Properties

Label 360.8.a.l
Level $360$
Weight $8$
Character orbit 360.a
Self dual yes
Analytic conductor $112.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [360,8,Mod(1,360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("360.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 360.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,250,0,844] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.458609174\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{46}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 8\sqrt{46}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 125 q^{5} + (17 \beta + 422) q^{7} + ( - 38 \beta - 2320) q^{11} + ( - 132 \beta + 3402) q^{13} + (284 \beta - 19258) q^{17} + (352 \beta + 19860) q^{19} + ( - 667 \beta - 23122) q^{23} + 15625 q^{25}+ \cdots + ( - 148500 \beta - 4559902) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 250 q^{5} + 844 q^{7} - 4640 q^{11} + 6804 q^{13} - 38516 q^{17} + 39720 q^{19} - 46244 q^{23} + 31250 q^{25} - 186940 q^{29} - 327128 q^{31} + 105500 q^{35} + 67060 q^{37} + 162964 q^{41} - 1123468 q^{43}+ \cdots - 9119804 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.78233
6.78233
0 0 0 125.000 0 −500.397 0 0 0
1.2 0 0 0 125.000 0 1344.40 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 360.8.a.l 2
3.b odd 2 1 40.8.a.b 2
12.b even 2 1 80.8.a.h 2
15.d odd 2 1 200.8.a.m 2
15.e even 4 2 200.8.c.h 4
24.f even 2 1 320.8.a.q 2
24.h odd 2 1 320.8.a.o 2
60.h even 2 1 400.8.a.z 2
60.l odd 4 2 400.8.c.q 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.8.a.b 2 3.b odd 2 1
80.8.a.h 2 12.b even 2 1
200.8.a.m 2 15.d odd 2 1
200.8.c.h 4 15.e even 4 2
320.8.a.o 2 24.h odd 2 1
320.8.a.q 2 24.f even 2 1
360.8.a.l 2 1.a even 1 1 trivial
400.8.a.z 2 60.h even 2 1
400.8.c.q 4 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(360))\):

\( T_{7}^{2} - 844T_{7} - 672732 \) Copy content Toggle raw display
\( T_{11}^{2} + 4640T_{11} + 1131264 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 844T - 672732 \) Copy content Toggle raw display
$11$ \( T^{2} + 4640 T + 1131264 \) Copy content Toggle raw display
$13$ \( T^{2} - 6804 T - 39722652 \) Copy content Toggle raw display
$17$ \( T^{2} + 38516 T + 133419300 \) Copy content Toggle raw display
$19$ \( T^{2} - 39720 T + 29646224 \) Copy content Toggle raw display
$23$ \( T^{2} + 46244 T - 775126332 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 4295905404 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 11743009680 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 236492620764 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 1010797212 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 196424013732 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 150662471684 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 2106147954876 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 5676215308272 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 2532614905500 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 9716614914308 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 285545583120 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 2891492673348 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 12100786389440 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 28207563100452 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 12795653008796 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 44129117750396 \) Copy content Toggle raw display
show more
show less