Properties

Label 40.2.d.a.21.4
Level $40$
Weight $2$
Character 40.21
Analytic conductor $0.319$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [40,2,Mod(21,40)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("40.21"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 40.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.319401608085\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 21.4
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 40.21
Dual form 40.2.d.a.21.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366025 + 1.36603i) q^{2} -0.732051i q^{3} +(-1.73205 + 1.00000i) q^{4} -1.00000i q^{5} +(1.00000 - 0.267949i) q^{6} -2.73205 q^{7} +(-2.00000 - 2.00000i) q^{8} +2.46410 q^{9} +(1.36603 - 0.366025i) q^{10} -2.00000i q^{11} +(0.732051 + 1.26795i) q^{12} +3.46410i q^{13} +(-1.00000 - 3.73205i) q^{14} -0.732051 q^{15} +(2.00000 - 3.46410i) q^{16} -3.46410 q^{17} +(0.901924 + 3.36603i) q^{18} +7.46410i q^{19} +(1.00000 + 1.73205i) q^{20} +2.00000i q^{21} +(2.73205 - 0.732051i) q^{22} +4.19615 q^{23} +(-1.46410 + 1.46410i) q^{24} -1.00000 q^{25} +(-4.73205 + 1.26795i) q^{26} -4.00000i q^{27} +(4.73205 - 2.73205i) q^{28} -6.92820i q^{29} +(-0.267949 - 1.00000i) q^{30} +1.46410 q^{31} +(5.46410 + 1.46410i) q^{32} -1.46410 q^{33} +(-1.26795 - 4.73205i) q^{34} +2.73205i q^{35} +(-4.26795 + 2.46410i) q^{36} -2.00000i q^{37} +(-10.1962 + 2.73205i) q^{38} +2.53590 q^{39} +(-2.00000 + 2.00000i) q^{40} -5.46410 q^{41} +(-2.73205 + 0.732051i) q^{42} -8.73205i q^{43} +(2.00000 + 3.46410i) q^{44} -2.46410i q^{45} +(1.53590 + 5.73205i) q^{46} +6.73205 q^{47} +(-2.53590 - 1.46410i) q^{48} +0.464102 q^{49} +(-0.366025 - 1.36603i) q^{50} +2.53590i q^{51} +(-3.46410 - 6.00000i) q^{52} +4.53590i q^{53} +(5.46410 - 1.46410i) q^{54} -2.00000 q^{55} +(5.46410 + 5.46410i) q^{56} +5.46410 q^{57} +(9.46410 - 2.53590i) q^{58} -0.535898i q^{59} +(1.26795 - 0.732051i) q^{60} +4.92820i q^{61} +(0.535898 + 2.00000i) q^{62} -6.73205 q^{63} +8.00000i q^{64} +3.46410 q^{65} +(-0.535898 - 2.00000i) q^{66} +7.26795i q^{67} +(6.00000 - 3.46410i) q^{68} -3.07180i q^{69} +(-3.73205 + 1.00000i) q^{70} -1.46410 q^{71} +(-4.92820 - 4.92820i) q^{72} +0.535898 q^{73} +(2.73205 - 0.732051i) q^{74} +0.732051i q^{75} +(-7.46410 - 12.9282i) q^{76} +5.46410i q^{77} +(0.928203 + 3.46410i) q^{78} -14.9282 q^{79} +(-3.46410 - 2.00000i) q^{80} +4.46410 q^{81} +(-2.00000 - 7.46410i) q^{82} +4.73205i q^{83} +(-2.00000 - 3.46410i) q^{84} +3.46410i q^{85} +(11.9282 - 3.19615i) q^{86} -5.07180 q^{87} +(-4.00000 + 4.00000i) q^{88} -4.92820 q^{89} +(3.36603 - 0.901924i) q^{90} -9.46410i q^{91} +(-7.26795 + 4.19615i) q^{92} -1.07180i q^{93} +(2.46410 + 9.19615i) q^{94} +7.46410 q^{95} +(1.07180 - 4.00000i) q^{96} +6.39230 q^{97} +(0.169873 + 0.633975i) q^{98} -4.92820i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 4 q^{6} - 4 q^{7} - 8 q^{8} - 4 q^{9} + 2 q^{10} - 4 q^{12} - 4 q^{14} + 4 q^{15} + 8 q^{16} + 14 q^{18} + 4 q^{20} + 4 q^{22} - 4 q^{23} + 8 q^{24} - 4 q^{25} - 12 q^{26} + 12 q^{28} - 8 q^{30}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/40\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 + 1.36603i 0.258819 + 0.965926i
\(3\) 0.732051i 0.422650i −0.977416 0.211325i \(-0.932222\pi\)
0.977416 0.211325i \(-0.0677778\pi\)
\(4\) −1.73205 + 1.00000i −0.866025 + 0.500000i
\(5\) 1.00000i 0.447214i
\(6\) 1.00000 0.267949i 0.408248 0.109390i
\(7\) −2.73205 −1.03262 −0.516309 0.856402i \(-0.672694\pi\)
−0.516309 + 0.856402i \(0.672694\pi\)
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) 2.46410 0.821367
\(10\) 1.36603 0.366025i 0.431975 0.115747i
\(11\) 2.00000i 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) 0.732051 + 1.26795i 0.211325 + 0.366025i
\(13\) 3.46410i 0.960769i 0.877058 + 0.480384i \(0.159503\pi\)
−0.877058 + 0.480384i \(0.840497\pi\)
\(14\) −1.00000 3.73205i −0.267261 0.997433i
\(15\) −0.732051 −0.189015
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) −3.46410 −0.840168 −0.420084 0.907485i \(-0.637999\pi\)
−0.420084 + 0.907485i \(0.637999\pi\)
\(18\) 0.901924 + 3.36603i 0.212585 + 0.793380i
\(19\) 7.46410i 1.71238i 0.516659 + 0.856191i \(0.327175\pi\)
−0.516659 + 0.856191i \(0.672825\pi\)
\(20\) 1.00000 + 1.73205i 0.223607 + 0.387298i
\(21\) 2.00000i 0.436436i
\(22\) 2.73205 0.732051i 0.582475 0.156074i
\(23\) 4.19615 0.874958 0.437479 0.899229i \(-0.355871\pi\)
0.437479 + 0.899229i \(0.355871\pi\)
\(24\) −1.46410 + 1.46410i −0.298858 + 0.298858i
\(25\) −1.00000 −0.200000
\(26\) −4.73205 + 1.26795i −0.928032 + 0.248665i
\(27\) 4.00000i 0.769800i
\(28\) 4.73205 2.73205i 0.894274 0.516309i
\(29\) 6.92820i 1.28654i −0.765641 0.643268i \(-0.777578\pi\)
0.765641 0.643268i \(-0.222422\pi\)
\(30\) −0.267949 1.00000i −0.0489206 0.182574i
\(31\) 1.46410 0.262960 0.131480 0.991319i \(-0.458027\pi\)
0.131480 + 0.991319i \(0.458027\pi\)
\(32\) 5.46410 + 1.46410i 0.965926 + 0.258819i
\(33\) −1.46410 −0.254867
\(34\) −1.26795 4.73205i −0.217451 0.811540i
\(35\) 2.73205i 0.461801i
\(36\) −4.26795 + 2.46410i −0.711325 + 0.410684i
\(37\) 2.00000i 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) −10.1962 + 2.73205i −1.65403 + 0.443197i
\(39\) 2.53590 0.406069
\(40\) −2.00000 + 2.00000i −0.316228 + 0.316228i
\(41\) −5.46410 −0.853349 −0.426675 0.904405i \(-0.640315\pi\)
−0.426675 + 0.904405i \(0.640315\pi\)
\(42\) −2.73205 + 0.732051i −0.421565 + 0.112958i
\(43\) 8.73205i 1.33163i −0.746119 0.665813i \(-0.768085\pi\)
0.746119 0.665813i \(-0.231915\pi\)
\(44\) 2.00000 + 3.46410i 0.301511 + 0.522233i
\(45\) 2.46410i 0.367327i
\(46\) 1.53590 + 5.73205i 0.226456 + 0.845145i
\(47\) 6.73205 0.981971 0.490985 0.871168i \(-0.336637\pi\)
0.490985 + 0.871168i \(0.336637\pi\)
\(48\) −2.53590 1.46410i −0.366025 0.211325i
\(49\) 0.464102 0.0663002
\(50\) −0.366025 1.36603i −0.0517638 0.193185i
\(51\) 2.53590i 0.355097i
\(52\) −3.46410 6.00000i −0.480384 0.832050i
\(53\) 4.53590i 0.623054i 0.950237 + 0.311527i \(0.100840\pi\)
−0.950237 + 0.311527i \(0.899160\pi\)
\(54\) 5.46410 1.46410i 0.743570 0.199239i
\(55\) −2.00000 −0.269680
\(56\) 5.46410 + 5.46410i 0.730171 + 0.730171i
\(57\) 5.46410 0.723738
\(58\) 9.46410 2.53590i 1.24270 0.332980i
\(59\) 0.535898i 0.0697680i −0.999391 0.0348840i \(-0.988894\pi\)
0.999391 0.0348840i \(-0.0111062\pi\)
\(60\) 1.26795 0.732051i 0.163692 0.0945074i
\(61\) 4.92820i 0.630992i 0.948927 + 0.315496i \(0.102171\pi\)
−0.948927 + 0.315496i \(0.897829\pi\)
\(62\) 0.535898 + 2.00000i 0.0680592 + 0.254000i
\(63\) −6.73205 −0.848159
\(64\) 8.00000i 1.00000i
\(65\) 3.46410 0.429669
\(66\) −0.535898 2.00000i −0.0659645 0.246183i
\(67\) 7.26795i 0.887921i 0.896046 + 0.443961i \(0.146427\pi\)
−0.896046 + 0.443961i \(0.853573\pi\)
\(68\) 6.00000 3.46410i 0.727607 0.420084i
\(69\) 3.07180i 0.369801i
\(70\) −3.73205 + 1.00000i −0.446065 + 0.119523i
\(71\) −1.46410 −0.173757 −0.0868784 0.996219i \(-0.527689\pi\)
−0.0868784 + 0.996219i \(0.527689\pi\)
\(72\) −4.92820 4.92820i −0.580794 0.580794i
\(73\) 0.535898 0.0627222 0.0313611 0.999508i \(-0.490016\pi\)
0.0313611 + 0.999508i \(0.490016\pi\)
\(74\) 2.73205 0.732051i 0.317594 0.0850992i
\(75\) 0.732051i 0.0845299i
\(76\) −7.46410 12.9282i −0.856191 1.48297i
\(77\) 5.46410i 0.622692i
\(78\) 0.928203 + 3.46410i 0.105098 + 0.392232i
\(79\) −14.9282 −1.67955 −0.839777 0.542931i \(-0.817314\pi\)
−0.839777 + 0.542931i \(0.817314\pi\)
\(80\) −3.46410 2.00000i −0.387298 0.223607i
\(81\) 4.46410 0.496011
\(82\) −2.00000 7.46410i −0.220863 0.824272i
\(83\) 4.73205i 0.519410i 0.965688 + 0.259705i \(0.0836253\pi\)
−0.965688 + 0.259705i \(0.916375\pi\)
\(84\) −2.00000 3.46410i −0.218218 0.377964i
\(85\) 3.46410i 0.375735i
\(86\) 11.9282 3.19615i 1.28625 0.344650i
\(87\) −5.07180 −0.543754
\(88\) −4.00000 + 4.00000i −0.426401 + 0.426401i
\(89\) −4.92820 −0.522388 −0.261194 0.965286i \(-0.584116\pi\)
−0.261194 + 0.965286i \(0.584116\pi\)
\(90\) 3.36603 0.901924i 0.354810 0.0950711i
\(91\) 9.46410i 0.992107i
\(92\) −7.26795 + 4.19615i −0.757736 + 0.437479i
\(93\) 1.07180i 0.111140i
\(94\) 2.46410 + 9.19615i 0.254153 + 0.948511i
\(95\) 7.46410 0.765801
\(96\) 1.07180 4.00000i 0.109390 0.408248i
\(97\) 6.39230 0.649040 0.324520 0.945879i \(-0.394797\pi\)
0.324520 + 0.945879i \(0.394797\pi\)
\(98\) 0.169873 + 0.633975i 0.0171598 + 0.0640411i
\(99\) 4.92820i 0.495303i
\(100\) 1.73205 1.00000i 0.173205 0.100000i
\(101\) 10.9282i 1.08740i −0.839281 0.543698i \(-0.817024\pi\)
0.839281 0.543698i \(-0.182976\pi\)
\(102\) −3.46410 + 0.928203i −0.342997 + 0.0919058i
\(103\) −1.66025 −0.163590 −0.0817948 0.996649i \(-0.526065\pi\)
−0.0817948 + 0.996649i \(0.526065\pi\)
\(104\) 6.92820 6.92820i 0.679366 0.679366i
\(105\) 2.00000 0.195180
\(106\) −6.19615 + 1.66025i −0.601824 + 0.161258i
\(107\) 0.732051i 0.0707700i −0.999374 0.0353850i \(-0.988734\pi\)
0.999374 0.0353850i \(-0.0112658\pi\)
\(108\) 4.00000 + 6.92820i 0.384900 + 0.666667i
\(109\) 3.07180i 0.294225i 0.989120 + 0.147112i \(0.0469979\pi\)
−0.989120 + 0.147112i \(0.953002\pi\)
\(110\) −0.732051 2.73205i −0.0697983 0.260491i
\(111\) −1.46410 −0.138966
\(112\) −5.46410 + 9.46410i −0.516309 + 0.894274i
\(113\) 0.928203 0.0873180 0.0436590 0.999046i \(-0.486098\pi\)
0.0436590 + 0.999046i \(0.486098\pi\)
\(114\) 2.00000 + 7.46410i 0.187317 + 0.699077i
\(115\) 4.19615i 0.391293i
\(116\) 6.92820 + 12.0000i 0.643268 + 1.11417i
\(117\) 8.53590i 0.789144i
\(118\) 0.732051 0.196152i 0.0673907 0.0180573i
\(119\) 9.46410 0.867573
\(120\) 1.46410 + 1.46410i 0.133654 + 0.133654i
\(121\) 7.00000 0.636364
\(122\) −6.73205 + 1.80385i −0.609491 + 0.163313i
\(123\) 4.00000i 0.360668i
\(124\) −2.53590 + 1.46410i −0.227730 + 0.131480i
\(125\) 1.00000i 0.0894427i
\(126\) −2.46410 9.19615i −0.219520 0.819258i
\(127\) 13.2679 1.17734 0.588670 0.808373i \(-0.299652\pi\)
0.588670 + 0.808373i \(0.299652\pi\)
\(128\) −10.9282 + 2.92820i −0.965926 + 0.258819i
\(129\) −6.39230 −0.562811
\(130\) 1.26795 + 4.73205i 0.111207 + 0.415028i
\(131\) 7.85641i 0.686417i 0.939259 + 0.343209i \(0.111514\pi\)
−0.939259 + 0.343209i \(0.888486\pi\)
\(132\) 2.53590 1.46410i 0.220722 0.127434i
\(133\) 20.3923i 1.76824i
\(134\) −9.92820 + 2.66025i −0.857666 + 0.229811i
\(135\) −4.00000 −0.344265
\(136\) 6.92820 + 6.92820i 0.594089 + 0.594089i
\(137\) −8.92820 −0.762788 −0.381394 0.924413i \(-0.624556\pi\)
−0.381394 + 0.924413i \(0.624556\pi\)
\(138\) 4.19615 1.12436i 0.357200 0.0957115i
\(139\) 7.46410i 0.633097i −0.948576 0.316548i \(-0.897476\pi\)
0.948576 0.316548i \(-0.102524\pi\)
\(140\) −2.73205 4.73205i −0.230900 0.399931i
\(141\) 4.92820i 0.415030i
\(142\) −0.535898 2.00000i −0.0449716 0.167836i
\(143\) 6.92820 0.579365
\(144\) 4.92820 8.53590i 0.410684 0.711325i
\(145\) −6.92820 −0.575356
\(146\) 0.196152 + 0.732051i 0.0162337 + 0.0605850i
\(147\) 0.339746i 0.0280218i
\(148\) 2.00000 + 3.46410i 0.164399 + 0.284747i
\(149\) 19.8564i 1.62670i 0.581775 + 0.813350i \(0.302359\pi\)
−0.581775 + 0.813350i \(0.697641\pi\)
\(150\) −1.00000 + 0.267949i −0.0816497 + 0.0218780i
\(151\) 8.39230 0.682956 0.341478 0.939890i \(-0.389073\pi\)
0.341478 + 0.939890i \(0.389073\pi\)
\(152\) 14.9282 14.9282i 1.21084 1.21084i
\(153\) −8.53590 −0.690086
\(154\) −7.46410 + 2.00000i −0.601474 + 0.161165i
\(155\) 1.46410i 0.117599i
\(156\) −4.39230 + 2.53590i −0.351666 + 0.203034i
\(157\) 16.9282i 1.35102i −0.737352 0.675509i \(-0.763924\pi\)
0.737352 0.675509i \(-0.236076\pi\)
\(158\) −5.46410 20.3923i −0.434701 1.62232i
\(159\) 3.32051 0.263333
\(160\) 1.46410 5.46410i 0.115747 0.431975i
\(161\) −11.4641 −0.903498
\(162\) 1.63397 + 6.09808i 0.128377 + 0.479110i
\(163\) 10.1962i 0.798624i 0.916815 + 0.399312i \(0.130751\pi\)
−0.916815 + 0.399312i \(0.869249\pi\)
\(164\) 9.46410 5.46410i 0.739022 0.426675i
\(165\) 1.46410i 0.113980i
\(166\) −6.46410 + 1.73205i −0.501712 + 0.134433i
\(167\) −20.1962 −1.56283 −0.781413 0.624015i \(-0.785501\pi\)
−0.781413 + 0.624015i \(0.785501\pi\)
\(168\) 4.00000 4.00000i 0.308607 0.308607i
\(169\) 1.00000 0.0769231
\(170\) −4.73205 + 1.26795i −0.362932 + 0.0972473i
\(171\) 18.3923i 1.40649i
\(172\) 8.73205 + 15.1244i 0.665813 + 1.15322i
\(173\) 2.00000i 0.152057i 0.997106 + 0.0760286i \(0.0242240\pi\)
−0.997106 + 0.0760286i \(0.975776\pi\)
\(174\) −1.85641 6.92820i −0.140734 0.525226i
\(175\) 2.73205 0.206524
\(176\) −6.92820 4.00000i −0.522233 0.301511i
\(177\) −0.392305 −0.0294874
\(178\) −1.80385 6.73205i −0.135204 0.504589i
\(179\) 15.4641i 1.15584i −0.816093 0.577921i \(-0.803864\pi\)
0.816093 0.577921i \(-0.196136\pi\)
\(180\) 2.46410 + 4.26795i 0.183663 + 0.318114i
\(181\) 16.0000i 1.18927i 0.803996 + 0.594635i \(0.202704\pi\)
−0.803996 + 0.594635i \(0.797296\pi\)
\(182\) 12.9282 3.46410i 0.958302 0.256776i
\(183\) 3.60770 0.266688
\(184\) −8.39230 8.39230i −0.618689 0.618689i
\(185\) −2.00000 −0.147043
\(186\) 1.46410 0.392305i 0.107353 0.0287652i
\(187\) 6.92820i 0.506640i
\(188\) −11.6603 + 6.73205i −0.850411 + 0.490985i
\(189\) 10.9282i 0.794910i
\(190\) 2.73205 + 10.1962i 0.198204 + 0.739707i
\(191\) −19.3205 −1.39798 −0.698991 0.715130i \(-0.746367\pi\)
−0.698991 + 0.715130i \(0.746367\pi\)
\(192\) 5.85641 0.422650
\(193\) 7.46410 0.537278 0.268639 0.963241i \(-0.413426\pi\)
0.268639 + 0.963241i \(0.413426\pi\)
\(194\) 2.33975 + 8.73205i 0.167984 + 0.626925i
\(195\) 2.53590i 0.181599i
\(196\) −0.803848 + 0.464102i −0.0574177 + 0.0331501i
\(197\) 12.5359i 0.893146i −0.894747 0.446573i \(-0.852644\pi\)
0.894747 0.446573i \(-0.147356\pi\)
\(198\) 6.73205 1.80385i 0.478426 0.128194i
\(199\) 25.8564 1.83291 0.916456 0.400135i \(-0.131037\pi\)
0.916456 + 0.400135i \(0.131037\pi\)
\(200\) 2.00000 + 2.00000i 0.141421 + 0.141421i
\(201\) 5.32051 0.375280
\(202\) 14.9282 4.00000i 1.05034 0.281439i
\(203\) 18.9282i 1.32850i
\(204\) −2.53590 4.39230i −0.177548 0.307523i
\(205\) 5.46410i 0.381629i
\(206\) −0.607695 2.26795i −0.0423401 0.158016i
\(207\) 10.3397 0.718662
\(208\) 12.0000 + 6.92820i 0.832050 + 0.480384i
\(209\) 14.9282 1.03261
\(210\) 0.732051 + 2.73205i 0.0505163 + 0.188529i
\(211\) 14.7846i 1.01781i −0.860821 0.508907i \(-0.830050\pi\)
0.860821 0.508907i \(-0.169950\pi\)
\(212\) −4.53590 7.85641i −0.311527 0.539580i
\(213\) 1.07180i 0.0734383i
\(214\) 1.00000 0.267949i 0.0683586 0.0183166i
\(215\) −8.73205 −0.595521
\(216\) −8.00000 + 8.00000i −0.544331 + 0.544331i
\(217\) −4.00000 −0.271538
\(218\) −4.19615 + 1.12436i −0.284199 + 0.0761510i
\(219\) 0.392305i 0.0265095i
\(220\) 3.46410 2.00000i 0.233550 0.134840i
\(221\) 12.0000i 0.807207i
\(222\) −0.535898 2.00000i −0.0359671 0.134231i
\(223\) −16.1962 −1.08457 −0.542287 0.840193i \(-0.682442\pi\)
−0.542287 + 0.840193i \(0.682442\pi\)
\(224\) −14.9282 4.00000i −0.997433 0.267261i
\(225\) −2.46410 −0.164273
\(226\) 0.339746 + 1.26795i 0.0225996 + 0.0843427i
\(227\) 28.0526i 1.86191i −0.365129 0.930957i \(-0.618975\pi\)
0.365129 0.930957i \(-0.381025\pi\)
\(228\) −9.46410 + 5.46410i −0.626775 + 0.361869i
\(229\) 4.00000i 0.264327i −0.991228 0.132164i \(-0.957808\pi\)
0.991228 0.132164i \(-0.0421925\pi\)
\(230\) 5.73205 1.53590i 0.377960 0.101274i
\(231\) 4.00000 0.263181
\(232\) −13.8564 + 13.8564i −0.909718 + 0.909718i
\(233\) 29.3205 1.92085 0.960425 0.278538i \(-0.0898499\pi\)
0.960425 + 0.278538i \(0.0898499\pi\)
\(234\) −11.6603 + 3.12436i −0.762255 + 0.204246i
\(235\) 6.73205i 0.439151i
\(236\) 0.535898 + 0.928203i 0.0348840 + 0.0604209i
\(237\) 10.9282i 0.709863i
\(238\) 3.46410 + 12.9282i 0.224544 + 0.838011i
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) −1.46410 + 2.53590i −0.0945074 + 0.163692i
\(241\) −4.39230 −0.282933 −0.141467 0.989943i \(-0.545182\pi\)
−0.141467 + 0.989943i \(0.545182\pi\)
\(242\) 2.56218 + 9.56218i 0.164703 + 0.614680i
\(243\) 15.2679i 0.979439i
\(244\) −4.92820 8.53590i −0.315496 0.546455i
\(245\) 0.464102i 0.0296504i
\(246\) −5.46410 + 1.46410i −0.348378 + 0.0933477i
\(247\) −25.8564 −1.64520
\(248\) −2.92820 2.92820i −0.185941 0.185941i
\(249\) 3.46410 0.219529
\(250\) −1.36603 + 0.366025i −0.0863950 + 0.0231495i
\(251\) 11.0718i 0.698846i 0.936965 + 0.349423i \(0.113622\pi\)
−0.936965 + 0.349423i \(0.886378\pi\)
\(252\) 11.6603 6.73205i 0.734527 0.424079i
\(253\) 8.39230i 0.527620i
\(254\) 4.85641 + 18.1244i 0.304718 + 1.13722i
\(255\) 2.53590 0.158804
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) −2.33975 8.73205i −0.145666 0.543634i
\(259\) 5.46410i 0.339523i
\(260\) −6.00000 + 3.46410i −0.372104 + 0.214834i
\(261\) 17.0718i 1.05672i
\(262\) −10.7321 + 2.87564i −0.663028 + 0.177658i
\(263\) 5.66025 0.349026 0.174513 0.984655i \(-0.444165\pi\)
0.174513 + 0.984655i \(0.444165\pi\)
\(264\) 2.92820 + 2.92820i 0.180218 + 0.180218i
\(265\) 4.53590 0.278638
\(266\) 27.8564 7.46410i 1.70799 0.457653i
\(267\) 3.60770i 0.220787i
\(268\) −7.26795 12.5885i −0.443961 0.768962i
\(269\) 4.92820i 0.300478i 0.988650 + 0.150239i \(0.0480043\pi\)
−0.988650 + 0.150239i \(0.951996\pi\)
\(270\) −1.46410 5.46410i −0.0891024 0.332535i
\(271\) 15.3205 0.930655 0.465327 0.885139i \(-0.345937\pi\)
0.465327 + 0.885139i \(0.345937\pi\)
\(272\) −6.92820 + 12.0000i −0.420084 + 0.727607i
\(273\) −6.92820 −0.419314
\(274\) −3.26795 12.1962i −0.197424 0.736797i
\(275\) 2.00000i 0.120605i
\(276\) 3.07180 + 5.32051i 0.184900 + 0.320257i
\(277\) 2.00000i 0.120168i 0.998193 + 0.0600842i \(0.0191369\pi\)
−0.998193 + 0.0600842i \(0.980863\pi\)
\(278\) 10.1962 2.73205i 0.611525 0.163858i
\(279\) 3.60770 0.215987
\(280\) 5.46410 5.46410i 0.326543 0.326543i
\(281\) 17.4641 1.04182 0.520910 0.853611i \(-0.325593\pi\)
0.520910 + 0.853611i \(0.325593\pi\)
\(282\) 6.73205 1.80385i 0.400888 0.107418i
\(283\) 7.66025i 0.455355i 0.973737 + 0.227677i \(0.0731132\pi\)
−0.973737 + 0.227677i \(0.926887\pi\)
\(284\) 2.53590 1.46410i 0.150478 0.0868784i
\(285\) 5.46410i 0.323665i
\(286\) 2.53590 + 9.46410i 0.149951 + 0.559624i
\(287\) 14.9282 0.881184
\(288\) 13.4641 + 3.60770i 0.793380 + 0.212585i
\(289\) −5.00000 −0.294118
\(290\) −2.53590 9.46410i −0.148913 0.555751i
\(291\) 4.67949i 0.274317i
\(292\) −0.928203 + 0.535898i −0.0543190 + 0.0313611i
\(293\) 11.8564i 0.692659i 0.938113 + 0.346329i \(0.112572\pi\)
−0.938113 + 0.346329i \(0.887428\pi\)
\(294\) 0.464102 0.124356i 0.0270670 0.00725257i
\(295\) −0.535898 −0.0312012
\(296\) −4.00000 + 4.00000i −0.232495 + 0.232495i
\(297\) −8.00000 −0.464207
\(298\) −27.1244 + 7.26795i −1.57127 + 0.421021i
\(299\) 14.5359i 0.840633i
\(300\) −0.732051 1.26795i −0.0422650 0.0732051i
\(301\) 23.8564i 1.37506i
\(302\) 3.07180 + 11.4641i 0.176762 + 0.659685i
\(303\) −8.00000 −0.459588
\(304\) 25.8564 + 14.9282i 1.48297 + 0.856191i
\(305\) 4.92820 0.282188
\(306\) −3.12436 11.6603i −0.178608 0.666572i
\(307\) 26.9808i 1.53987i 0.638120 + 0.769937i \(0.279712\pi\)
−0.638120 + 0.769937i \(0.720288\pi\)
\(308\) −5.46410 9.46410i −0.311346 0.539267i
\(309\) 1.21539i 0.0691411i
\(310\) 2.00000 0.535898i 0.113592 0.0304370i
\(311\) −3.32051 −0.188289 −0.0941444 0.995559i \(-0.530012\pi\)
−0.0941444 + 0.995559i \(0.530012\pi\)
\(312\) −5.07180 5.07180i −0.287134 0.287134i
\(313\) −31.8564 −1.80063 −0.900315 0.435238i \(-0.856664\pi\)
−0.900315 + 0.435238i \(0.856664\pi\)
\(314\) 23.1244 6.19615i 1.30498 0.349669i
\(315\) 6.73205i 0.379308i
\(316\) 25.8564 14.9282i 1.45454 0.839777i
\(317\) 15.4641i 0.868550i 0.900780 + 0.434275i \(0.142995\pi\)
−0.900780 + 0.434275i \(0.857005\pi\)
\(318\) 1.21539 + 4.53590i 0.0681557 + 0.254361i
\(319\) −13.8564 −0.775810
\(320\) 8.00000 0.447214
\(321\) −0.535898 −0.0299109
\(322\) −4.19615 15.6603i −0.233842 0.872712i
\(323\) 25.8564i 1.43869i
\(324\) −7.73205 + 4.46410i −0.429558 + 0.248006i
\(325\) 3.46410i 0.192154i
\(326\) −13.9282 + 3.73205i −0.771412 + 0.206699i
\(327\) 2.24871 0.124354
\(328\) 10.9282 + 10.9282i 0.603409 + 0.603409i
\(329\) −18.3923 −1.01400
\(330\) −2.00000 + 0.535898i −0.110096 + 0.0295002i
\(331\) 14.0000i 0.769510i −0.923019 0.384755i \(-0.874286\pi\)
0.923019 0.384755i \(-0.125714\pi\)
\(332\) −4.73205 8.19615i −0.259705 0.449822i
\(333\) 4.92820i 0.270064i
\(334\) −7.39230 27.5885i −0.404489 1.50957i
\(335\) 7.26795 0.397090
\(336\) 6.92820 + 4.00000i 0.377964 + 0.218218i
\(337\) 7.85641 0.427966 0.213983 0.976837i \(-0.431356\pi\)
0.213983 + 0.976837i \(0.431356\pi\)
\(338\) 0.366025 + 1.36603i 0.0199092 + 0.0743020i
\(339\) 0.679492i 0.0369049i
\(340\) −3.46410 6.00000i −0.187867 0.325396i
\(341\) 2.92820i 0.158571i
\(342\) −25.1244 + 6.73205i −1.35857 + 0.364028i
\(343\) 17.8564 0.964155
\(344\) −17.4641 + 17.4641i −0.941601 + 0.941601i
\(345\) −3.07180 −0.165380
\(346\) −2.73205 + 0.732051i −0.146876 + 0.0393553i
\(347\) 15.6603i 0.840686i 0.907365 + 0.420343i \(0.138090\pi\)
−0.907365 + 0.420343i \(0.861910\pi\)
\(348\) 8.78461 5.07180i 0.470905 0.271877i
\(349\) 28.0000i 1.49881i −0.662114 0.749403i \(-0.730341\pi\)
0.662114 0.749403i \(-0.269659\pi\)
\(350\) 1.00000 + 3.73205i 0.0534522 + 0.199487i
\(351\) 13.8564 0.739600
\(352\) 2.92820 10.9282i 0.156074 0.582475i
\(353\) −0.928203 −0.0494033 −0.0247016 0.999695i \(-0.507864\pi\)
−0.0247016 + 0.999695i \(0.507864\pi\)
\(354\) −0.143594 0.535898i −0.00763191 0.0284827i
\(355\) 1.46410i 0.0777064i
\(356\) 8.53590 4.92820i 0.452402 0.261194i
\(357\) 6.92820i 0.366679i
\(358\) 21.1244 5.66025i 1.11646 0.299154i
\(359\) 5.07180 0.267679 0.133840 0.991003i \(-0.457269\pi\)
0.133840 + 0.991003i \(0.457269\pi\)
\(360\) −4.92820 + 4.92820i −0.259739 + 0.259739i
\(361\) −36.7128 −1.93225
\(362\) −21.8564 + 5.85641i −1.14875 + 0.307806i
\(363\) 5.12436i 0.268959i
\(364\) 9.46410 + 16.3923i 0.496054 + 0.859190i
\(365\) 0.535898i 0.0280502i
\(366\) 1.32051 + 4.92820i 0.0690241 + 0.257601i
\(367\) 27.1244 1.41588 0.707940 0.706273i \(-0.249625\pi\)
0.707940 + 0.706273i \(0.249625\pi\)
\(368\) 8.39230 14.5359i 0.437479 0.757736i
\(369\) −13.4641 −0.700913
\(370\) −0.732051 2.73205i −0.0380575 0.142033i
\(371\) 12.3923i 0.643376i
\(372\) 1.07180 + 1.85641i 0.0555701 + 0.0962502i
\(373\) 29.7128i 1.53847i 0.638965 + 0.769236i \(0.279363\pi\)
−0.638965 + 0.769236i \(0.720637\pi\)
\(374\) −9.46410 + 2.53590i −0.489377 + 0.131128i
\(375\) 0.732051 0.0378029
\(376\) −13.4641 13.4641i −0.694358 0.694358i
\(377\) 24.0000 1.23606
\(378\) −14.9282 + 4.00000i −0.767824 + 0.205738i
\(379\) 12.2487i 0.629174i 0.949229 + 0.314587i \(0.101866\pi\)
−0.949229 + 0.314587i \(0.898134\pi\)
\(380\) −12.9282 + 7.46410i −0.663203 + 0.382900i
\(381\) 9.71281i 0.497602i
\(382\) −7.07180 26.3923i −0.361825 1.35035i
\(383\) −3.12436 −0.159647 −0.0798236 0.996809i \(-0.525436\pi\)
−0.0798236 + 0.996809i \(0.525436\pi\)
\(384\) 2.14359 + 8.00000i 0.109390 + 0.408248i
\(385\) 5.46410 0.278476
\(386\) 2.73205 + 10.1962i 0.139058 + 0.518970i
\(387\) 21.5167i 1.09375i
\(388\) −11.0718 + 6.39230i −0.562085 + 0.324520i
\(389\) 34.7846i 1.76365i −0.471577 0.881825i \(-0.656315\pi\)
0.471577 0.881825i \(-0.343685\pi\)
\(390\) 3.46410 0.928203i 0.175412 0.0470014i
\(391\) −14.5359 −0.735112
\(392\) −0.928203 0.928203i −0.0468813 0.0468813i
\(393\) 5.75129 0.290114
\(394\) 17.1244 4.58846i 0.862713 0.231163i
\(395\) 14.9282i 0.751119i
\(396\) 4.92820 + 8.53590i 0.247652 + 0.428945i
\(397\) 16.2487i 0.815499i −0.913094 0.407750i \(-0.866314\pi\)
0.913094 0.407750i \(-0.133686\pi\)
\(398\) 9.46410 + 35.3205i 0.474393 + 1.77046i
\(399\) −14.9282 −0.747345
\(400\) −2.00000 + 3.46410i −0.100000 + 0.173205i
\(401\) 19.8564 0.991582 0.495791 0.868442i \(-0.334878\pi\)
0.495791 + 0.868442i \(0.334878\pi\)
\(402\) 1.94744 + 7.26795i 0.0971295 + 0.362492i
\(403\) 5.07180i 0.252644i
\(404\) 10.9282 + 18.9282i 0.543698 + 0.941713i
\(405\) 4.46410i 0.221823i
\(406\) −25.8564 + 6.92820i −1.28323 + 0.343841i
\(407\) −4.00000 −0.198273
\(408\) 5.07180 5.07180i 0.251091 0.251091i
\(409\) 23.3205 1.15312 0.576562 0.817053i \(-0.304394\pi\)
0.576562 + 0.817053i \(0.304394\pi\)
\(410\) −7.46410 + 2.00000i −0.368626 + 0.0987730i
\(411\) 6.53590i 0.322392i
\(412\) 2.87564 1.66025i 0.141673 0.0817948i
\(413\) 1.46410i 0.0720437i
\(414\) 3.78461 + 14.1244i 0.186003 + 0.694174i
\(415\) 4.73205 0.232287
\(416\) −5.07180 + 18.9282i −0.248665 + 0.928032i
\(417\) −5.46410 −0.267578
\(418\) 5.46410 + 20.3923i 0.267258 + 0.997420i
\(419\) 2.39230i 0.116872i −0.998291 0.0584359i \(-0.981389\pi\)
0.998291 0.0584359i \(-0.0186113\pi\)
\(420\) −3.46410 + 2.00000i −0.169031 + 0.0975900i
\(421\) 27.8564i 1.35764i 0.734306 + 0.678819i \(0.237508\pi\)
−0.734306 + 0.678819i \(0.762492\pi\)
\(422\) 20.1962 5.41154i 0.983133 0.263430i
\(423\) 16.5885 0.806558
\(424\) 9.07180 9.07180i 0.440565 0.440565i
\(425\) 3.46410 0.168034
\(426\) −1.46410 + 0.392305i −0.0709360 + 0.0190072i
\(427\) 13.4641i 0.651574i
\(428\) 0.732051 + 1.26795i 0.0353850 + 0.0612886i
\(429\) 5.07180i 0.244869i
\(430\) −3.19615 11.9282i −0.154132 0.575229i
\(431\) −14.5359 −0.700170 −0.350085 0.936718i \(-0.613847\pi\)
−0.350085 + 0.936718i \(0.613847\pi\)
\(432\) −13.8564 8.00000i −0.666667 0.384900i
\(433\) −12.5359 −0.602437 −0.301218 0.953555i \(-0.597393\pi\)
−0.301218 + 0.953555i \(0.597393\pi\)
\(434\) −1.46410 5.46410i −0.0702791 0.262285i
\(435\) 5.07180i 0.243174i
\(436\) −3.07180 5.32051i −0.147112 0.254806i
\(437\) 31.3205i 1.49826i
\(438\) 0.535898 0.143594i 0.0256062 0.00686116i
\(439\) −0.784610 −0.0374474 −0.0187237 0.999825i \(-0.505960\pi\)
−0.0187237 + 0.999825i \(0.505960\pi\)
\(440\) 4.00000 + 4.00000i 0.190693 + 0.190693i
\(441\) 1.14359 0.0544568
\(442\) 16.3923 4.39230i 0.779702 0.208921i
\(443\) 30.9808i 1.47194i −0.677014 0.735970i \(-0.736726\pi\)
0.677014 0.735970i \(-0.263274\pi\)
\(444\) 2.53590 1.46410i 0.120348 0.0694832i
\(445\) 4.92820i 0.233619i
\(446\) −5.92820 22.1244i −0.280709 1.04762i
\(447\) 14.5359 0.687524
\(448\) 21.8564i 1.03262i
\(449\) 11.3205 0.534248 0.267124 0.963662i \(-0.413927\pi\)
0.267124 + 0.963662i \(0.413927\pi\)
\(450\) −0.901924 3.36603i −0.0425171 0.158676i
\(451\) 10.9282i 0.514589i
\(452\) −1.60770 + 0.928203i −0.0756196 + 0.0436590i
\(453\) 6.14359i 0.288651i
\(454\) 38.3205 10.2679i 1.79847 0.481899i
\(455\) −9.46410 −0.443684
\(456\) −10.9282 10.9282i −0.511760 0.511760i
\(457\) 14.7846 0.691595 0.345797 0.938309i \(-0.387608\pi\)
0.345797 + 0.938309i \(0.387608\pi\)
\(458\) 5.46410 1.46410i 0.255321 0.0684130i
\(459\) 13.8564i 0.646762i
\(460\) 4.19615 + 7.26795i 0.195647 + 0.338870i
\(461\) 2.92820i 0.136380i 0.997672 + 0.0681900i \(0.0217224\pi\)
−0.997672 + 0.0681900i \(0.978278\pi\)
\(462\) 1.46410 + 5.46410i 0.0681162 + 0.254213i
\(463\) −14.7321 −0.684656 −0.342328 0.939580i \(-0.611215\pi\)
−0.342328 + 0.939580i \(0.611215\pi\)
\(464\) −24.0000 13.8564i −1.11417 0.643268i
\(465\) −1.07180 −0.0497034
\(466\) 10.7321 + 40.0526i 0.497153 + 1.85540i
\(467\) 8.33975i 0.385917i −0.981207 0.192959i \(-0.938192\pi\)
0.981207 0.192959i \(-0.0618083\pi\)
\(468\) −8.53590 14.7846i −0.394572 0.683419i
\(469\) 19.8564i 0.916884i
\(470\) 9.19615 2.46410i 0.424187 0.113661i
\(471\) −12.3923 −0.571007
\(472\) −1.07180 + 1.07180i −0.0493334 + 0.0493334i
\(473\) −17.4641 −0.803000
\(474\) −14.9282 + 4.00000i −0.685675 + 0.183726i
\(475\) 7.46410i 0.342476i
\(476\) −16.3923 + 9.46410i −0.751340 + 0.433786i
\(477\) 11.1769i 0.511756i
\(478\) −7.32051 27.3205i −0.334832 1.24961i
\(479\) −21.8564 −0.998645 −0.499322 0.866416i \(-0.666418\pi\)
−0.499322 + 0.866416i \(0.666418\pi\)
\(480\) −4.00000 1.07180i −0.182574 0.0489206i
\(481\) 6.92820 0.315899
\(482\) −1.60770 6.00000i −0.0732285 0.273293i
\(483\) 8.39230i 0.381863i
\(484\) −12.1244 + 7.00000i −0.551107 + 0.318182i
\(485\) 6.39230i 0.290260i
\(486\) 20.8564 5.58846i 0.946066 0.253498i
\(487\) −24.5885 −1.11421 −0.557105 0.830442i \(-0.688088\pi\)
−0.557105 + 0.830442i \(0.688088\pi\)
\(488\) 9.85641 9.85641i 0.446179 0.446179i
\(489\) 7.46410 0.337538
\(490\) 0.633975 0.169873i 0.0286401 0.00767408i
\(491\) 3.07180i 0.138628i −0.997595 0.0693141i \(-0.977919\pi\)
0.997595 0.0693141i \(-0.0220811\pi\)
\(492\) −4.00000 6.92820i −0.180334 0.312348i
\(493\) 24.0000i 1.08091i
\(494\) −9.46410 35.3205i −0.425810 1.58914i
\(495\) −4.92820 −0.221506
\(496\) 2.92820 5.07180i 0.131480 0.227730i
\(497\) 4.00000 0.179425
\(498\) 1.26795 + 4.73205i 0.0568182 + 0.212048i
\(499\) 24.5359i 1.09838i 0.835698 + 0.549189i \(0.185063\pi\)
−0.835698 + 0.549189i \(0.814937\pi\)
\(500\) −1.00000 1.73205i −0.0447214 0.0774597i
\(501\) 14.7846i 0.660528i
\(502\) −15.1244 + 4.05256i −0.675033 + 0.180875i
\(503\) −17.6603 −0.787432 −0.393716 0.919232i \(-0.628811\pi\)
−0.393716 + 0.919232i \(0.628811\pi\)
\(504\) 13.4641 + 13.4641i 0.599739 + 0.599739i
\(505\) −10.9282 −0.486299
\(506\) 11.4641 3.07180i 0.509641 0.136558i
\(507\) 0.732051i 0.0325115i
\(508\) −22.9808 + 13.2679i −1.01961 + 0.588670i
\(509\) 25.8564i 1.14607i 0.819533 + 0.573033i \(0.194233\pi\)
−0.819533 + 0.573033i \(0.805767\pi\)
\(510\) 0.928203 + 3.46410i 0.0411015 + 0.153393i
\(511\) −1.46410 −0.0647680
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 29.8564 1.31819
\(514\) −0.732051 2.73205i −0.0322894 0.120506i
\(515\) 1.66025i 0.0731595i
\(516\) 11.0718 6.39230i 0.487409 0.281406i
\(517\) 13.4641i 0.592151i
\(518\) −7.46410 + 2.00000i −0.327954 + 0.0878750i
\(519\) 1.46410 0.0642669
\(520\) −6.92820 6.92820i −0.303822 0.303822i
\(521\) −16.1436 −0.707264 −0.353632 0.935385i \(-0.615053\pi\)
−0.353632 + 0.935385i \(0.615053\pi\)
\(522\) 23.3205 6.24871i 1.02071 0.273499i
\(523\) 22.1962i 0.970570i −0.874356 0.485285i \(-0.838716\pi\)
0.874356 0.485285i \(-0.161284\pi\)
\(524\) −7.85641 13.6077i −0.343209 0.594455i
\(525\) 2.00000i 0.0872872i
\(526\) 2.07180 + 7.73205i 0.0903346 + 0.337133i
\(527\) −5.07180 −0.220931
\(528\) −2.92820 + 5.07180i −0.127434 + 0.220722i
\(529\) −5.39230 −0.234448
\(530\) 1.66025 + 6.19615i 0.0721168 + 0.269144i
\(531\) 1.32051i 0.0573052i
\(532\) 20.3923 + 35.3205i 0.884119 + 1.53134i
\(533\) 18.9282i 0.819871i
\(534\) −4.92820 + 1.32051i −0.213264 + 0.0571440i
\(535\) −0.732051 −0.0316493
\(536\) 14.5359 14.5359i 0.627855 0.627855i
\(537\) −11.3205 −0.488516
\(538\) −6.73205 + 1.80385i −0.290239 + 0.0777694i
\(539\) 0.928203i 0.0399805i
\(540\) 6.92820 4.00000i 0.298142 0.172133i
\(541\) 13.0718i 0.562000i −0.959708 0.281000i \(-0.909334\pi\)
0.959708 0.281000i \(-0.0906662\pi\)
\(542\) 5.60770 + 20.9282i 0.240871 + 0.898943i
\(543\) 11.7128 0.502645
\(544\) −18.9282 5.07180i −0.811540 0.217451i
\(545\) 3.07180 0.131581
\(546\) −2.53590 9.46410i −0.108526 0.405026i
\(547\) 36.7321i 1.57055i 0.619148 + 0.785275i \(0.287478\pi\)
−0.619148 + 0.785275i \(0.712522\pi\)
\(548\) 15.4641 8.92820i 0.660594 0.381394i
\(549\) 12.1436i 0.518276i
\(550\) −2.73205 + 0.732051i −0.116495 + 0.0312148i
\(551\) 51.7128 2.20304
\(552\) −6.14359 + 6.14359i −0.261489 + 0.261489i
\(553\) 40.7846 1.73434
\(554\) −2.73205 + 0.732051i −0.116074 + 0.0311019i
\(555\) 1.46410i 0.0621477i
\(556\) 7.46410 + 12.9282i 0.316548 + 0.548278i
\(557\) 26.7846i 1.13490i −0.823408 0.567450i \(-0.807930\pi\)
0.823408 0.567450i \(-0.192070\pi\)
\(558\) 1.32051 + 4.92820i 0.0559016 + 0.208627i
\(559\) 30.2487 1.27938
\(560\) 9.46410 + 5.46410i 0.399931 + 0.230900i
\(561\) 5.07180 0.214131
\(562\) 6.39230 + 23.8564i 0.269643 + 1.00632i
\(563\) 16.0526i 0.676535i 0.941050 + 0.338267i \(0.109841\pi\)
−0.941050 + 0.338267i \(0.890159\pi\)
\(564\) 4.92820 + 8.53590i 0.207515 + 0.359426i
\(565\) 0.928203i 0.0390498i
\(566\) −10.4641 + 2.80385i −0.439839 + 0.117855i
\(567\) −12.1962 −0.512190
\(568\) 2.92820 + 2.92820i 0.122865 + 0.122865i
\(569\) −6.53590 −0.273999 −0.137000 0.990571i \(-0.543746\pi\)
−0.137000 + 0.990571i \(0.543746\pi\)
\(570\) 7.46410 2.00000i 0.312637 0.0837708i
\(571\) 34.7846i 1.45569i −0.685741 0.727845i \(-0.740522\pi\)
0.685741 0.727845i \(-0.259478\pi\)
\(572\) −12.0000 + 6.92820i −0.501745 + 0.289683i
\(573\) 14.1436i 0.590857i
\(574\) 5.46410 + 20.3923i 0.228067 + 0.851158i
\(575\) −4.19615 −0.174992
\(576\) 19.7128i 0.821367i
\(577\) −43.5692 −1.81381 −0.906905 0.421335i \(-0.861562\pi\)
−0.906905 + 0.421335i \(0.861562\pi\)
\(578\) −1.83013 6.83013i −0.0761232 0.284096i
\(579\) 5.46410i 0.227080i
\(580\) 12.0000 6.92820i 0.498273 0.287678i
\(581\) 12.9282i 0.536352i
\(582\) 6.39230 1.71281i 0.264970 0.0709984i
\(583\) 9.07180 0.375715
\(584\) −1.07180 1.07180i −0.0443513 0.0443513i
\(585\) 8.53590 0.352916
\(586\) −16.1962 + 4.33975i −0.669057 + 0.179273i
\(587\) 14.1962i 0.585938i −0.956122 0.292969i \(-0.905357\pi\)
0.956122 0.292969i \(-0.0946433\pi\)
\(588\) 0.339746 + 0.588457i 0.0140109 + 0.0242676i
\(589\) 10.9282i 0.450289i
\(590\) −0.196152 0.732051i −0.00807547 0.0301381i
\(591\) −9.17691 −0.377488
\(592\) −6.92820 4.00000i −0.284747 0.164399i
\(593\) −36.6410 −1.50467 −0.752333 0.658783i \(-0.771072\pi\)
−0.752333 + 0.658783i \(0.771072\pi\)
\(594\) −2.92820 10.9282i −0.120146 0.448390i
\(595\) 9.46410i 0.387990i
\(596\) −19.8564 34.3923i −0.813350 1.40876i
\(597\) 18.9282i 0.774680i
\(598\) −19.8564 + 5.32051i −0.811989 + 0.217572i
\(599\) 34.6410 1.41539 0.707697 0.706516i \(-0.249734\pi\)
0.707697 + 0.706516i \(0.249734\pi\)
\(600\) 1.46410 1.46410i 0.0597717 0.0597717i
\(601\) 25.4641 1.03870 0.519351 0.854561i \(-0.326174\pi\)
0.519351 + 0.854561i \(0.326174\pi\)
\(602\) −32.5885 + 8.73205i −1.32821 + 0.355892i
\(603\) 17.9090i 0.729309i
\(604\) −14.5359 + 8.39230i −0.591457 + 0.341478i
\(605\) 7.00000i 0.284590i
\(606\) −2.92820 10.9282i −0.118950 0.443928i
\(607\) −20.9808 −0.851583 −0.425791 0.904821i \(-0.640004\pi\)
−0.425791 + 0.904821i \(0.640004\pi\)
\(608\) −10.9282 + 40.7846i −0.443197 + 1.65403i
\(609\) 13.8564 0.561490
\(610\) 1.80385 + 6.73205i 0.0730357 + 0.272573i
\(611\) 23.3205i 0.943447i
\(612\) 14.7846 8.53590i 0.597632 0.345043i
\(613\) 5.60770i 0.226493i 0.993567 + 0.113246i \(0.0361249\pi\)
−0.993567 + 0.113246i \(0.963875\pi\)
\(614\) −36.8564 + 9.87564i −1.48740 + 0.398549i
\(615\) 4.00000 0.161296
\(616\) 10.9282 10.9282i 0.440310 0.440310i
\(617\) −27.4641 −1.10566 −0.552832 0.833293i \(-0.686453\pi\)
−0.552832 + 0.833293i \(0.686453\pi\)
\(618\) −1.66025 + 0.444864i −0.0667852 + 0.0178950i
\(619\) 33.3205i 1.33926i −0.742693 0.669632i \(-0.766452\pi\)
0.742693 0.669632i \(-0.233548\pi\)
\(620\) 1.46410 + 2.53590i 0.0587997 + 0.101844i
\(621\) 16.7846i 0.673543i
\(622\) −1.21539 4.53590i −0.0487327 0.181873i
\(623\) 13.4641 0.539428
\(624\) 5.07180 8.78461i 0.203034 0.351666i
\(625\) 1.00000 0.0400000
\(626\) −11.6603 43.5167i −0.466037 1.73928i
\(627\) 10.9282i 0.436430i
\(628\) 16.9282 + 29.3205i 0.675509 + 1.17002i
\(629\) 6.92820i 0.276246i
\(630\) −9.19615 + 2.46410i −0.366383 + 0.0981722i
\(631\) 11.3205 0.450662 0.225331 0.974282i \(-0.427654\pi\)
0.225331 + 0.974282i \(0.427654\pi\)
\(632\) 29.8564 + 29.8564i 1.18762 + 1.18762i
\(633\) −10.8231 −0.430179
\(634\) −21.1244 + 5.66025i −0.838955 + 0.224797i
\(635\) 13.2679i 0.526523i
\(636\) −5.75129 + 3.32051i −0.228053 + 0.131667i
\(637\) 1.60770i 0.0636992i
\(638\) −5.07180 18.9282i −0.200794 0.749375i
\(639\) −3.60770 −0.142718
\(640\) 2.92820 + 10.9282i 0.115747 + 0.431975i
\(641\) −20.3923 −0.805448 −0.402724 0.915322i \(-0.631936\pi\)
−0.402724 + 0.915322i \(0.631936\pi\)
\(642\) −0.196152 0.732051i −0.00774152 0.0288917i
\(643\) 14.8756i 0.586638i 0.956015 + 0.293319i \(0.0947598\pi\)
−0.956015 + 0.293319i \(0.905240\pi\)
\(644\) 19.8564 11.4641i 0.782452 0.451749i
\(645\) 6.39230i 0.251697i
\(646\) 35.3205 9.46410i 1.38967 0.372360i
\(647\) 13.2679 0.521617 0.260808 0.965391i \(-0.416011\pi\)
0.260808 + 0.965391i \(0.416011\pi\)
\(648\) −8.92820 8.92820i −0.350733 0.350733i
\(649\) −1.07180 −0.0420717
\(650\) 4.73205 1.26795i 0.185606 0.0497331i
\(651\) 2.92820i 0.114765i
\(652\) −10.1962 17.6603i −0.399312 0.691629i
\(653\) 36.2487i 1.41852i −0.704946 0.709261i \(-0.749029\pi\)
0.704946 0.709261i \(-0.250971\pi\)
\(654\) 0.823085 + 3.07180i 0.0321852 + 0.120117i
\(655\) 7.85641 0.306975
\(656\) −10.9282 + 18.9282i −0.426675 + 0.739022i
\(657\) 1.32051 0.0515179
\(658\) −6.73205 25.1244i −0.262443 0.979449i
\(659\) 17.3205i 0.674711i 0.941377 + 0.337356i \(0.109532\pi\)
−0.941377 + 0.337356i \(0.890468\pi\)
\(660\) −1.46410 2.53590i −0.0569901 0.0987097i
\(661\) 35.8564i 1.39465i −0.716754 0.697326i \(-0.754373\pi\)
0.716754 0.697326i \(-0.245627\pi\)
\(662\) 19.1244 5.12436i 0.743289 0.199164i
\(663\) −8.78461 −0.341166
\(664\) 9.46410 9.46410i 0.367278 0.367278i
\(665\) −20.3923 −0.790780
\(666\) 6.73205 1.80385i 0.260862 0.0698977i
\(667\) 29.0718i 1.12566i
\(668\) 34.9808 20.1962i 1.35345 0.781413i
\(669\) 11.8564i 0.458395i
\(670\) 2.66025 + 9.92820i 0.102775 + 0.383560i
\(671\) 9.85641 0.380502
\(672\) −2.92820 + 10.9282i −0.112958 + 0.421565i
\(673\) 19.4641 0.750286 0.375143 0.926967i \(-0.377594\pi\)
0.375143 + 0.926967i \(0.377594\pi\)
\(674\) 2.87564 + 10.7321i 0.110766 + 0.413383i
\(675\) 4.00000i 0.153960i
\(676\) −1.73205 + 1.00000i −0.0666173 + 0.0384615i
\(677\) 38.3923i 1.47554i 0.675054 + 0.737768i \(0.264120\pi\)
−0.675054 + 0.737768i \(0.735880\pi\)
\(678\) 0.928203 0.248711i 0.0356474 0.00955170i
\(679\) −17.4641 −0.670211
\(680\) 6.92820 6.92820i 0.265684 0.265684i
\(681\) −20.5359 −0.786937
\(682\) 4.00000 1.07180i 0.153168 0.0410412i
\(683\) 34.9808i 1.33850i 0.743037 + 0.669251i \(0.233385\pi\)
−0.743037 + 0.669251i \(0.766615\pi\)
\(684\) −18.3923 31.8564i −0.703247 1.21806i
\(685\) 8.92820i 0.341129i
\(686\) 6.53590 + 24.3923i 0.249542 + 0.931303i
\(687\) −2.92820 −0.111718
\(688\) −30.2487 17.4641i −1.15322 0.665813i
\(689\) −15.7128 −0.598610
\(690\) −1.12436 4.19615i −0.0428035 0.159745i
\(691\) 18.0000i 0.684752i 0.939563 + 0.342376i \(0.111232\pi\)
−0.939563 + 0.342376i \(0.888768\pi\)
\(692\) −2.00000 3.46410i −0.0760286 0.131685i
\(693\) 13.4641i 0.511459i
\(694\) −21.3923 + 5.73205i −0.812041 + 0.217586i
\(695\) −7.46410 −0.283130
\(696\) 10.1436 + 10.1436i 0.384492 + 0.384492i
\(697\) 18.9282 0.716957
\(698\) 38.2487 10.2487i 1.44774 0.387919i
\(699\) 21.4641i 0.811847i
\(700\) −4.73205 + 2.73205i −0.178855 + 0.103262i
\(701\) 32.9282i 1.24368i 0.783144 + 0.621841i \(0.213615\pi\)
−0.783144 + 0.621841i \(0.786385\pi\)
\(702\) 5.07180 + 18.9282i 0.191423 + 0.714399i
\(703\) 14.9282 0.563028
\(704\) 16.0000 0.603023
\(705\) −4.92820 −0.185607
\(706\) −0.339746 1.26795i −0.0127865 0.0477199i
\(707\) 29.8564i 1.12287i
\(708\) 0.679492 0.392305i 0.0255369 0.0147437i
\(709\) 28.7846i 1.08103i 0.841335 + 0.540514i \(0.181770\pi\)
−0.841335 + 0.540514i \(0.818230\pi\)
\(710\) −2.00000 + 0.535898i −0.0750587 + 0.0201119i
\(711\) −36.7846 −1.37953
\(712\) 9.85641 + 9.85641i 0.369384 + 0.369384i
\(713\) 6.14359 0.230079
\(714\) 9.46410 2.53590i 0.354185 0.0949036i
\(715\) 6.92820i 0.259100i
\(716\) 15.4641 + 26.7846i 0.577921 + 1.00099i
\(717\) 14.6410i 0.546779i
\(718\) 1.85641 + 6.92820i 0.0692805 + 0.258558i
\(719\) 25.8564 0.964281 0.482141 0.876094i \(-0.339859\pi\)
0.482141 + 0.876094i \(0.339859\pi\)
\(720\) −8.53590 4.92820i −0.318114 0.183663i
\(721\) 4.53590 0.168926
\(722\) −13.4378 50.1506i −0.500104 1.86641i
\(723\) 3.21539i 0.119582i
\(724\) −16.0000 27.7128i −0.594635 1.02994i
\(725\) 6.92820i 0.257307i
\(726\) 7.00000 1.87564i 0.259794 0.0696117i
\(727\) 14.0526 0.521181 0.260590 0.965449i \(-0.416083\pi\)
0.260590 + 0.965449i \(0.416083\pi\)
\(728\) −18.9282 + 18.9282i −0.701526 + 0.701526i
\(729\) 2.21539 0.0820515
\(730\) 0.732051 0.196152i 0.0270944 0.00725993i
\(731\) 30.2487i 1.11879i
\(732\) −6.24871 + 3.60770i −0.230959 + 0.133344i
\(733\) 48.9282i 1.80720i −0.428373 0.903602i \(-0.640913\pi\)
0.428373 0.903602i \(-0.359087\pi\)
\(734\) 9.92820 + 37.0526i 0.366457 + 1.36763i
\(735\) −0.339746 −0.0125317
\(736\) 22.9282 + 6.14359i 0.845145 + 0.226456i
\(737\) 14.5359 0.535437
\(738\) −4.92820 18.3923i −0.181410 0.677030i
\(739\) 5.32051i 0.195718i −0.995200 0.0978590i \(-0.968801\pi\)
0.995200 0.0978590i \(-0.0311994\pi\)
\(740\) 3.46410 2.00000i 0.127343 0.0735215i
\(741\) 18.9282i 0.695345i
\(742\) 16.9282 4.53590i 0.621454 0.166518i
\(743\) −40.9808 −1.50344 −0.751719 0.659483i \(-0.770775\pi\)
−0.751719 + 0.659483i \(0.770775\pi\)
\(744\) −2.14359 + 2.14359i −0.0785880 + 0.0785880i
\(745\) 19.8564 0.727482
\(746\) −40.5885 + 10.8756i −1.48605 + 0.398186i
\(747\) 11.6603i 0.426626i
\(748\) −6.92820 12.0000i −0.253320 0.438763i
\(749\) 2.00000i 0.0730784i
\(750\) 0.267949 + 1.00000i 0.00978412 + 0.0365148i
\(751\) −22.2487 −0.811867 −0.405934 0.913903i \(-0.633054\pi\)
−0.405934 + 0.913903i \(0.633054\pi\)
\(752\) 13.4641 23.3205i 0.490985 0.850411i
\(753\) 8.10512 0.295367
\(754\) 8.78461 + 32.7846i 0.319917 + 1.19395i
\(755\) 8.39230i 0.305427i
\(756\) −10.9282 18.9282i −0.397455 0.688412i
\(757\) 32.9282i 1.19680i −0.801199 0.598398i \(-0.795804\pi\)
0.801199 0.598398i \(-0.204196\pi\)
\(758\) −16.7321 + 4.48334i −0.607735 + 0.162842i
\(759\) −6.14359 −0.222998
\(760\) −14.9282 14.9282i −0.541503 0.541503i
\(761\) 49.7128 1.80209 0.901044 0.433728i \(-0.142802\pi\)
0.901044 + 0.433728i \(0.142802\pi\)
\(762\) 13.2679 3.55514i 0.480647 0.128789i
\(763\) 8.39230i 0.303822i
\(764\) 33.4641 19.3205i 1.21069 0.698991i
\(765\) 8.53590i 0.308616i
\(766\) −1.14359 4.26795i −0.0413197 0.154207i
\(767\) 1.85641 0.0670310
\(768\) −10.1436 + 5.85641i −0.366025 + 0.211325i
\(769\) −0.928203 −0.0334719 −0.0167359 0.999860i \(-0.505327\pi\)
−0.0167359 + 0.999860i \(0.505327\pi\)
\(770\) 2.00000 + 7.46410i 0.0720750 + 0.268988i
\(771\) 1.46410i 0.0527283i
\(772\) −12.9282 + 7.46410i −0.465296 + 0.268639i
\(773\) 1.60770i 0.0578248i −0.999582 0.0289124i \(-0.990796\pi\)
0.999582 0.0289124i \(-0.00920438\pi\)
\(774\) 29.3923 7.87564i 1.05648 0.283084i
\(775\) −1.46410 −0.0525921
\(776\) −12.7846 12.7846i −0.458941 0.458941i
\(777\) 4.00000 0.143499
\(778\) 47.5167 12.7321i 1.70355 0.456466i
\(779\) 40.7846i 1.46126i
\(780\) 2.53590 + 4.39230i 0.0907997 + 0.157270i
\(781\) 2.92820i 0.104779i
\(782\) −5.32051 19.8564i −0.190261 0.710064i
\(783\) −27.7128 −0.990375
\(784\) 0.928203 1.60770i 0.0331501 0.0574177i
\(785\) −16.9282 −0.604193
\(786\) 2.10512 + 7.85641i 0.0750871 + 0.280229i
\(787\) 14.5885i 0.520022i −0.965606 0.260011i \(-0.916274\pi\)
0.965606 0.260011i \(-0.0837262\pi\)
\(788\) 12.5359 + 21.7128i 0.446573 + 0.773487i
\(789\) 4.14359i 0.147516i
\(790\) −20.3923 + 5.46410i −0.725526 + 0.194404i
\(791\) −2.53590 −0.0901662
\(792\) −9.85641 + 9.85641i −0.350232 + 0.350232i
\(793\) −17.0718 −0.606237
\(794\) 22.1962 5.94744i 0.787712 0.211067i
\(795\) 3.32051i 0.117766i
\(796\) −44.7846 + 25.8564i −1.58735 + 0.916456i
\(797\) 26.1051i 0.924691i −0.886700 0.462345i \(-0.847008\pi\)
0.886700 0.462345i \(-0.152992\pi\)
\(798\) −5.46410 20.3923i −0.193427 0.721880i
\(799\) −23.3205 −0.825020
\(800\) −5.46410 1.46410i −0.193185 0.0517638i
\(801\) −12.1436 −0.429073
\(802\) 7.26795 + 27.1244i 0.256640 + 0.957794i
\(803\) 1.07180i 0.0378229i
\(804\) −9.21539 + 5.32051i −0.325002 + 0.187640i
\(805\) 11.4641i 0.404056i
\(806\) −6.92820 + 1.85641i −0.244036 + 0.0653891i
\(807\) 3.60770 0.126997
\(808\) −21.8564 + 21.8564i −0.768906 + 0.768906i
\(809\) −3.85641 −0.135584 −0.0677920 0.997699i \(-0.521595\pi\)
−0.0677920 + 0.997699i \(0.521595\pi\)
\(810\) 6.09808 1.63397i 0.214265 0.0574120i
\(811\) 15.0718i 0.529242i −0.964352 0.264621i \(-0.914753\pi\)
0.964352 0.264621i \(-0.0852469\pi\)
\(812\) −18.9282 32.7846i −0.664250 1.15051i
\(813\) 11.2154i 0.393341i
\(814\) −1.46410 5.46410i −0.0513167 0.191517i
\(815\) 10.1962 0.357156
\(816\) 8.78461 + 5.07180i 0.307523 + 0.177548i
\(817\) 65.1769 2.28025
\(818\) 8.53590 + 31.8564i 0.298451 + 1.11383i
\(819\) 23.3205i 0.814885i
\(820\) −5.46410 9.46410i −0.190815 0.330501i
\(821\) 6.78461i 0.236785i −0.992967 0.118392i \(-0.962226\pi\)
0.992967 0.118392i \(-0.0377740\pi\)
\(822\) −8.92820 + 2.39230i −0.311407 + 0.0834412i
\(823\) 15.1244 0.527202 0.263601 0.964632i \(-0.415090\pi\)
0.263601 + 0.964632i \(0.415090\pi\)
\(824\) 3.32051 + 3.32051i 0.115675 + 0.115675i
\(825\) 1.46410 0.0509735
\(826\) −2.00000 + 0.535898i −0.0695889 + 0.0186463i
\(827\) 1.12436i 0.0390977i −0.999809 0.0195488i \(-0.993777\pi\)
0.999809 0.0195488i \(-0.00622298\pi\)
\(828\) −17.9090 + 10.3397i −0.622380 + 0.359331i
\(829\) 15.0718i 0.523465i 0.965140 + 0.261733i \(0.0842938\pi\)
−0.965140 + 0.261733i \(0.915706\pi\)
\(830\) 1.73205 + 6.46410i 0.0601204 + 0.224372i
\(831\) 1.46410 0.0507891
\(832\) −27.7128 −0.960769
\(833\) −1.60770 −0.0557033
\(834\) −2.00000 7.46410i −0.0692543 0.258461i
\(835\) 20.1962i 0.698917i
\(836\) −25.8564 + 14.9282i −0.894263 + 0.516303i
\(837\) 5.85641i 0.202427i
\(838\) 3.26795 0.875644i 0.112889 0.0302486i
\(839\) −16.7846 −0.579469 −0.289735 0.957107i \(-0.593567\pi\)
−0.289735 + 0.957107i \(0.593567\pi\)
\(840\) −4.00000 4.00000i −0.138013 0.138013i
\(841\) −19.0000 −0.655172
\(842\) −38.0526 + 10.1962i −1.31138 + 0.351383i
\(843\) 12.7846i 0.440325i
\(844\) 14.7846 + 25.6077i 0.508907 + 0.881453i
\(845\) 1.00000i 0.0344010i
\(846\) 6.07180 + 22.6603i 0.208753 + 0.779076i
\(847\) −19.1244 −0.657121
\(848\) 15.7128 + 9.07180i 0.539580 + 0.311527i
\(849\) 5.60770 0.192456
\(850\) 1.26795 + 4.73205i 0.0434903 + 0.162308i
\(851\) 8.39230i 0.287685i
\(852\) −1.07180 1.85641i −0.0367192 0.0635994i
\(853\) 42.3923i 1.45148i −0.687967 0.725742i \(-0.741496\pi\)
0.687967 0.725742i \(-0.258504\pi\)
\(854\) 18.3923 4.92820i 0.629372 0.168640i
\(855\) 18.3923 0.629004
\(856\) −1.46410 + 1.46410i −0.0500420 + 0.0500420i
\(857\) 7.85641 0.268370 0.134185 0.990956i \(-0.457158\pi\)
0.134185 + 0.990956i \(0.457158\pi\)
\(858\) 6.92820 1.85641i 0.236525 0.0633767i
\(859\) 20.2487i 0.690877i −0.938441 0.345439i \(-0.887730\pi\)
0.938441 0.345439i \(-0.112270\pi\)
\(860\) 15.1244 8.73205i 0.515736 0.297760i
\(861\) 10.9282i 0.372432i
\(862\) −5.32051 19.8564i −0.181217 0.676312i
\(863\) 30.3397 1.03278 0.516388 0.856354i \(-0.327276\pi\)
0.516388 + 0.856354i \(0.327276\pi\)
\(864\) 5.85641 21.8564i 0.199239 0.743570i
\(865\) 2.00000 0.0680020
\(866\) −4.58846 17.1244i −0.155922 0.581909i
\(867\) 3.66025i 0.124309i
\(868\) 6.92820 4.00000i 0.235159 0.135769i
\(869\) 29.8564i 1.01281i
\(870\) −6.92820 + 1.85641i −0.234888 + 0.0629381i
\(871\) −25.1769 −0.853087
\(872\) 6.14359 6.14359i 0.208048 0.208048i
\(873\) 15.7513 0.533100
\(874\) −42.7846 + 11.4641i −1.44721 + 0.387779i
\(875\) 2.73205i 0.0923602i
\(876\) 0.392305 + 0.679492i 0.0132548 + 0.0229579i
\(877\) 53.7128i 1.81375i 0.421397 + 0.906876i \(0.361540\pi\)
−0.421397 + 0.906876i \(0.638460\pi\)
\(878\) −0.287187 1.07180i −0.00969209 0.0361714i
\(879\) 8.67949 0.292752
\(880\) −4.00000 + 6.92820i −0.134840 + 0.233550i
\(881\) 2.53590 0.0854366 0.0427183 0.999087i \(-0.486398\pi\)
0.0427183 + 0.999087i \(0.486398\pi\)
\(882\) 0.418584 + 1.56218i 0.0140945 + 0.0526013i
\(883\) 37.9090i 1.27574i 0.770145 + 0.637869i \(0.220184\pi\)
−0.770145 + 0.637869i \(0.779816\pi\)
\(884\) 12.0000 + 20.7846i 0.403604 + 0.699062i
\(885\) 0.392305i 0.0131872i
\(886\) 42.3205 11.3397i 1.42179 0.380966i
\(887\) 51.9090 1.74293 0.871466 0.490455i \(-0.163170\pi\)
0.871466 + 0.490455i \(0.163170\pi\)
\(888\) 2.92820 + 2.92820i 0.0982641 + 0.0982641i
\(889\) −36.2487 −1.21574
\(890\) −6.73205 + 1.80385i −0.225659 + 0.0604651i
\(891\) 8.92820i 0.299106i
\(892\) 28.0526 16.1962i 0.939269 0.542287i
\(893\) 50.2487i 1.68151i
\(894\) 5.32051 + 19.8564i 0.177944 + 0.664098i
\(895\) −15.4641 −0.516908
\(896\) 29.8564 8.00000i 0.997433 0.267261i
\(897\) 10.6410 0.355293
\(898\) 4.14359 + 15.4641i 0.138274 + 0.516044i
\(899\) 10.1436i 0.338308i
\(900\) 4.26795 2.46410i 0.142265 0.0821367i
\(901\) 15.7128i 0.523470i
\(902\) −14.9282 + 4.00000i −0.497055 + 0.133185i
\(903\) 17.4641 0.581169
\(904\) −1.85641 1.85641i −0.0617432 0.0617432i
\(905\) 16.0000 0.531858
\(906\) 8.39230 2.24871i 0.278816 0.0747084i
\(907\) 29.1244i 0.967058i 0.875328 + 0.483529i \(0.160645\pi\)
−0.875328 + 0.483529i \(0.839355\pi\)
\(908\) 28.0526 + 48.5885i 0.930957 + 1.61246i
\(909\) 26.9282i 0.893152i
\(910\) −3.46410 12.9282i −0.114834 0.428566i
\(911\) 13.1769 0.436571 0.218285 0.975885i \(-0.429954\pi\)
0.218285 + 0.975885i \(0.429954\pi\)
\(912\) 10.9282 18.9282i 0.361869 0.626775i
\(913\) 9.46410 0.313216
\(914\) 5.41154 + 20.1962i 0.178998 + 0.668029i
\(915\) 3.60770i 0.119267i
\(916\) 4.00000 + 6.92820i 0.132164 + 0.228914i
\(917\) 21.4641i 0.708807i
\(918\) −18.9282 + 5.07180i −0.624724 + 0.167394i
\(919\) −25.0718 −0.827042 −0.413521 0.910495i \(-0.635701\pi\)
−0.413521 + 0.910495i \(0.635701\pi\)
\(920\) −8.39230 + 8.39230i −0.276686 + 0.276686i
\(921\) 19.7513 0.650827
\(922\) −4.00000 + 1.07180i −0.131733 + 0.0352977i
\(923\) 5.07180i 0.166940i
\(924\) −6.92820 + 4.00000i −0.227921 + 0.131590i
\(925\) 2.00000i 0.0657596i
\(926\) −5.39230 20.1244i −0.177202 0.661327i
\(927\) −4.09103 −0.134367
\(928\) 10.1436 37.8564i 0.332980 1.24270i
\(929\) −10.5359 −0.345672 −0.172836 0.984951i \(-0.555293\pi\)
−0.172836 + 0.984951i \(0.555293\pi\)
\(930\) −0.392305 1.46410i −0.0128642 0.0480098i
\(931\) 3.46410i 0.113531i
\(932\) −50.7846 + 29.3205i −1.66351 + 0.960425i
\(933\) 2.43078i 0.0795802i
\(934\) 11.3923 3.05256i 0.372768 0.0998828i
\(935\) 6.92820 0.226576
\(936\) 17.0718 17.0718i 0.558009 0.558009i
\(937\) −44.2487 −1.44554 −0.722771 0.691087i \(-0.757132\pi\)
−0.722771 + 0.691087i \(0.757132\pi\)
\(938\) 27.1244 7.26795i 0.885642 0.237307i
\(939\) 23.3205i 0.761036i
\(940\) 6.73205 + 11.6603i 0.219575 + 0.380316i
\(941\) 32.0000i 1.04317i −0.853199 0.521585i \(-0.825341\pi\)
0.853199 0.521585i \(-0.174659\pi\)
\(942\) −4.53590 16.9282i −0.147788 0.551551i
\(943\) −22.9282 −0.746645
\(944\) −1.85641 1.07180i −0.0604209 0.0348840i
\(945\) 10.9282 0.355494
\(946\) −6.39230 23.8564i −0.207832 0.775639i
\(947\) 21.1244i 0.686449i 0.939253 + 0.343225i \(0.111519\pi\)
−0.939253 + 0.343225i \(0.888481\pi\)
\(948\) −10.9282 18.9282i −0.354932 0.614759i
\(949\) 1.85641i 0.0602615i
\(950\) 10.1962 2.73205i 0.330807 0.0886394i
\(951\) 11.3205 0.367093
\(952\) −18.9282 18.9282i −0.613467 0.613467i
\(953\) −58.7846 −1.90422 −0.952110 0.305755i \(-0.901091\pi\)
−0.952110 + 0.305755i \(0.901091\pi\)
\(954\) −15.2679 + 4.09103i −0.494318 + 0.132452i
\(955\) 19.3205i 0.625197i
\(956\) 34.6410 20.0000i 1.12037 0.646846i
\(957\) 10.1436i 0.327896i
\(958\) −8.00000 29.8564i −0.258468 0.964617i
\(959\) 24.3923 0.787669
\(960\) 5.85641i 0.189015i
\(961\) −28.8564 −0.930852
\(962\) 2.53590 + 9.46410i 0.0817606 + 0.305135i
\(963\) 1.80385i 0.0581282i
\(964\) 7.60770 4.39230i 0.245027 0.141467i
\(965\) 7.46410i 0.240278i
\(966\) −11.4641 + 3.07180i −0.368851 + 0.0988334i
\(967\) 33.6603 1.08244 0.541220 0.840881i \(-0.317962\pi\)
0.541220 + 0.840881i \(0.317962\pi\)
\(968\) −14.0000 14.0000i −0.449977 0.449977i
\(969\) −18.9282 −0.608061
\(970\) 8.73205 2.33975i 0.280369 0.0751247i
\(971\) 23.0718i 0.740409i 0.928950 + 0.370205i \(0.120712\pi\)
−0.928950 + 0.370205i \(0.879288\pi\)
\(972\) 15.2679 + 26.4449i 0.489720 + 0.848219i
\(973\) 20.3923i 0.653747i
\(974\) −9.00000 33.5885i −0.288379 1.07624i
\(975\) −2.53590 −0.0812137
\(976\) 17.0718 + 9.85641i 0.546455 + 0.315496i
\(977\) −31.4641 −1.00663 −0.503313 0.864104i \(-0.667886\pi\)
−0.503313 + 0.864104i \(0.667886\pi\)
\(978\) 2.73205 + 10.1962i 0.0873614 + 0.326037i
\(979\) 9.85641i 0.315012i
\(980\) 0.464102 + 0.803848i 0.0148252 + 0.0256780i
\(981\) 7.56922i 0.241667i
\(982\) 4.19615 1.12436i 0.133905 0.0358796i
\(983\) −45.2679 −1.44382 −0.721912 0.691985i \(-0.756736\pi\)
−0.721912 + 0.691985i \(0.756736\pi\)
\(984\) 8.00000 8.00000i 0.255031 0.255031i
\(985\) −12.5359 −0.399427
\(986\) −32.7846 + 8.78461i −1.04407 + 0.279759i
\(987\) 13.4641i 0.428567i
\(988\) 44.7846 25.8564i 1.42479 0.822602i
\(989\) 36.6410i 1.16512i
\(990\) −1.80385 6.73205i −0.0573300 0.213959i
\(991\) 34.5359 1.09707 0.548534 0.836128i \(-0.315186\pi\)
0.548534 + 0.836128i \(0.315186\pi\)
\(992\) 8.00000 + 2.14359i 0.254000 + 0.0680592i
\(993\) −10.2487 −0.325233
\(994\) 1.46410 + 5.46410i 0.0464385 + 0.173311i
\(995\) 25.8564i 0.819703i
\(996\) −6.00000 + 3.46410i −0.190117 + 0.109764i
\(997\) 51.1769i 1.62079i 0.585884 + 0.810395i \(0.300747\pi\)
−0.585884 + 0.810395i \(0.699253\pi\)
\(998\) −33.5167 + 8.98076i −1.06095 + 0.284281i
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 40.2.d.a.21.4 yes 4
3.2 odd 2 360.2.k.e.181.1 4
4.3 odd 2 160.2.d.a.81.3 4
5.2 odd 4 200.2.f.c.149.2 4
5.3 odd 4 200.2.f.e.149.3 4
5.4 even 2 200.2.d.f.101.1 4
8.3 odd 2 160.2.d.a.81.2 4
8.5 even 2 inner 40.2.d.a.21.3 4
12.11 even 2 1440.2.k.e.721.4 4
15.2 even 4 1800.2.d.p.1549.3 4
15.8 even 4 1800.2.d.l.1549.2 4
15.14 odd 2 1800.2.k.j.901.4 4
16.3 odd 4 1280.2.a.n.1.1 2
16.5 even 4 1280.2.a.o.1.1 2
16.11 odd 4 1280.2.a.d.1.2 2
16.13 even 4 1280.2.a.a.1.2 2
20.3 even 4 800.2.f.e.49.1 4
20.7 even 4 800.2.f.c.49.4 4
20.19 odd 2 800.2.d.e.401.2 4
24.5 odd 2 360.2.k.e.181.2 4
24.11 even 2 1440.2.k.e.721.2 4
40.3 even 4 800.2.f.c.49.3 4
40.13 odd 4 200.2.f.c.149.1 4
40.19 odd 2 800.2.d.e.401.3 4
40.27 even 4 800.2.f.e.49.2 4
40.29 even 2 200.2.d.f.101.2 4
40.37 odd 4 200.2.f.e.149.4 4
60.23 odd 4 7200.2.d.n.2449.1 4
60.47 odd 4 7200.2.d.o.2449.4 4
60.59 even 2 7200.2.k.j.3601.1 4
80.19 odd 4 6400.2.a.be.1.2 2
80.29 even 4 6400.2.a.ce.1.1 2
80.59 odd 4 6400.2.a.cj.1.1 2
80.69 even 4 6400.2.a.z.1.2 2
120.29 odd 2 1800.2.k.j.901.3 4
120.53 even 4 1800.2.d.p.1549.4 4
120.59 even 2 7200.2.k.j.3601.2 4
120.77 even 4 1800.2.d.l.1549.1 4
120.83 odd 4 7200.2.d.o.2449.1 4
120.107 odd 4 7200.2.d.n.2449.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.d.a.21.3 4 8.5 even 2 inner
40.2.d.a.21.4 yes 4 1.1 even 1 trivial
160.2.d.a.81.2 4 8.3 odd 2
160.2.d.a.81.3 4 4.3 odd 2
200.2.d.f.101.1 4 5.4 even 2
200.2.d.f.101.2 4 40.29 even 2
200.2.f.c.149.1 4 40.13 odd 4
200.2.f.c.149.2 4 5.2 odd 4
200.2.f.e.149.3 4 5.3 odd 4
200.2.f.e.149.4 4 40.37 odd 4
360.2.k.e.181.1 4 3.2 odd 2
360.2.k.e.181.2 4 24.5 odd 2
800.2.d.e.401.2 4 20.19 odd 2
800.2.d.e.401.3 4 40.19 odd 2
800.2.f.c.49.3 4 40.3 even 4
800.2.f.c.49.4 4 20.7 even 4
800.2.f.e.49.1 4 20.3 even 4
800.2.f.e.49.2 4 40.27 even 4
1280.2.a.a.1.2 2 16.13 even 4
1280.2.a.d.1.2 2 16.11 odd 4
1280.2.a.n.1.1 2 16.3 odd 4
1280.2.a.o.1.1 2 16.5 even 4
1440.2.k.e.721.2 4 24.11 even 2
1440.2.k.e.721.4 4 12.11 even 2
1800.2.d.l.1549.1 4 120.77 even 4
1800.2.d.l.1549.2 4 15.8 even 4
1800.2.d.p.1549.3 4 15.2 even 4
1800.2.d.p.1549.4 4 120.53 even 4
1800.2.k.j.901.3 4 120.29 odd 2
1800.2.k.j.901.4 4 15.14 odd 2
6400.2.a.z.1.2 2 80.69 even 4
6400.2.a.be.1.2 2 80.19 odd 4
6400.2.a.ce.1.1 2 80.29 even 4
6400.2.a.cj.1.1 2 80.59 odd 4
7200.2.d.n.2449.1 4 60.23 odd 4
7200.2.d.n.2449.4 4 120.107 odd 4
7200.2.d.o.2449.1 4 120.83 odd 4
7200.2.d.o.2449.4 4 60.47 odd 4
7200.2.k.j.3601.1 4 60.59 even 2
7200.2.k.j.3601.2 4 120.59 even 2