q^{61} - 9582936 q^{69}+ \cdots - 22866944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 325x^{2} + 26244 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 487\nu ) / 162 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{3} - 815\nu ) / 162 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 10\nu^{2} + 1625 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 5\beta_1 ) / 10 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 1625 ) / 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -487\beta_{2} - 815\beta_1 ) / 10 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
12.2377i
13.2377i
13.2377i
12.2377i
0 45.4755i 0 0 0 1369.97i 0 118.981 0
49.2 0 5.47548i 0 0 0 769.970i 0 2157.02 0
49.3 0 5.47548i 0 0 0 769.970i 0 2157.02 0
49.4 0 45.4755i 0 0 0 1369.97i 0 118.981 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.8.c.s 4
4.b odd 2 1 25.8.b.b 4
5.b even 2 1 inner 400.8.c.s 4
5.c odd 4 1 400.8.a.v 2
5.c odd 4 1 400.8.a.bd 2
12.b even 2 1 225.8.b.l 4
20.d odd 2 1 25.8.b.b 4
20.e even 4 1 25.8.a.c 2
20.e even 4 1 25.8.a.e yes 2
60.h even 2 1 225.8.b.l 4
60.l odd 4 1 225.8.a.k 2
60.l odd 4 1 225.8.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
25.8.a.c 2 20.e even 4 1
25.8.a.e yes 2 20.e even 4 1
25.8.b.b 4 4.b odd 2 1
25.8.b.b 4 20.d odd 2 1
225.8.a.k 2 60.l odd 4 1
225.8.a.v 2 60.l odd 4 1
225.8.b.l 4 12.b even 2 1
225.8.b.l 4 60.h even 2 1
400.8.a.v 2 5.c odd 4 1
400.8.a.bd 2 5.c odd 4 1
400.8.c.s 4 1.a even 1 1 trivial
400.8.c.s 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 2098T_{3}^{2} + 62001 \) acting on \(S_{8}^{\mathrm{new}}(400, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 2098 T^{2} + 62001 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 1112678986896 \) Copy content Toggle raw display
$11$ \( (T^{2} + 4344 T - 5423041)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 26\!\cdots\!56 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 47\!\cdots\!41 \) Copy content Toggle raw display
$19$ \( (T^{2} - 18200 T - 117098225)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 52\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( (T^{2} + 55800 T - 27320953600)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 301776 T + 19481626044)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 52\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( (T^{2} + 108486 T + 2293303049)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 28\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 59\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 96\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( (T^{2} - 2067600 T - 174052062400)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots - 8129212445516)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 73\!\cdots\!41 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots + 5183381635664)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 50\!\cdots\!61 \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots + 11646468081900)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 12\!\cdots\!41 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots - 22736713427775)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 50\!\cdots\!76 \) Copy content Toggle raw display
show more
show less