Properties

Label 2-20e2-5.4-c7-0-2
Degree $2$
Conductor $400$
Sign $-0.447 - 0.894i$
Analytic cond. $124.954$
Root an. cond. $11.1782$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 56.2i·3-s + 1.34e3i·7-s − 978.·9-s − 4.38e3·11-s − 3.76e3i·13-s − 3.84e3i·17-s + 3.89e4·19-s + 7.56e4·21-s − 5.93e4i·23-s − 6.80e4i·27-s − 2.07e5·29-s + 2.86e5·31-s + 2.46e5i·33-s + 4.53e5i·37-s − 2.11e5·39-s + ⋯
L(s)  = 1  − 1.20i·3-s + 1.48i·7-s − 0.447·9-s − 0.992·11-s − 0.474i·13-s − 0.189i·17-s + 1.30·19-s + 1.78·21-s − 1.01i·23-s − 0.665i·27-s − 1.58·29-s + 1.72·31-s + 1.19i·33-s + 1.47i·37-s − 0.571·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(124.954\)
Root analytic conductor: \(11.1782\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{400} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :7/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.3397753111\)
\(L(\frac12)\) \(\approx\) \(0.3397753111\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 56.2iT - 2.18e3T^{2} \)
7 \( 1 - 1.34e3iT - 8.23e5T^{2} \)
11 \( 1 + 4.38e3T + 1.94e7T^{2} \)
13 \( 1 + 3.76e3iT - 6.27e7T^{2} \)
17 \( 1 + 3.84e3iT - 4.10e8T^{2} \)
19 \( 1 - 3.89e4T + 8.93e8T^{2} \)
23 \( 1 + 5.93e4iT - 3.40e9T^{2} \)
29 \( 1 + 2.07e5T + 1.72e10T^{2} \)
31 \( 1 - 2.86e5T + 2.75e10T^{2} \)
37 \( 1 - 4.53e5iT - 9.49e10T^{2} \)
41 \( 1 - 5.98e3T + 1.94e11T^{2} \)
43 \( 1 - 2.16e5iT - 2.71e11T^{2} \)
47 \( 1 + 4.06e5iT - 5.06e11T^{2} \)
53 \( 1 + 1.38e6iT - 1.17e12T^{2} \)
59 \( 1 + 1.88e6T + 2.48e12T^{2} \)
61 \( 1 + 2.77e6T + 3.14e12T^{2} \)
67 \( 1 - 3.24e6iT - 6.06e12T^{2} \)
71 \( 1 - 5.71e5T + 9.09e12T^{2} \)
73 \( 1 - 2.07e6iT - 1.10e13T^{2} \)
79 \( 1 + 1.92e6T + 1.92e13T^{2} \)
83 \( 1 + 6.83e6iT - 2.71e13T^{2} \)
89 \( 1 - 3.55e6T + 4.42e13T^{2} \)
97 \( 1 - 1.26e7iT - 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.36528522364772092667658966590, −9.379105073349822555100580715234, −8.272996907387343781141807921514, −7.75908654678905211624470950525, −6.63524631899505417385615889599, −5.75362156040322564552731669906, −4.91868995610243790616437317865, −2.99473172098501877700142538240, −2.33191668641751950209061584780, −1.16680528282857103256936404780, 0.07161218129733511986946596947, 1.40035725565120737257895835614, 3.11240596840617704522062351376, 3.98002778237061830644907178972, 4.74913520093527326904052626082, 5.75086110306128783361999630700, 7.25645406161879112695156568025, 7.77298594328095683872344014456, 9.281150819844419529388795699164, 9.809991120127635153621019910389

Graph of the $Z$-function along the critical line