Properties

Label 225.8.b
Level $225$
Weight $8$
Character orbit 225.b
Rep. character $\chi_{225}(199,\cdot)$
Character field $\Q$
Dimension $52$
Newform subspaces $17$
Sturm bound $240$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 225.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 17 \)
Sturm bound: \(240\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(2\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(225, [\chi])\).

Total New Old
Modular forms 222 54 168
Cusp forms 198 52 146
Eisenstein series 24 2 22

Trace form

\( 52 q - 3274 q^{4} - 4340 q^{11} - 11880 q^{14} + 250378 q^{16} + 49948 q^{19} - 724220 q^{26} + 588340 q^{29} + 346076 q^{31} + 625230 q^{34} - 899380 q^{41} + 1617850 q^{44} - 384780 q^{46} - 6700584 q^{49}+ \cdots - 10526400 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(225, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
225.8.b.a 225.b 5.b $2$ $70.287$ \(\Q(\sqrt{-1}) \) None 15.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+11\beta q^{2}-356 q^{4}-210\beta q^{7}+\cdots\)
225.8.b.b 225.b 5.b $2$ $70.287$ \(\Q(\sqrt{-1}) \) None 5.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+7\beta q^{2}-68 q^{4}-822\beta q^{7}+420\beta q^{8}+\cdots\)
225.8.b.c 225.b 5.b $2$ $70.287$ \(\Q(\sqrt{-1}) \) None 15.8.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+13 i q^{2}-41 q^{4}+1380 i q^{7}+\cdots\)
225.8.b.d 225.b 5.b $2$ $70.287$ \(\Q(\sqrt{-1}) \) None 45.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}+28 q^{4}+117\beta q^{7}+156\beta q^{8}+\cdots\)
225.8.b.e 225.b 5.b $2$ $70.287$ \(\Q(\sqrt{-1}) \) None 45.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}+28 q^{4}-117\beta q^{7}+156\beta q^{8}+\cdots\)
225.8.b.f 225.b 5.b $2$ $70.287$ \(\Q(\sqrt{-1}) \) None 3.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta q^{2}+92 q^{4}+32\beta q^{7}+660\beta q^{8}+\cdots\)
225.8.b.g 225.b 5.b $2$ $70.287$ \(\Q(\sqrt{-1}) \) None 45.8.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}+103 q^{4}-186\beta q^{7}+231\beta q^{8}+\cdots\)
225.8.b.h 225.b 5.b $2$ $70.287$ \(\Q(\sqrt{-1}) \) None 45.8.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}+103 q^{4}+186\beta q^{7}+231\beta q^{8}+\cdots\)
225.8.b.i 225.b 5.b $2$ $70.287$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-3}) \) 225.8.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+128 q^{4}-251\beta q^{7}-2521\beta q^{13}+\cdots\)
225.8.b.j 225.b 5.b $4$ $70.287$ \(\Q(i, \sqrt{115})\) None 225.8.a.r \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}-332q^{4}+297\beta _{1}q^{7}-204\beta _{3}q^{8}+\cdots\)
225.8.b.k 225.b 5.b $4$ $70.287$ \(\Q(i, \sqrt{10})\) None 9.8.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}-232q^{4}+26\beta _{1}q^{7}-104\beta _{2}q^{8}+\cdots\)
225.8.b.l 225.b 5.b $4$ $70.287$ \(\Q(i, \sqrt{649})\) None 25.8.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+2\beta _{2})q^{2}+(-92+3\beta _{3})q^{4}+\cdots\)
225.8.b.m 225.b 5.b $4$ $70.287$ \(\Q(i, \sqrt{19})\) None 5.8.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{3})q^{2}+(-48-2\beta _{2})q^{4}+(5\beta _{1}+\cdots)q^{7}+\cdots\)
225.8.b.n 225.b 5.b $4$ $70.287$ \(\Q(i, \sqrt{601})\) None 15.8.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}-2\beta _{2})q^{2}+(-38+7\beta _{3})q^{4}+\cdots\)
225.8.b.o 225.b 5.b $4$ $70.287$ \(\Q(i, \sqrt{31})\) None 75.8.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-4\beta _{1}-\beta _{3})q^{2}+(-12-8\beta _{2})q^{4}+\cdots\)
225.8.b.p 225.b 5.b $4$ $70.287$ \(\Q(i, \sqrt{130})\) None 225.8.a.o \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}-2q^{4}-33\beta _{1}q^{7}-126\beta _{2}q^{8}+\cdots\)
225.8.b.q 225.b 5.b $6$ $70.287$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 75.8.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{2}+2\beta _{4})q^{2}+(-51-\beta _{1}+4\beta _{3}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(225, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(225, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)