Properties

Label 400.8.c.q
Level $400$
Weight $8$
Character orbit 400.c
Analytic conductor $124.954$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,8,Mod(49,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-3044] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.954010194\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{46})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1) q^{3} + ( - 17 \beta_{2} - 211 \beta_1) q^{7} + ( - 2 \beta_{3} - 761) q^{9} + ( - 19 \beta_{3} - 2320) q^{11} + (132 \beta_{2} - 1701 \beta_1) q^{13} + ( - 284 \beta_{2} + 9629 \beta_1) q^{17}+ \cdots + (19099 \beta_{3} + 2213008) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3044 q^{9} - 9280 q^{11} + 79440 q^{19} + 203568 q^{21} - 373880 q^{29} + 654256 q^{31} - 1527216 q^{39} - 325928 q^{41} - 821428 q^{49} + 3190320 q^{51} + 2241552 q^{59} - 3711704 q^{61} - 8039568 q^{69}+ \cdots + 8852032 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 529 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{2} ) / 23 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 8\nu^{3} + 184\nu ) / 23 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -16\nu^{3} + 368\nu ) / 23 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 2\beta_{2} ) / 32 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 23\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -23\beta_{3} + 46\beta_{2} ) / 32 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
3.39116 3.39116i
−3.39116 3.39116i
−3.39116 + 3.39116i
3.39116 + 3.39116i
0 56.2586i 0 0 0 1344.40i 0 −978.035 0
49.2 0 52.2586i 0 0 0 500.397i 0 −543.965 0
49.3 0 52.2586i 0 0 0 500.397i 0 −543.965 0
49.4 0 56.2586i 0 0 0 1344.40i 0 −978.035 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.8.c.q 4
4.b odd 2 1 200.8.c.h 4
5.b even 2 1 inner 400.8.c.q 4
5.c odd 4 1 80.8.a.h 2
5.c odd 4 1 400.8.a.z 2
20.d odd 2 1 200.8.c.h 4
20.e even 4 1 40.8.a.b 2
20.e even 4 1 200.8.a.m 2
40.i odd 4 1 320.8.a.q 2
40.k even 4 1 320.8.a.o 2
60.l odd 4 1 360.8.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.8.a.b 2 20.e even 4 1
80.8.a.h 2 5.c odd 4 1
200.8.a.m 2 20.e even 4 1
200.8.c.h 4 4.b odd 2 1
200.8.c.h 4 20.d odd 2 1
320.8.a.o 2 40.k even 4 1
320.8.a.q 2 40.i odd 4 1
360.8.a.l 2 60.l odd 4 1
400.8.a.z 2 5.c odd 4 1
400.8.c.q 4 1.a even 1 1 trivial
400.8.c.q 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 5896T_{3}^{2} + 8643600 \) acting on \(S_{8}^{\mathrm{new}}(400, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 5896 T^{2} + 8643600 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 452568343824 \) Copy content Toggle raw display
$11$ \( (T^{2} + 4640 T + 1131264)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 15\!\cdots\!04 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( (T^{2} - 39720 T + 29646224)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 60\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( (T^{2} + 186940 T - 4295905404)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 327128 T + 11743009680)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 55\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( (T^{2} + 162964 T - 1010797212)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 38\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 22\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 44\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( (T^{2} + \cdots - 5676215308272)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots - 2532614905500)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 94\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( (T^{2} - 1071112 T + 285545583120)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 83\!\cdots\!04 \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots - 12100786389440)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 79\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots - 12795653008796)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 19\!\cdots\!16 \) Copy content Toggle raw display
show more
show less