Properties

Label 225.8.b.l.199.4
Level $225$
Weight $8$
Character 225.199
Analytic conductor $70.287$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,8,Mod(199,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.199"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 225.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-362,0,0,0,0,0,0,-8688] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(70.2866307339\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{649})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 325x^{2} + 26244 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.4
Root \(13.2377i\) of defining polynomial
Character \(\chi\) \(=\) 225.199
Dual form 225.8.b.l.199.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+20.2377i q^{2} -281.566 q^{4} +1369.97i q^{7} -3107.83i q^{8} +1012.43 q^{11} +3643.00i q^{13} -27725.1 q^{14} +26855.0 q^{16} -5532.37i q^{17} -23238.9 q^{19} +20489.4i q^{22} -96310.5i q^{23} -73726.1 q^{26} -385737. i q^{28} -139729. q^{29} -208208. q^{31} +145682. i q^{32} +111963. q^{34} -448306. i q^{37} -470303. i q^{38} +79718.5 q^{41} +227324. i q^{43} -285067. q^{44} +1.94911e6 q^{46} +719892. i q^{47} -1.05328e6 q^{49} -1.02575e6i q^{52} +495702. i q^{53} +4.25763e6 q^{56} -2.82779e6i q^{58} -81006.9 q^{59} +3.15701e6 q^{61} -4.21366e6i q^{62} +489161. q^{64} -1.06340e6i q^{67} +1.55773e6i q^{68} +3.00099e6 q^{71} +405758. i q^{73} +9.07270e6 q^{74} +6.54328e6 q^{76} +1.38701e6i q^{77} +4.71733e6 q^{79} +1.61332e6i q^{82} -5.14106e6i q^{83} -4.60053e6 q^{86} -3.14648e6i q^{88} -8.62652e6 q^{89} -4.99080e6 q^{91} +2.71178e7i q^{92} -1.45690e7 q^{94} +6.99663e6i q^{97} -2.13159e7i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 362 q^{4} - 8688 q^{11} - 63516 q^{14} + 66914 q^{16} - 36400 q^{19} - 408 q^{26} + 111600 q^{29} - 603552 q^{31} + 353846 q^{34} + 216972 q^{41} - 1647486 q^{44} + 4685868 q^{46} - 1645172 q^{49}+ \cdots - 17950264 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 20.2377i 1.78878i 0.447288 + 0.894390i \(0.352390\pi\)
−0.447288 + 0.894390i \(0.647610\pi\)
\(3\) 0 0
\(4\) −281.566 −2.19974
\(5\) 0 0
\(6\) 0 0
\(7\) 1369.97i 1.50962i 0.655943 + 0.754811i \(0.272271\pi\)
−0.655943 + 0.754811i \(0.727729\pi\)
\(8\) − 3107.83i − 2.14606i
\(9\) 0 0
\(10\) 0 0
\(11\) 1012.43 0.229347 0.114673 0.993403i \(-0.463418\pi\)
0.114673 + 0.993403i \(0.463418\pi\)
\(12\) 0 0
\(13\) 3643.00i 0.459894i 0.973203 + 0.229947i \(0.0738553\pi\)
−0.973203 + 0.229947i \(0.926145\pi\)
\(14\) −27725.1 −2.70038
\(15\) 0 0
\(16\) 26855.0 1.63910
\(17\) − 5532.37i − 0.273111i −0.990632 0.136556i \(-0.956397\pi\)
0.990632 0.136556i \(-0.0436033\pi\)
\(18\) 0 0
\(19\) −23238.9 −0.777281 −0.388640 0.921390i \(-0.627055\pi\)
−0.388640 + 0.921390i \(0.627055\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 20489.4i 0.410251i
\(23\) − 96310.5i − 1.65054i −0.564738 0.825270i \(-0.691023\pi\)
0.564738 0.825270i \(-0.308977\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −73726.1 −0.822649
\(27\) 0 0
\(28\) − 385737.i − 3.32077i
\(29\) −139729. −1.06388 −0.531940 0.846782i \(-0.678537\pi\)
−0.531940 + 0.846782i \(0.678537\pi\)
\(30\) 0 0
\(31\) −208208. −1.25525 −0.627626 0.778515i \(-0.715973\pi\)
−0.627626 + 0.778515i \(0.715973\pi\)
\(32\) 145682.i 0.785926i
\(33\) 0 0
\(34\) 111963. 0.488536
\(35\) 0 0
\(36\) 0 0
\(37\) − 448306.i − 1.45502i −0.686098 0.727509i \(-0.740678\pi\)
0.686098 0.727509i \(-0.259322\pi\)
\(38\) − 470303.i − 1.39038i
\(39\) 0 0
\(40\) 0 0
\(41\) 79718.5 0.180641 0.0903203 0.995913i \(-0.471211\pi\)
0.0903203 + 0.995913i \(0.471211\pi\)
\(42\) 0 0
\(43\) 227324.i 0.436020i 0.975947 + 0.218010i \(0.0699565\pi\)
−0.975947 + 0.218010i \(0.930043\pi\)
\(44\) −285067. −0.504502
\(45\) 0 0
\(46\) 1.94911e6 2.95245
\(47\) 719892.i 1.01140i 0.862708 + 0.505702i \(0.168766\pi\)
−0.862708 + 0.505702i \(0.831234\pi\)
\(48\) 0 0
\(49\) −1.05328e6 −1.27896
\(50\) 0 0
\(51\) 0 0
\(52\) − 1.02575e6i − 1.01164i
\(53\) 495702.i 0.457357i 0.973502 + 0.228678i \(0.0734404\pi\)
−0.973502 + 0.228678i \(0.926560\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.25763e6 3.23974
\(57\) 0 0
\(58\) − 2.82779e6i − 1.90305i
\(59\) −81006.9 −0.0513500 −0.0256750 0.999670i \(-0.508173\pi\)
−0.0256750 + 0.999670i \(0.508173\pi\)
\(60\) 0 0
\(61\) 3.15701e6 1.78083 0.890414 0.455151i \(-0.150415\pi\)
0.890414 + 0.455151i \(0.150415\pi\)
\(62\) − 4.21366e6i − 2.24537i
\(63\) 0 0
\(64\) 489161. 0.233250
\(65\) 0 0
\(66\) 0 0
\(67\) − 1.06340e6i − 0.431950i −0.976399 0.215975i \(-0.930707\pi\)
0.976399 0.215975i \(-0.0692929\pi\)
\(68\) 1.55773e6i 0.600773i
\(69\) 0 0
\(70\) 0 0
\(71\) 3.00099e6 0.995087 0.497543 0.867439i \(-0.334235\pi\)
0.497543 + 0.867439i \(0.334235\pi\)
\(72\) 0 0
\(73\) 405758.i 0.122078i 0.998135 + 0.0610389i \(0.0194414\pi\)
−0.998135 + 0.0610389i \(0.980559\pi\)
\(74\) 9.07270e6 2.60271
\(75\) 0 0
\(76\) 6.54328e6 1.70981
\(77\) 1.38701e6i 0.346227i
\(78\) 0 0
\(79\) 4.71733e6 1.07647 0.538235 0.842795i \(-0.319091\pi\)
0.538235 + 0.842795i \(0.319091\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1.61332e6i 0.323126i
\(83\) − 5.14106e6i − 0.986914i −0.869770 0.493457i \(-0.835733\pi\)
0.869770 0.493457i \(-0.164267\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.60053e6 −0.779944
\(87\) 0 0
\(88\) − 3.14648e6i − 0.492193i
\(89\) −8.62652e6 −1.29709 −0.648546 0.761175i \(-0.724623\pi\)
−0.648546 + 0.761175i \(0.724623\pi\)
\(90\) 0 0
\(91\) −4.99080e6 −0.694266
\(92\) 2.71178e7i 3.63075i
\(93\) 0 0
\(94\) −1.45690e7 −1.80918
\(95\) 0 0
\(96\) 0 0
\(97\) 6.99663e6i 0.778373i 0.921159 + 0.389187i \(0.127244\pi\)
−0.921159 + 0.389187i \(0.872756\pi\)
\(98\) − 2.13159e7i − 2.28777i
\(99\) 0 0
\(100\) 0 0
\(101\) −5.34837e6 −0.516531 −0.258266 0.966074i \(-0.583151\pi\)
−0.258266 + 0.966074i \(0.583151\pi\)
\(102\) 0 0
\(103\) 7.09826e6i 0.640061i 0.947407 + 0.320031i \(0.103693\pi\)
−0.947407 + 0.320031i \(0.896307\pi\)
\(104\) 1.13218e7 0.986961
\(105\) 0 0
\(106\) −1.00319e7 −0.818111
\(107\) − 1.01014e7i − 0.797145i −0.917137 0.398573i \(-0.869506\pi\)
0.917137 0.398573i \(-0.130494\pi\)
\(108\) 0 0
\(109\) 1.20315e6 0.0889874 0.0444937 0.999010i \(-0.485833\pi\)
0.0444937 + 0.999010i \(0.485833\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 3.67906e7i 2.47442i
\(113\) 529610.i 0.0345288i 0.999851 + 0.0172644i \(0.00549570\pi\)
−0.999851 + 0.0172644i \(0.994504\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.93428e7 2.34025
\(117\) 0 0
\(118\) − 1.63940e6i − 0.0918538i
\(119\) 7.57918e6 0.412295
\(120\) 0 0
\(121\) −1.84621e7 −0.947400
\(122\) 6.38908e7i 3.18551i
\(123\) 0 0
\(124\) 5.86243e7 2.76122
\(125\) 0 0
\(126\) 0 0
\(127\) − 1.90420e7i − 0.824897i −0.910981 0.412448i \(-0.864674\pi\)
0.910981 0.412448i \(-0.135326\pi\)
\(128\) 2.85468e7i 1.20316i
\(129\) 0 0
\(130\) 0 0
\(131\) −4.51565e7 −1.75498 −0.877488 0.479599i \(-0.840782\pi\)
−0.877488 + 0.479599i \(0.840782\pi\)
\(132\) 0 0
\(133\) − 3.18366e7i − 1.17340i
\(134\) 2.15207e7 0.772663
\(135\) 0 0
\(136\) −1.71937e7 −0.586114
\(137\) − 3.51625e7i − 1.16831i −0.811642 0.584155i \(-0.801426\pi\)
0.811642 0.584155i \(-0.198574\pi\)
\(138\) 0 0
\(139\) 4.10740e7 1.29722 0.648612 0.761119i \(-0.275350\pi\)
0.648612 + 0.761119i \(0.275350\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.07334e7i 1.77999i
\(143\) 3.68830e6i 0.105475i
\(144\) 0 0
\(145\) 0 0
\(146\) −8.21162e6 −0.218370
\(147\) 0 0
\(148\) 1.26228e8i 3.20066i
\(149\) 5.46024e7 1.35226 0.676129 0.736783i \(-0.263656\pi\)
0.676129 + 0.736783i \(0.263656\pi\)
\(150\) 0 0
\(151\) −7.68654e6 −0.181682 −0.0908409 0.995865i \(-0.528955\pi\)
−0.0908409 + 0.995865i \(0.528955\pi\)
\(152\) 7.22225e7i 1.66809i
\(153\) 0 0
\(154\) −2.80699e7 −0.619324
\(155\) 0 0
\(156\) 0 0
\(157\) 4.63213e6i 0.0955283i 0.998859 + 0.0477641i \(0.0152096\pi\)
−0.998859 + 0.0477641i \(0.984790\pi\)
\(158\) 9.54682e7i 1.92557i
\(159\) 0 0
\(160\) 0 0
\(161\) 1.31942e8 2.49169
\(162\) 0 0
\(163\) 2.15892e7i 0.390462i 0.980757 + 0.195231i \(0.0625457\pi\)
−0.980757 + 0.195231i \(0.937454\pi\)
\(164\) −2.24460e7 −0.397362
\(165\) 0 0
\(166\) 1.04043e8 1.76537
\(167\) 3.71330e7i 0.616953i 0.951232 + 0.308476i \(0.0998191\pi\)
−0.951232 + 0.308476i \(0.900181\pi\)
\(168\) 0 0
\(169\) 4.94771e7 0.788498
\(170\) 0 0
\(171\) 0 0
\(172\) − 6.40068e7i − 0.959128i
\(173\) − 6.07796e7i − 0.892476i −0.894914 0.446238i \(-0.852763\pi\)
0.894914 0.446238i \(-0.147237\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.71889e7 0.375922
\(177\) 0 0
\(178\) − 1.74581e8i − 2.32021i
\(179\) 3.05526e7 0.398164 0.199082 0.979983i \(-0.436204\pi\)
0.199082 + 0.979983i \(0.436204\pi\)
\(180\) 0 0
\(181\) −1.18125e8 −1.48070 −0.740349 0.672223i \(-0.765340\pi\)
−0.740349 + 0.672223i \(0.765340\pi\)
\(182\) − 1.01003e8i − 1.24189i
\(183\) 0 0
\(184\) −2.99317e8 −3.54216
\(185\) 0 0
\(186\) 0 0
\(187\) − 5.60116e6i − 0.0626372i
\(188\) − 2.02697e8i − 2.22482i
\(189\) 0 0
\(190\) 0 0
\(191\) −8.20283e7 −0.851818 −0.425909 0.904766i \(-0.640046\pi\)
−0.425909 + 0.904766i \(0.640046\pi\)
\(192\) 0 0
\(193\) − 1.98988e8i − 1.99240i −0.0871152 0.996198i \(-0.527765\pi\)
0.0871152 0.996198i \(-0.472235\pi\)
\(194\) −1.41596e8 −1.39234
\(195\) 0 0
\(196\) 2.96567e8 2.81336
\(197\) − 8.48880e7i − 0.791069i −0.918451 0.395535i \(-0.870559\pi\)
0.918451 0.395535i \(-0.129441\pi\)
\(198\) 0 0
\(199\) 4.12974e7 0.371481 0.185741 0.982599i \(-0.440532\pi\)
0.185741 + 0.982599i \(0.440532\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 1.08239e8i − 0.923961i
\(203\) − 1.91424e8i − 1.60605i
\(204\) 0 0
\(205\) 0 0
\(206\) −1.43653e8 −1.14493
\(207\) 0 0
\(208\) 9.78328e7i 0.753812i
\(209\) −2.35279e7 −0.178267
\(210\) 0 0
\(211\) −1.55077e7 −0.113647 −0.0568236 0.998384i \(-0.518097\pi\)
−0.0568236 + 0.998384i \(0.518097\pi\)
\(212\) − 1.39573e8i − 1.00606i
\(213\) 0 0
\(214\) 2.04429e8 1.42592
\(215\) 0 0
\(216\) 0 0
\(217\) − 2.85238e8i − 1.89496i
\(218\) 2.43491e7i 0.159179i
\(219\) 0 0
\(220\) 0 0
\(221\) 2.01544e7 0.125602
\(222\) 0 0
\(223\) 4.16316e6i 0.0251395i 0.999921 + 0.0125697i \(0.00400118\pi\)
−0.999921 + 0.0125697i \(0.995999\pi\)
\(224\) −1.99580e8 −1.18645
\(225\) 0 0
\(226\) −1.07181e7 −0.0617645
\(227\) 6.41270e7i 0.363873i 0.983310 + 0.181937i \(0.0582366\pi\)
−0.983310 + 0.181937i \(0.941763\pi\)
\(228\) 0 0
\(229\) −5.41678e7 −0.298069 −0.149035 0.988832i \(-0.547617\pi\)
−0.149035 + 0.988832i \(0.547617\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4.34253e8i 2.28315i
\(233\) 2.74855e8i 1.42350i 0.702431 + 0.711752i \(0.252098\pi\)
−0.702431 + 0.711752i \(0.747902\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.28088e7 0.112956
\(237\) 0 0
\(238\) 1.53385e8i 0.737505i
\(239\) −1.86000e8 −0.881291 −0.440646 0.897681i \(-0.645250\pi\)
−0.440646 + 0.897681i \(0.645250\pi\)
\(240\) 0 0
\(241\) 2.37791e8 1.09430 0.547150 0.837034i \(-0.315713\pi\)
0.547150 + 0.837034i \(0.315713\pi\)
\(242\) − 3.73632e8i − 1.69469i
\(243\) 0 0
\(244\) −8.88908e8 −3.91735
\(245\) 0 0
\(246\) 0 0
\(247\) − 8.46593e7i − 0.357467i
\(248\) 6.47075e8i 2.69385i
\(249\) 0 0
\(250\) 0 0
\(251\) −3.28304e8 −1.31044 −0.655221 0.755438i \(-0.727424\pi\)
−0.655221 + 0.755438i \(0.727424\pi\)
\(252\) 0 0
\(253\) − 9.75081e7i − 0.378546i
\(254\) 3.85367e8 1.47556
\(255\) 0 0
\(256\) −5.15111e8 −1.91894
\(257\) − 1.01567e8i − 0.373238i −0.982432 0.186619i \(-0.940247\pi\)
0.982432 0.186619i \(-0.0597530\pi\)
\(258\) 0 0
\(259\) 6.14166e8 2.19653
\(260\) 0 0
\(261\) 0 0
\(262\) − 9.13866e8i − 3.13927i
\(263\) − 1.98884e8i − 0.674147i −0.941478 0.337073i \(-0.890563\pi\)
0.941478 0.337073i \(-0.109437\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 6.44301e8 2.09895
\(267\) 0 0
\(268\) 2.99416e8i 0.950175i
\(269\) 2.44943e8 0.767242 0.383621 0.923491i \(-0.374677\pi\)
0.383621 + 0.923491i \(0.374677\pi\)
\(270\) 0 0
\(271\) −3.91023e8 −1.19347 −0.596733 0.802440i \(-0.703535\pi\)
−0.596733 + 0.802440i \(0.703535\pi\)
\(272\) − 1.48572e8i − 0.447657i
\(273\) 0 0
\(274\) 7.11610e8 2.08985
\(275\) 0 0
\(276\) 0 0
\(277\) 5.08902e8i 1.43865i 0.694674 + 0.719325i \(0.255549\pi\)
−0.694674 + 0.719325i \(0.744451\pi\)
\(278\) 8.31245e8i 2.32045i
\(279\) 0 0
\(280\) 0 0
\(281\) 1.55563e8 0.418248 0.209124 0.977889i \(-0.432939\pi\)
0.209124 + 0.977889i \(0.432939\pi\)
\(282\) 0 0
\(283\) 1.14570e8i 0.300481i 0.988649 + 0.150241i \(0.0480049\pi\)
−0.988649 + 0.150241i \(0.951995\pi\)
\(284\) −8.44978e8 −2.18893
\(285\) 0 0
\(286\) −7.46429e7 −0.188672
\(287\) 1.09212e8i 0.272699i
\(288\) 0 0
\(289\) 3.79732e8 0.925410
\(290\) 0 0
\(291\) 0 0
\(292\) − 1.14248e8i − 0.268539i
\(293\) − 8.42345e8i − 1.95638i −0.207713 0.978190i \(-0.566602\pi\)
0.207713 0.978190i \(-0.433398\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.39326e9 −3.12256
\(297\) 0 0
\(298\) 1.10503e9i 2.41889i
\(299\) 3.50859e8 0.759073
\(300\) 0 0
\(301\) −3.11427e8 −0.658225
\(302\) − 1.55558e8i − 0.324989i
\(303\) 0 0
\(304\) −6.24080e8 −1.27404
\(305\) 0 0
\(306\) 0 0
\(307\) − 2.38090e7i − 0.0469631i −0.999724 0.0234816i \(-0.992525\pi\)
0.999724 0.0234816i \(-0.00747510\pi\)
\(308\) − 3.90534e8i − 0.761607i
\(309\) 0 0
\(310\) 0 0
\(311\) −7.31704e8 −1.37935 −0.689674 0.724120i \(-0.742246\pi\)
−0.689674 + 0.724120i \(0.742246\pi\)
\(312\) 0 0
\(313\) − 9.21577e8i − 1.69874i −0.527799 0.849369i \(-0.676983\pi\)
0.527799 0.849369i \(-0.323017\pi\)
\(314\) −9.37438e7 −0.170879
\(315\) 0 0
\(316\) −1.32824e9 −2.36795
\(317\) − 7.85353e7i − 0.138471i −0.997600 0.0692353i \(-0.977944\pi\)
0.997600 0.0692353i \(-0.0220559\pi\)
\(318\) 0 0
\(319\) −1.41466e8 −0.243997
\(320\) 0 0
\(321\) 0 0
\(322\) 2.67022e9i 4.45709i
\(323\) 1.28566e8i 0.212284i
\(324\) 0 0
\(325\) 0 0
\(326\) −4.36916e8 −0.698451
\(327\) 0 0
\(328\) − 2.47752e8i − 0.387666i
\(329\) −9.86230e8 −1.52684
\(330\) 0 0
\(331\) 3.78878e8 0.574250 0.287125 0.957893i \(-0.407300\pi\)
0.287125 + 0.957893i \(0.407300\pi\)
\(332\) 1.44755e9i 2.17095i
\(333\) 0 0
\(334\) −7.51487e8 −1.10359
\(335\) 0 0
\(336\) 0 0
\(337\) − 1.08031e9i − 1.53760i −0.639489 0.768800i \(-0.720854\pi\)
0.639489 0.768800i \(-0.279146\pi\)
\(338\) 1.00130e9i 1.41045i
\(339\) 0 0
\(340\) 0 0
\(341\) −2.10797e8 −0.287888
\(342\) 0 0
\(343\) − 3.14726e8i − 0.421117i
\(344\) 7.06485e8 0.935726
\(345\) 0 0
\(346\) 1.23004e9 1.59644
\(347\) 8.77465e8i 1.12740i 0.825981 + 0.563698i \(0.190622\pi\)
−0.825981 + 0.563698i \(0.809378\pi\)
\(348\) 0 0
\(349\) −3.31907e8 −0.417953 −0.208976 0.977921i \(-0.567013\pi\)
−0.208976 + 0.977921i \(0.567013\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.47494e8i 0.180250i
\(353\) − 9.88344e8i − 1.19590i −0.801532 0.597952i \(-0.795981\pi\)
0.801532 0.597952i \(-0.204019\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2.42894e9 2.85326
\(357\) 0 0
\(358\) 6.18315e8i 0.712228i
\(359\) 1.41167e9 1.61028 0.805140 0.593084i \(-0.202090\pi\)
0.805140 + 0.593084i \(0.202090\pi\)
\(360\) 0 0
\(361\) −3.53826e8 −0.395835
\(362\) − 2.39058e9i − 2.64864i
\(363\) 0 0
\(364\) 1.40524e9 1.52720
\(365\) 0 0
\(366\) 0 0
\(367\) − 7.57010e8i − 0.799412i −0.916643 0.399706i \(-0.869112\pi\)
0.916643 0.399706i \(-0.130888\pi\)
\(368\) − 2.58642e9i − 2.70540i
\(369\) 0 0
\(370\) 0 0
\(371\) −6.79097e8 −0.690435
\(372\) 0 0
\(373\) 2.96259e8i 0.295591i 0.989018 + 0.147796i \(0.0472178\pi\)
−0.989018 + 0.147796i \(0.952782\pi\)
\(374\) 1.13355e8 0.112044
\(375\) 0 0
\(376\) 2.23730e9 2.17054
\(377\) − 5.09032e8i − 0.489272i
\(378\) 0 0
\(379\) −1.32923e9 −1.25419 −0.627093 0.778944i \(-0.715756\pi\)
−0.627093 + 0.778944i \(0.715756\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 1.66007e9i − 1.52372i
\(383\) 8.35565e8i 0.759949i 0.924997 + 0.379974i \(0.124067\pi\)
−0.924997 + 0.379974i \(0.875933\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.02706e9 3.56396
\(387\) 0 0
\(388\) − 1.97001e9i − 1.71221i
\(389\) 1.65397e8 0.142464 0.0712320 0.997460i \(-0.477307\pi\)
0.0712320 + 0.997460i \(0.477307\pi\)
\(390\) 0 0
\(391\) −5.32825e8 −0.450781
\(392\) 3.27340e9i 2.74472i
\(393\) 0 0
\(394\) 1.71794e9 1.41505
\(395\) 0 0
\(396\) 0 0
\(397\) − 2.01752e8i − 0.161827i −0.996721 0.0809134i \(-0.974216\pi\)
0.996721 0.0809134i \(-0.0257837\pi\)
\(398\) 8.35765e8i 0.664498i
\(399\) 0 0
\(400\) 0 0
\(401\) 2.44937e8 0.189692 0.0948462 0.995492i \(-0.469764\pi\)
0.0948462 + 0.995492i \(0.469764\pi\)
\(402\) 0 0
\(403\) − 7.58502e8i − 0.577283i
\(404\) 1.50592e9 1.13623
\(405\) 0 0
\(406\) 3.87399e9 2.87288
\(407\) − 4.53881e8i − 0.333704i
\(408\) 0 0
\(409\) −1.72583e8 −0.124728 −0.0623642 0.998053i \(-0.519864\pi\)
−0.0623642 + 0.998053i \(0.519864\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 1.99863e9i − 1.40797i
\(413\) − 1.10977e8i − 0.0775190i
\(414\) 0 0
\(415\) 0 0
\(416\) −5.30721e8 −0.361443
\(417\) 0 0
\(418\) − 4.76151e8i − 0.318880i
\(419\) −2.64174e9 −1.75445 −0.877225 0.480079i \(-0.840608\pi\)
−0.877225 + 0.480079i \(0.840608\pi\)
\(420\) 0 0
\(421\) 1.11997e9 0.731509 0.365754 0.930711i \(-0.380811\pi\)
0.365754 + 0.930711i \(0.380811\pi\)
\(422\) − 3.13841e8i − 0.203290i
\(423\) 0 0
\(424\) 1.54056e9 0.981516
\(425\) 0 0
\(426\) 0 0
\(427\) 4.32501e9i 2.68838i
\(428\) 2.84421e9i 1.75351i
\(429\) 0 0
\(430\) 0 0
\(431\) 2.56747e9 1.54466 0.772332 0.635219i \(-0.219090\pi\)
0.772332 + 0.635219i \(0.219090\pi\)
\(432\) 0 0
\(433\) 9.65650e8i 0.571626i 0.958285 + 0.285813i \(0.0922637\pi\)
−0.958285 + 0.285813i \(0.907736\pi\)
\(434\) 5.77258e9 3.38966
\(435\) 0 0
\(436\) −3.38767e8 −0.195749
\(437\) 2.23815e9i 1.28293i
\(438\) 0 0
\(439\) −2.67168e9 −1.50716 −0.753580 0.657356i \(-0.771675\pi\)
−0.753580 + 0.657356i \(0.771675\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 4.07880e8i 0.224675i
\(443\) − 9.25736e8i − 0.505911i −0.967478 0.252955i \(-0.918597\pi\)
0.967478 0.252955i \(-0.0814026\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −8.42530e7 −0.0449690
\(447\) 0 0
\(448\) 6.70136e8i 0.352119i
\(449\) −3.43969e9 −1.79332 −0.896658 0.442724i \(-0.854012\pi\)
−0.896658 + 0.442724i \(0.854012\pi\)
\(450\) 0 0
\(451\) 8.07098e7 0.0414294
\(452\) − 1.49120e8i − 0.0759542i
\(453\) 0 0
\(454\) −1.29778e9 −0.650889
\(455\) 0 0
\(456\) 0 0
\(457\) 4.40856e8i 0.216068i 0.994147 + 0.108034i \(0.0344555\pi\)
−0.994147 + 0.108034i \(0.965544\pi\)
\(458\) − 1.09623e9i − 0.533180i
\(459\) 0 0
\(460\) 0 0
\(461\) −2.97064e9 −1.41220 −0.706100 0.708112i \(-0.749547\pi\)
−0.706100 + 0.708112i \(0.749547\pi\)
\(462\) 0 0
\(463\) − 1.59975e9i − 0.749062i −0.927214 0.374531i \(-0.877804\pi\)
0.927214 0.374531i \(-0.122196\pi\)
\(464\) −3.75241e9 −1.74380
\(465\) 0 0
\(466\) −5.56245e9 −2.54634
\(467\) − 1.62694e9i − 0.739201i −0.929191 0.369600i \(-0.879495\pi\)
0.929191 0.369600i \(-0.120505\pi\)
\(468\) 0 0
\(469\) 1.45682e9 0.652080
\(470\) 0 0
\(471\) 0 0
\(472\) 2.51756e8i 0.110200i
\(473\) 2.30151e8i 0.0999998i
\(474\) 0 0
\(475\) 0 0
\(476\) −2.13404e9 −0.906939
\(477\) 0 0
\(478\) − 3.76421e9i − 1.57644i
\(479\) −3.93755e8 −0.163701 −0.0818507 0.996645i \(-0.526083\pi\)
−0.0818507 + 0.996645i \(0.526083\pi\)
\(480\) 0 0
\(481\) 1.63318e9 0.669154
\(482\) 4.81236e9i 1.95746i
\(483\) 0 0
\(484\) 5.19831e9 2.08403
\(485\) 0 0
\(486\) 0 0
\(487\) 2.90720e9i 1.14058i 0.821445 + 0.570288i \(0.193168\pi\)
−0.821445 + 0.570288i \(0.806832\pi\)
\(488\) − 9.81146e9i − 3.82177i
\(489\) 0 0
\(490\) 0 0
\(491\) −1.49340e9 −0.569364 −0.284682 0.958622i \(-0.591888\pi\)
−0.284682 + 0.958622i \(0.591888\pi\)
\(492\) 0 0
\(493\) 7.73030e8i 0.290558i
\(494\) 1.71331e9 0.639429
\(495\) 0 0
\(496\) −5.59142e9 −2.05748
\(497\) 4.11127e9i 1.50220i
\(498\) 0 0
\(499\) −2.32305e9 −0.836965 −0.418482 0.908225i \(-0.637438\pi\)
−0.418482 + 0.908225i \(0.637438\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 6.64412e9i − 2.34409i
\(503\) − 4.58290e9i − 1.60566i −0.596210 0.802828i \(-0.703328\pi\)
0.596210 0.802828i \(-0.296672\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 1.97334e9 0.677136
\(507\) 0 0
\(508\) 5.36158e9i 1.81455i
\(509\) −3.08836e9 −1.03804 −0.519022 0.854761i \(-0.673704\pi\)
−0.519022 + 0.854761i \(0.673704\pi\)
\(510\) 0 0
\(511\) −5.55876e8 −0.184291
\(512\) − 6.77068e9i − 2.22940i
\(513\) 0 0
\(514\) 2.05548e9 0.667641
\(515\) 0 0
\(516\) 0 0
\(517\) 7.28843e8i 0.231962i
\(518\) 1.24293e10i 3.92910i
\(519\) 0 0
\(520\) 0 0
\(521\) −3.95517e9 −1.22527 −0.612637 0.790364i \(-0.709891\pi\)
−0.612637 + 0.790364i \(0.709891\pi\)
\(522\) 0 0
\(523\) 2.97750e9i 0.910113i 0.890463 + 0.455057i \(0.150381\pi\)
−0.890463 + 0.455057i \(0.849619\pi\)
\(524\) 1.27145e10 3.86048
\(525\) 0 0
\(526\) 4.02496e9 1.20590
\(527\) 1.15188e9i 0.342824i
\(528\) 0 0
\(529\) −5.87088e9 −1.72428
\(530\) 0 0
\(531\) 0 0
\(532\) 8.96410e9i 2.58117i
\(533\) 2.90415e8i 0.0830756i
\(534\) 0 0
\(535\) 0 0
\(536\) −3.30485e9 −0.926991
\(537\) 0 0
\(538\) 4.95710e9i 1.37243i
\(539\) −1.06637e9 −0.293324
\(540\) 0 0
\(541\) −4.75653e9 −1.29152 −0.645758 0.763542i \(-0.723459\pi\)
−0.645758 + 0.763542i \(0.723459\pi\)
\(542\) − 7.91342e9i − 2.13485i
\(543\) 0 0
\(544\) 8.05968e8 0.214645
\(545\) 0 0
\(546\) 0 0
\(547\) − 4.58098e9i − 1.19675i −0.801217 0.598374i \(-0.795814\pi\)
0.801217 0.598374i \(-0.204186\pi\)
\(548\) 9.90057e9i 2.56997i
\(549\) 0 0
\(550\) 0 0
\(551\) 3.24714e9 0.826933
\(552\) 0 0
\(553\) 6.46260e9i 1.62506i
\(554\) −1.02990e10 −2.57343
\(555\) 0 0
\(556\) −1.15650e10 −2.85355
\(557\) 1.98969e9i 0.487856i 0.969793 + 0.243928i \(0.0784361\pi\)
−0.969793 + 0.243928i \(0.921564\pi\)
\(558\) 0 0
\(559\) −8.28143e8 −0.200523
\(560\) 0 0
\(561\) 0 0
\(562\) 3.14824e9i 0.748154i
\(563\) 1.51071e9i 0.356781i 0.983960 + 0.178390i \(0.0570890\pi\)
−0.983960 + 0.178390i \(0.942911\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −2.31863e9 −0.537495
\(567\) 0 0
\(568\) − 9.32658e9i − 2.13552i
\(569\) 1.75619e8 0.0399650 0.0199825 0.999800i \(-0.493639\pi\)
0.0199825 + 0.999800i \(0.493639\pi\)
\(570\) 0 0
\(571\) −2.21767e8 −0.0498506 −0.0249253 0.999689i \(-0.507935\pi\)
−0.0249253 + 0.999689i \(0.507935\pi\)
\(572\) − 1.03850e9i − 0.232018i
\(573\) 0 0
\(574\) −2.21020e9 −0.487798
\(575\) 0 0
\(576\) 0 0
\(577\) 7.51519e9i 1.62864i 0.580418 + 0.814319i \(0.302889\pi\)
−0.580418 + 0.814319i \(0.697111\pi\)
\(578\) 7.68491e9i 1.65536i
\(579\) 0 0
\(580\) 0 0
\(581\) 7.04310e9 1.48987
\(582\) 0 0
\(583\) 5.01866e8i 0.104893i
\(584\) 1.26103e9 0.261987
\(585\) 0 0
\(586\) 1.70472e10 3.49953
\(587\) − 5.57215e9i − 1.13708i −0.822657 0.568538i \(-0.807509\pi\)
0.822657 0.568538i \(-0.192491\pi\)
\(588\) 0 0
\(589\) 4.83852e9 0.975683
\(590\) 0 0
\(591\) 0 0
\(592\) − 1.20393e10i − 2.38492i
\(593\) − 2.27962e9i − 0.448922i −0.974483 0.224461i \(-0.927938\pi\)
0.974483 0.224461i \(-0.0720621\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.53742e10 −2.97461
\(597\) 0 0
\(598\) 7.10060e9i 1.35782i
\(599\) 3.90822e9 0.742993 0.371497 0.928434i \(-0.378845\pi\)
0.371497 + 0.928434i \(0.378845\pi\)
\(600\) 0 0
\(601\) −2.15505e9 −0.404946 −0.202473 0.979288i \(-0.564898\pi\)
−0.202473 + 0.979288i \(0.564898\pi\)
\(602\) − 6.30259e9i − 1.17742i
\(603\) 0 0
\(604\) 2.16427e9 0.399652
\(605\) 0 0
\(606\) 0 0
\(607\) − 5.06857e9i − 0.919867i −0.887953 0.459933i \(-0.847873\pi\)
0.887953 0.459933i \(-0.152127\pi\)
\(608\) − 3.38549e9i − 0.610885i
\(609\) 0 0
\(610\) 0 0
\(611\) −2.62257e9 −0.465138
\(612\) 0 0
\(613\) − 6.56079e9i − 1.15039i −0.818017 0.575194i \(-0.804927\pi\)
0.818017 0.575194i \(-0.195073\pi\)
\(614\) 4.81841e8 0.0840068
\(615\) 0 0
\(616\) 4.31058e9 0.743024
\(617\) 1.11814e8i 0.0191645i 0.999954 + 0.00958223i \(0.00305017\pi\)
−0.999954 + 0.00958223i \(0.996950\pi\)
\(618\) 0 0
\(619\) −1.48440e9 −0.251556 −0.125778 0.992058i \(-0.540143\pi\)
−0.125778 + 0.992058i \(0.540143\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 1.48080e10i − 2.46735i
\(623\) − 1.18181e10i − 1.95812i
\(624\) 0 0
\(625\) 0 0
\(626\) 1.86506e10 3.03867
\(627\) 0 0
\(628\) − 1.30425e9i − 0.210137i
\(629\) −2.48019e9 −0.397382
\(630\) 0 0
\(631\) 6.22722e9 0.986714 0.493357 0.869827i \(-0.335770\pi\)
0.493357 + 0.869827i \(0.335770\pi\)
\(632\) − 1.46607e10i − 2.31017i
\(633\) 0 0
\(634\) 1.58938e9 0.247693
\(635\) 0 0
\(636\) 0 0
\(637\) − 3.83708e9i − 0.588184i
\(638\) − 2.86295e9i − 0.436458i
\(639\) 0 0
\(640\) 0 0
\(641\) −6.72145e9 −1.00800 −0.503999 0.863704i \(-0.668139\pi\)
−0.503999 + 0.863704i \(0.668139\pi\)
\(642\) 0 0
\(643\) − 6.13000e9i − 0.909332i −0.890662 0.454666i \(-0.849759\pi\)
0.890662 0.454666i \(-0.150241\pi\)
\(644\) −3.71505e10 −5.48106
\(645\) 0 0
\(646\) −2.60189e9 −0.379730
\(647\) 1.10514e10i 1.60418i 0.597204 + 0.802089i \(0.296278\pi\)
−0.597204 + 0.802089i \(0.703722\pi\)
\(648\) 0 0
\(649\) −8.20142e7 −0.0117769
\(650\) 0 0
\(651\) 0 0
\(652\) − 6.07878e9i − 0.858914i
\(653\) 1.90379e9i 0.267561i 0.991011 + 0.133781i \(0.0427117\pi\)
−0.991011 + 0.133781i \(0.957288\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 2.14084e9 0.296088
\(657\) 0 0
\(658\) − 1.99591e10i − 2.73117i
\(659\) 1.16276e9 0.158268 0.0791339 0.996864i \(-0.474785\pi\)
0.0791339 + 0.996864i \(0.474785\pi\)
\(660\) 0 0
\(661\) −2.20847e9 −0.297431 −0.148716 0.988880i \(-0.547514\pi\)
−0.148716 + 0.988880i \(0.547514\pi\)
\(662\) 7.66763e9i 1.02721i
\(663\) 0 0
\(664\) −1.59775e10 −2.11798
\(665\) 0 0
\(666\) 0 0
\(667\) 1.34573e10i 1.75598i
\(668\) − 1.04554e10i − 1.35713i
\(669\) 0 0
\(670\) 0 0
\(671\) 3.19627e9 0.408427
\(672\) 0 0
\(673\) − 9.22930e9i − 1.16712i −0.812070 0.583561i \(-0.801659\pi\)
0.812070 0.583561i \(-0.198341\pi\)
\(674\) 2.18630e10 2.75043
\(675\) 0 0
\(676\) −1.39311e10 −1.73449
\(677\) − 5.75119e9i − 0.712357i −0.934418 0.356178i \(-0.884080\pi\)
0.934418 0.356178i \(-0.115920\pi\)
\(678\) 0 0
\(679\) −9.58518e9 −1.17505
\(680\) 0 0
\(681\) 0 0
\(682\) − 4.26605e9i − 0.514969i
\(683\) − 2.96482e9i − 0.356063i −0.984025 0.178031i \(-0.943027\pi\)
0.984025 0.178031i \(-0.0569729\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 6.36934e9 0.753287
\(687\) 0 0
\(688\) 6.10479e9i 0.714680i
\(689\) −1.80584e9 −0.210336
\(690\) 0 0
\(691\) 1.35266e10 1.55961 0.779805 0.626023i \(-0.215318\pi\)
0.779805 + 0.626023i \(0.215318\pi\)
\(692\) 1.71135e10i 1.96321i
\(693\) 0 0
\(694\) −1.77579e10 −2.01666
\(695\) 0 0
\(696\) 0 0
\(697\) − 4.41032e8i − 0.0493350i
\(698\) − 6.71704e9i − 0.747626i
\(699\) 0 0
\(700\) 0 0
\(701\) −8.89669e9 −0.975473 −0.487737 0.872991i \(-0.662177\pi\)
−0.487737 + 0.872991i \(0.662177\pi\)
\(702\) 0 0
\(703\) 1.04181e10i 1.13096i
\(704\) 4.95244e8 0.0534952
\(705\) 0 0
\(706\) 2.00018e10 2.13921
\(707\) − 7.32710e9i − 0.779766i
\(708\) 0 0
\(709\) 4.02759e9 0.424408 0.212204 0.977225i \(-0.431936\pi\)
0.212204 + 0.977225i \(0.431936\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 2.68098e10i 2.78364i
\(713\) 2.00526e10i 2.07184i
\(714\) 0 0
\(715\) 0 0
\(716\) −8.60256e9 −0.875855
\(717\) 0 0
\(718\) 2.85689e10i 2.88044i
\(719\) −9.22714e9 −0.925798 −0.462899 0.886411i \(-0.653191\pi\)
−0.462899 + 0.886411i \(0.653191\pi\)
\(720\) 0 0
\(721\) −9.72440e9 −0.966250
\(722\) − 7.16063e9i − 0.708062i
\(723\) 0 0
\(724\) 3.32600e10 3.25714
\(725\) 0 0
\(726\) 0 0
\(727\) − 9.12103e9i − 0.880386i −0.897903 0.440193i \(-0.854910\pi\)
0.897903 0.440193i \(-0.145090\pi\)
\(728\) 1.55106e10i 1.48994i
\(729\) 0 0
\(730\) 0 0
\(731\) 1.25764e9 0.119082
\(732\) 0 0
\(733\) − 1.72029e10i − 1.61338i −0.590974 0.806691i \(-0.701256\pi\)
0.590974 0.806691i \(-0.298744\pi\)
\(734\) 1.53202e10 1.42997
\(735\) 0 0
\(736\) 1.40307e10 1.29720
\(737\) − 1.07662e9i − 0.0990663i
\(738\) 0 0
\(739\) 1.73905e10 1.58510 0.792552 0.609805i \(-0.208752\pi\)
0.792552 + 0.609805i \(0.208752\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 1.37434e10i − 1.23504i
\(743\) 4.62464e9i 0.413635i 0.978380 + 0.206817i \(0.0663106\pi\)
−0.978380 + 0.206817i \(0.933689\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −5.99562e9 −0.528748
\(747\) 0 0
\(748\) 1.57710e9i 0.137785i
\(749\) 1.38386e10 1.20339
\(750\) 0 0
\(751\) −1.36007e10 −1.17171 −0.585856 0.810415i \(-0.699242\pi\)
−0.585856 + 0.810415i \(0.699242\pi\)
\(752\) 1.93327e10i 1.65779i
\(753\) 0 0
\(754\) 1.03017e10 0.875200
\(755\) 0 0
\(756\) 0 0
\(757\) − 1.78432e10i − 1.49499i −0.664269 0.747493i \(-0.731257\pi\)
0.664269 0.747493i \(-0.268743\pi\)
\(758\) − 2.69006e10i − 2.24346i
\(759\) 0 0
\(760\) 0 0
\(761\) 1.41211e10 1.16151 0.580754 0.814079i \(-0.302758\pi\)
0.580754 + 0.814079i \(0.302758\pi\)
\(762\) 0 0
\(763\) 1.64829e9i 0.134337i
\(764\) 2.30964e10 1.87377
\(765\) 0 0
\(766\) −1.69099e10 −1.35938
\(767\) − 2.95108e8i − 0.0236155i
\(768\) 0 0
\(769\) 6.98040e9 0.553526 0.276763 0.960938i \(-0.410738\pi\)
0.276763 + 0.960938i \(0.410738\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.60282e10i 4.38274i
\(773\) − 5.57792e9i − 0.434354i −0.976132 0.217177i \(-0.930315\pi\)
0.976132 0.217177i \(-0.0696849\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 2.17443e10 1.67044
\(777\) 0 0
\(778\) 3.34727e9i 0.254837i
\(779\) −1.85257e9 −0.140408
\(780\) 0 0
\(781\) 3.03831e9 0.228220
\(782\) − 1.07832e10i − 0.806349i
\(783\) 0 0
\(784\) −2.82857e10 −2.09634
\(785\) 0 0
\(786\) 0 0
\(787\) 1.26349e10i 0.923978i 0.886886 + 0.461989i \(0.152864\pi\)
−0.886886 + 0.461989i \(0.847136\pi\)
\(788\) 2.39016e10i 1.74014i
\(789\) 0 0
\(790\) 0 0
\(791\) −7.25550e8 −0.0521254
\(792\) 0 0
\(793\) 1.15010e10i 0.818992i
\(794\) 4.08300e9 0.289473
\(795\) 0 0
\(796\) −1.16279e10 −0.817160
\(797\) − 9.24597e9i − 0.646916i −0.946242 0.323458i \(-0.895154\pi\)
0.946242 0.323458i \(-0.104846\pi\)
\(798\) 0 0
\(799\) 3.98271e9 0.276226
\(800\) 0 0
\(801\) 0 0
\(802\) 4.95698e9i 0.339318i
\(803\) 4.10803e8i 0.0279982i
\(804\) 0 0
\(805\) 0 0
\(806\) 1.53504e10 1.03263
\(807\) 0 0
\(808\) 1.66218e10i 1.10851i
\(809\) 3.77594e9 0.250729 0.125365 0.992111i \(-0.459990\pi\)
0.125365 + 0.992111i \(0.459990\pi\)
\(810\) 0 0
\(811\) −8.24089e9 −0.542502 −0.271251 0.962509i \(-0.587437\pi\)
−0.271251 + 0.962509i \(0.587437\pi\)
\(812\) 5.38985e10i 3.53290i
\(813\) 0 0
\(814\) 9.18552e9 0.596923
\(815\) 0 0
\(816\) 0 0
\(817\) − 5.28276e9i − 0.338910i
\(818\) − 3.49268e9i − 0.223112i
\(819\) 0 0
\(820\) 0 0
\(821\) −8.07649e9 −0.509356 −0.254678 0.967026i \(-0.581969\pi\)
−0.254678 + 0.967026i \(0.581969\pi\)
\(822\) 0 0
\(823\) 1.76555e10i 1.10403i 0.833834 + 0.552016i \(0.186141\pi\)
−0.833834 + 0.552016i \(0.813859\pi\)
\(824\) 2.20602e10 1.37361
\(825\) 0 0
\(826\) 2.24593e9 0.138664
\(827\) − 2.60329e9i − 0.160049i −0.996793 0.0800246i \(-0.974500\pi\)
0.996793 0.0800246i \(-0.0254999\pi\)
\(828\) 0 0
\(829\) −9.16053e9 −0.558444 −0.279222 0.960227i \(-0.590077\pi\)
−0.279222 + 0.960227i \(0.590077\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.78202e9i 0.107270i
\(833\) 5.82711e9i 0.349297i
\(834\) 0 0
\(835\) 0 0
\(836\) 6.62465e9 0.392140
\(837\) 0 0
\(838\) − 5.34629e10i − 3.13833i
\(839\) 2.51395e10 1.46957 0.734784 0.678301i \(-0.237283\pi\)
0.734784 + 0.678301i \(0.237283\pi\)
\(840\) 0 0
\(841\) 2.27422e9 0.131840
\(842\) 2.26657e10i 1.30851i
\(843\) 0 0
\(844\) 4.36644e9 0.249994
\(845\) 0 0
\(846\) 0 0
\(847\) − 2.52926e10i − 1.43022i
\(848\) 1.33121e10i 0.749653i
\(849\) 0 0
\(850\) 0 0
\(851\) −4.31766e10 −2.40157
\(852\) 0 0
\(853\) − 1.37385e10i − 0.757908i −0.925415 0.378954i \(-0.876284\pi\)
0.925415 0.378954i \(-0.123716\pi\)
\(854\) −8.75285e10 −4.80891
\(855\) 0 0
\(856\) −3.13934e10 −1.71072
\(857\) 2.41390e10i 1.31004i 0.755610 + 0.655022i \(0.227341\pi\)
−0.755610 + 0.655022i \(0.772659\pi\)
\(858\) 0 0
\(859\) 2.62094e10 1.41085 0.705426 0.708783i \(-0.250756\pi\)
0.705426 + 0.708783i \(0.250756\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 5.19597e10i 2.76307i
\(863\) − 1.61957e10i − 0.857750i −0.903364 0.428875i \(-0.858910\pi\)
0.903364 0.428875i \(-0.141090\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −1.95426e10 −1.02251
\(867\) 0 0
\(868\) 8.03135e10i 4.16840i
\(869\) 4.77599e9 0.246885
\(870\) 0 0
\(871\) 3.87395e9 0.198651
\(872\) − 3.73920e9i − 0.190973i
\(873\) 0 0
\(874\) −4.52951e10 −2.29488
\(875\) 0 0
\(876\) 0 0
\(877\) − 1.25717e10i − 0.629356i −0.949198 0.314678i \(-0.898103\pi\)
0.949198 0.314678i \(-0.101897\pi\)
\(878\) − 5.40688e10i − 2.69598i
\(879\) 0 0
\(880\) 0 0
\(881\) 3.40786e10 1.67906 0.839530 0.543313i \(-0.182830\pi\)
0.839530 + 0.543313i \(0.182830\pi\)
\(882\) 0 0
\(883\) − 2.78949e10i − 1.36352i −0.731574 0.681762i \(-0.761214\pi\)
0.731574 0.681762i \(-0.238786\pi\)
\(884\) −5.67480e9 −0.276292
\(885\) 0 0
\(886\) 1.87348e10 0.904963
\(887\) 3.29903e10i 1.58728i 0.608387 + 0.793641i \(0.291817\pi\)
−0.608387 + 0.793641i \(0.708183\pi\)
\(888\) 0 0
\(889\) 2.60870e10 1.24528
\(890\) 0 0
\(891\) 0 0
\(892\) − 1.17221e9i − 0.0553002i
\(893\) − 1.67295e10i − 0.786144i
\(894\) 0 0
\(895\) 0 0
\(896\) −3.91083e10 −1.81631
\(897\) 0 0
\(898\) − 6.96115e10i − 3.20785i
\(899\) 2.90926e10 1.33544
\(900\) 0 0
\(901\) 2.74241e9 0.124909
\(902\) 1.63338e9i 0.0741080i
\(903\) 0 0
\(904\) 1.64594e9 0.0741010
\(905\) 0 0
\(906\) 0 0
\(907\) 1.66008e10i 0.738759i 0.929279 + 0.369380i \(0.120430\pi\)
−0.929279 + 0.369380i \(0.879570\pi\)
\(908\) − 1.80560e10i − 0.800425i
\(909\) 0 0
\(910\) 0 0
\(911\) 2.80189e9 0.122782 0.0613912 0.998114i \(-0.480446\pi\)
0.0613912 + 0.998114i \(0.480446\pi\)
\(912\) 0 0
\(913\) − 5.20499e9i − 0.226346i
\(914\) −8.92193e9 −0.386498
\(915\) 0 0
\(916\) 1.52518e10 0.655673
\(917\) − 6.18631e10i − 2.64935i
\(918\) 0 0
\(919\) 7.97528e9 0.338955 0.169477 0.985534i \(-0.445792\pi\)
0.169477 + 0.985534i \(0.445792\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 6.01190e10i − 2.52612i
\(923\) 1.09326e10i 0.457635i
\(924\) 0 0
\(925\) 0 0
\(926\) 3.23753e10 1.33991
\(927\) 0 0
\(928\) − 2.03560e10i − 0.836131i
\(929\) −4.40021e10 −1.80061 −0.900303 0.435264i \(-0.856655\pi\)
−0.900303 + 0.435264i \(0.856655\pi\)
\(930\) 0 0
\(931\) 2.44769e10 0.994107
\(932\) − 7.73900e10i − 3.13133i
\(933\) 0 0
\(934\) 3.29256e10 1.32227
\(935\) 0 0
\(936\) 0 0
\(937\) − 1.85516e10i − 0.736702i −0.929687 0.368351i \(-0.879922\pi\)
0.929687 0.368351i \(-0.120078\pi\)
\(938\) 2.94828e10i 1.16643i
\(939\) 0 0
\(940\) 0 0
\(941\) 3.98382e8 0.0155860 0.00779302 0.999970i \(-0.497519\pi\)
0.00779302 + 0.999970i \(0.497519\pi\)
\(942\) 0 0
\(943\) − 7.67772e9i − 0.298155i
\(944\) −2.17544e9 −0.0841677
\(945\) 0 0
\(946\) −4.65774e9 −0.178878
\(947\) − 1.22967e10i − 0.470504i −0.971934 0.235252i \(-0.924409\pi\)
0.971934 0.235252i \(-0.0755915\pi\)
\(948\) 0 0
\(949\) −1.47818e9 −0.0561429
\(950\) 0 0
\(951\) 0 0
\(952\) − 2.35548e10i − 0.884810i
\(953\) 2.00329e10i 0.749754i 0.927075 + 0.374877i \(0.122315\pi\)
−0.927075 + 0.374877i \(0.877685\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 5.23712e10 1.93861
\(957\) 0 0
\(958\) − 7.96872e9i − 0.292826i
\(959\) 4.81716e10 1.76370
\(960\) 0 0
\(961\) 1.58379e10 0.575659
\(962\) 3.30519e10i 1.19697i
\(963\) 0 0
\(964\) −6.69540e10 −2.40717
\(965\) 0 0
\(966\) 0 0
\(967\) − 2.01344e10i − 0.716055i −0.933711 0.358027i \(-0.883449\pi\)
0.933711 0.358027i \(-0.116551\pi\)
\(968\) 5.73772e10i 2.03318i
\(969\) 0 0
\(970\) 0 0
\(971\) 5.02424e10 1.76118 0.880589 0.473881i \(-0.157147\pi\)
0.880589 + 0.473881i \(0.157147\pi\)
\(972\) 0 0
\(973\) 5.62702e10i 1.95832i
\(974\) −5.88352e10 −2.04024
\(975\) 0 0
\(976\) 8.47816e10 2.91895
\(977\) − 3.03613e10i − 1.04157i −0.853687 0.520786i \(-0.825639\pi\)
0.853687 0.520786i \(-0.174361\pi\)
\(978\) 0 0
\(979\) −8.73379e9 −0.297484
\(980\) 0 0
\(981\) 0 0
\(982\) − 3.02230e10i − 1.01847i
\(983\) 3.64309e10i 1.22330i 0.791129 + 0.611650i \(0.209494\pi\)
−0.791129 + 0.611650i \(0.790506\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −1.56444e10 −0.519744
\(987\) 0 0
\(988\) 2.38372e10i 0.786332i
\(989\) 2.18937e10 0.719668
\(990\) 0 0
\(991\) −2.79867e10 −0.913470 −0.456735 0.889603i \(-0.650981\pi\)
−0.456735 + 0.889603i \(0.650981\pi\)
\(992\) − 3.03322e10i − 0.986536i
\(993\) 0 0
\(994\) −8.32029e10 −2.68711
\(995\) 0 0
\(996\) 0 0
\(997\) 3.06088e10i 0.978169i 0.872236 + 0.489084i \(0.162669\pi\)
−0.872236 + 0.489084i \(0.837331\pi\)
\(998\) − 4.70133e10i − 1.49715i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.8.b.l.199.4 4
3.2 odd 2 25.8.b.b.24.1 4
5.2 odd 4 225.8.a.k.1.1 2
5.3 odd 4 225.8.a.v.1.2 2
5.4 even 2 inner 225.8.b.l.199.1 4
12.11 even 2 400.8.c.s.49.1 4
15.2 even 4 25.8.a.e.1.2 yes 2
15.8 even 4 25.8.a.c.1.1 2
15.14 odd 2 25.8.b.b.24.4 4
60.23 odd 4 400.8.a.bd.1.2 2
60.47 odd 4 400.8.a.v.1.1 2
60.59 even 2 400.8.c.s.49.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.8.a.c.1.1 2 15.8 even 4
25.8.a.e.1.2 yes 2 15.2 even 4
25.8.b.b.24.1 4 3.2 odd 2
25.8.b.b.24.4 4 15.14 odd 2
225.8.a.k.1.1 2 5.2 odd 4
225.8.a.v.1.2 2 5.3 odd 4
225.8.b.l.199.1 4 5.4 even 2 inner
225.8.b.l.199.4 4 1.1 even 1 trivial
400.8.a.v.1.1 2 60.47 odd 4
400.8.a.bd.1.2 2 60.23 odd 4
400.8.c.s.49.1 4 12.11 even 2
400.8.c.s.49.4 4 60.59 even 2