L(s) = 1 | − 56.2i·3-s + 1.34e3i·7-s − 978.·9-s − 4.38e3·11-s − 3.76e3i·13-s − 3.84e3i·17-s + 3.89e4·19-s + 7.56e4·21-s − 5.93e4i·23-s − 6.80e4i·27-s − 2.07e5·29-s + 2.86e5·31-s + 2.46e5i·33-s + 4.53e5i·37-s − 2.11e5·39-s + ⋯ |
L(s) = 1 | − 1.20i·3-s + 1.48i·7-s − 0.447·9-s − 0.992·11-s − 0.474i·13-s − 0.189i·17-s + 1.30·19-s + 1.78·21-s − 1.01i·23-s − 0.665i·27-s − 1.58·29-s + 1.72·31-s + 1.19i·33-s + 1.47i·37-s − 0.571·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.3397753111\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3397753111\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 56.2iT - 2.18e3T^{2} \) |
| 7 | \( 1 - 1.34e3iT - 8.23e5T^{2} \) |
| 11 | \( 1 + 4.38e3T + 1.94e7T^{2} \) |
| 13 | \( 1 + 3.76e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 + 3.84e3iT - 4.10e8T^{2} \) |
| 19 | \( 1 - 3.89e4T + 8.93e8T^{2} \) |
| 23 | \( 1 + 5.93e4iT - 3.40e9T^{2} \) |
| 29 | \( 1 + 2.07e5T + 1.72e10T^{2} \) |
| 31 | \( 1 - 2.86e5T + 2.75e10T^{2} \) |
| 37 | \( 1 - 4.53e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 - 5.98e3T + 1.94e11T^{2} \) |
| 43 | \( 1 - 2.16e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 + 4.06e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 + 1.38e6iT - 1.17e12T^{2} \) |
| 59 | \( 1 + 1.88e6T + 2.48e12T^{2} \) |
| 61 | \( 1 + 2.77e6T + 3.14e12T^{2} \) |
| 67 | \( 1 - 3.24e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 - 5.71e5T + 9.09e12T^{2} \) |
| 73 | \( 1 - 2.07e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 1.92e6T + 1.92e13T^{2} \) |
| 83 | \( 1 + 6.83e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 - 3.55e6T + 4.42e13T^{2} \) |
| 97 | \( 1 - 1.26e7iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36528522364772092667658966590, −9.379105073349822555100580715234, −8.272996907387343781141807921514, −7.75908654678905211624470950525, −6.63524631899505417385615889599, −5.75362156040322564552731669906, −4.91868995610243790616437317865, −2.99473172098501877700142538240, −2.33191668641751950209061584780, −1.16680528282857103256936404780,
0.07161218129733511986946596947, 1.40035725565120737257895835614, 3.11240596840617704522062351376, 3.98002778237061830644907178972, 4.74913520093527326904052626082, 5.75086110306128783361999630700, 7.25645406161879112695156568025, 7.77298594328095683872344014456, 9.281150819844419529388795699164, 9.809991120127635153621019910389