Properties

Label 800.2.d.e.401.3
Level 800800
Weight 22
Character 800.401
Analytic conductor 6.3886.388
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [800,2,Mod(401,800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("800.401"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 800=2552 800 = 2^{5} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 800.d (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.388032161706.38803216170
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 401.3
Root 0.8660250.500000i0.866025 - 0.500000i of defining polynomial
Character χ\chi == 800.401
Dual form 800.2.d.e.401.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+0.732051iq32.73205q7+2.46410q92.00000iq11+3.46410iq13+3.46410q17+7.46410iq192.00000iq21+4.19615q23+4.00000iq27+6.92820iq291.46410q31+1.46410q332.00000iq372.53590q395.46410q41+8.73205iq43+6.73205q47+0.464102q49+2.53590iq51+4.53590iq535.46410q570.535898iq594.92820iq616.73205q637.26795iq67+3.07180iq69+1.46410q710.535898q73+5.46410iq77+14.9282q79+4.46410q814.73205iq835.07180q874.92820q899.46410iq911.07180iq936.39230q974.92820iq99+O(q100)q+0.732051i q^{3} -2.73205 q^{7} +2.46410 q^{9} -2.00000i q^{11} +3.46410i q^{13} +3.46410 q^{17} +7.46410i q^{19} -2.00000i q^{21} +4.19615 q^{23} +4.00000i q^{27} +6.92820i q^{29} -1.46410 q^{31} +1.46410 q^{33} -2.00000i q^{37} -2.53590 q^{39} -5.46410 q^{41} +8.73205i q^{43} +6.73205 q^{47} +0.464102 q^{49} +2.53590i q^{51} +4.53590i q^{53} -5.46410 q^{57} -0.535898i q^{59} -4.92820i q^{61} -6.73205 q^{63} -7.26795i q^{67} +3.07180i q^{69} +1.46410 q^{71} -0.535898 q^{73} +5.46410i q^{77} +14.9282 q^{79} +4.46410 q^{81} -4.73205i q^{83} -5.07180 q^{87} -4.92820 q^{89} -9.46410i q^{91} -1.07180i q^{93} -6.39230 q^{97} -4.92820i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q74q94q23+8q318q3324q398q41+20q4712q498q5720q638q7116q73+32q79+4q8148q87+8q89+16q97+O(q100) 4 q - 4 q^{7} - 4 q^{9} - 4 q^{23} + 8 q^{31} - 8 q^{33} - 24 q^{39} - 8 q^{41} + 20 q^{47} - 12 q^{49} - 8 q^{57} - 20 q^{63} - 8 q^{71} - 16 q^{73} + 32 q^{79} + 4 q^{81} - 48 q^{87} + 8 q^{89} + 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/800Z)×\left(\mathbb{Z}/800\mathbb{Z}\right)^\times.

nn 101101 351351 577577
χ(n)\chi(n) 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0.732051i 0.422650i 0.977416 + 0.211325i 0.0677778π0.0677778\pi
−0.977416 + 0.211325i 0.932222π0.932222\pi
44 0 0
55 0 0
66 0 0
77 −2.73205 −1.03262 −0.516309 0.856402i 0.672694π-0.672694\pi
−0.516309 + 0.856402i 0.672694π0.672694\pi
88 0 0
99 2.46410 0.821367
1010 0 0
1111 − 2.00000i − 0.603023i −0.953463 0.301511i 0.902509π-0.902509\pi
0.953463 0.301511i 0.0974911π-0.0974911\pi
1212 0 0
1313 3.46410i 0.960769i 0.877058 + 0.480384i 0.159503π0.159503\pi
−0.877058 + 0.480384i 0.840497π0.840497\pi
1414 0 0
1515 0 0
1616 0 0
1717 3.46410 0.840168 0.420084 0.907485i 0.362001π-0.362001\pi
0.420084 + 0.907485i 0.362001π0.362001\pi
1818 0 0
1919 7.46410i 1.71238i 0.516659 + 0.856191i 0.327175π0.327175\pi
−0.516659 + 0.856191i 0.672825π0.672825\pi
2020 0 0
2121 − 2.00000i − 0.436436i
2222 0 0
2323 4.19615 0.874958 0.437479 0.899229i 0.355871π-0.355871\pi
0.437479 + 0.899229i 0.355871π0.355871\pi
2424 0 0
2525 0 0
2626 0 0
2727 4.00000i 0.769800i
2828 0 0
2929 6.92820i 1.28654i 0.765641 + 0.643268i 0.222422π0.222422\pi
−0.765641 + 0.643268i 0.777578π0.777578\pi
3030 0 0
3131 −1.46410 −0.262960 −0.131480 0.991319i 0.541973π-0.541973\pi
−0.131480 + 0.991319i 0.541973π0.541973\pi
3232 0 0
3333 1.46410 0.254867
3434 0 0
3535 0 0
3636 0 0
3737 − 2.00000i − 0.328798i −0.986394 0.164399i 0.947432π-0.947432\pi
0.986394 0.164399i 0.0525685π-0.0525685\pi
3838 0 0
3939 −2.53590 −0.406069
4040 0 0
4141 −5.46410 −0.853349 −0.426675 0.904405i 0.640315π-0.640315\pi
−0.426675 + 0.904405i 0.640315π0.640315\pi
4242 0 0
4343 8.73205i 1.33163i 0.746119 + 0.665813i 0.231915π0.231915\pi
−0.746119 + 0.665813i 0.768085π0.768085\pi
4444 0 0
4545 0 0
4646 0 0
4747 6.73205 0.981971 0.490985 0.871168i 0.336637π-0.336637\pi
0.490985 + 0.871168i 0.336637π0.336637\pi
4848 0 0
4949 0.464102 0.0663002
5050 0 0
5151 2.53590i 0.355097i
5252 0 0
5353 4.53590i 0.623054i 0.950237 + 0.311527i 0.100840π0.100840\pi
−0.950237 + 0.311527i 0.899160π0.899160\pi
5454 0 0
5555 0 0
5656 0 0
5757 −5.46410 −0.723738
5858 0 0
5959 − 0.535898i − 0.0697680i −0.999391 0.0348840i 0.988894π-0.988894\pi
0.999391 0.0348840i 0.0111062π-0.0111062\pi
6060 0 0
6161 − 4.92820i − 0.630992i −0.948927 0.315496i 0.897829π-0.897829\pi
0.948927 0.315496i 0.102171π-0.102171\pi
6262 0 0
6363 −6.73205 −0.848159
6464 0 0
6565 0 0
6666 0 0
6767 − 7.26795i − 0.887921i −0.896046 0.443961i 0.853573π-0.853573\pi
0.896046 0.443961i 0.146427π-0.146427\pi
6868 0 0
6969 3.07180i 0.369801i
7070 0 0
7171 1.46410 0.173757 0.0868784 0.996219i 0.472311π-0.472311\pi
0.0868784 + 0.996219i 0.472311π0.472311\pi
7272 0 0
7373 −0.535898 −0.0627222 −0.0313611 0.999508i 0.509984π-0.509984\pi
−0.0313611 + 0.999508i 0.509984π0.509984\pi
7474 0 0
7575 0 0
7676 0 0
7777 5.46410i 0.622692i
7878 0 0
7979 14.9282 1.67955 0.839777 0.542931i 0.182686π-0.182686\pi
0.839777 + 0.542931i 0.182686π0.182686\pi
8080 0 0
8181 4.46410 0.496011
8282 0 0
8383 − 4.73205i − 0.519410i −0.965688 0.259705i 0.916375π-0.916375\pi
0.965688 0.259705i 0.0836253π-0.0836253\pi
8484 0 0
8585 0 0
8686 0 0
8787 −5.07180 −0.543754
8888 0 0
8989 −4.92820 −0.522388 −0.261194 0.965286i 0.584116π-0.584116\pi
−0.261194 + 0.965286i 0.584116π0.584116\pi
9090 0 0
9191 − 9.46410i − 0.992107i
9292 0 0
9393 − 1.07180i − 0.111140i
9494 0 0
9595 0 0
9696 0 0
9797 −6.39230 −0.649040 −0.324520 0.945879i 0.605203π-0.605203\pi
−0.324520 + 0.945879i 0.605203π0.605203\pi
9898 0 0
9999 − 4.92820i − 0.495303i
100100 0 0
101101 10.9282i 1.08740i 0.839281 + 0.543698i 0.182976π0.182976\pi
−0.839281 + 0.543698i 0.817024π0.817024\pi
102102 0 0
103103 −1.66025 −0.163590 −0.0817948 0.996649i 0.526065π-0.526065\pi
−0.0817948 + 0.996649i 0.526065π0.526065\pi
104104 0 0
105105 0 0
106106 0 0
107107 0.732051i 0.0707700i 0.999374 + 0.0353850i 0.0112658π0.0112658\pi
−0.999374 + 0.0353850i 0.988734π0.988734\pi
108108 0 0
109109 − 3.07180i − 0.294225i −0.989120 0.147112i 0.953002π-0.953002\pi
0.989120 0.147112i 0.0469979π-0.0469979\pi
110110 0 0
111111 1.46410 0.138966
112112 0 0
113113 −0.928203 −0.0873180 −0.0436590 0.999046i 0.513902π-0.513902\pi
−0.0436590 + 0.999046i 0.513902π0.513902\pi
114114 0 0
115115 0 0
116116 0 0
117117 8.53590i 0.789144i
118118 0 0
119119 −9.46410 −0.867573
120120 0 0
121121 7.00000 0.636364
122122 0 0
123123 − 4.00000i − 0.360668i
124124 0 0
125125 0 0
126126 0 0
127127 13.2679 1.17734 0.588670 0.808373i 0.299652π-0.299652\pi
0.588670 + 0.808373i 0.299652π0.299652\pi
128128 0 0
129129 −6.39230 −0.562811
130130 0 0
131131 7.85641i 0.686417i 0.939259 + 0.343209i 0.111514π0.111514\pi
−0.939259 + 0.343209i 0.888486π0.888486\pi
132132 0 0
133133 − 20.3923i − 1.76824i
134134 0 0
135135 0 0
136136 0 0
137137 8.92820 0.762788 0.381394 0.924413i 0.375444π-0.375444\pi
0.381394 + 0.924413i 0.375444π0.375444\pi
138138 0 0
139139 − 7.46410i − 0.633097i −0.948576 0.316548i 0.897476π-0.897476\pi
0.948576 0.316548i 0.102524π-0.102524\pi
140140 0 0
141141 4.92820i 0.415030i
142142 0 0
143143 6.92820 0.579365
144144 0 0
145145 0 0
146146 0 0
147147 0.339746i 0.0280218i
148148 0 0
149149 − 19.8564i − 1.62670i −0.581775 0.813350i 0.697641π-0.697641\pi
0.581775 0.813350i 0.302359π-0.302359\pi
150150 0 0
151151 −8.39230 −0.682956 −0.341478 0.939890i 0.610927π-0.610927\pi
−0.341478 + 0.939890i 0.610927π0.610927\pi
152152 0 0
153153 8.53590 0.690086
154154 0 0
155155 0 0
156156 0 0
157157 − 16.9282i − 1.35102i −0.737352 0.675509i 0.763924π-0.763924\pi
0.737352 0.675509i 0.236076π-0.236076\pi
158158 0 0
159159 −3.32051 −0.263333
160160 0 0
161161 −11.4641 −0.903498
162162 0 0
163163 − 10.1962i − 0.798624i −0.916815 0.399312i 0.869249π-0.869249\pi
0.916815 0.399312i 0.130751π-0.130751\pi
164164 0 0
165165 0 0
166166 0 0
167167 −20.1962 −1.56283 −0.781413 0.624015i 0.785501π-0.785501\pi
−0.781413 + 0.624015i 0.785501π0.785501\pi
168168 0 0
169169 1.00000 0.0769231
170170 0 0
171171 18.3923i 1.40649i
172172 0 0
173173 2.00000i 0.152057i 0.997106 + 0.0760286i 0.0242240π0.0242240\pi
−0.997106 + 0.0760286i 0.975776π0.975776\pi
174174 0 0
175175 0 0
176176 0 0
177177 0.392305 0.0294874
178178 0 0
179179 − 15.4641i − 1.15584i −0.816093 0.577921i 0.803864π-0.803864\pi
0.816093 0.577921i 0.196136π-0.196136\pi
180180 0 0
181181 − 16.0000i − 1.18927i −0.803996 0.594635i 0.797296π-0.797296\pi
0.803996 0.594635i 0.202704π-0.202704\pi
182182 0 0
183183 3.60770 0.266688
184184 0 0
185185 0 0
186186 0 0
187187 − 6.92820i − 0.506640i
188188 0 0
189189 − 10.9282i − 0.794910i
190190 0 0
191191 19.3205 1.39798 0.698991 0.715130i 0.253633π-0.253633\pi
0.698991 + 0.715130i 0.253633π0.253633\pi
192192 0 0
193193 −7.46410 −0.537278 −0.268639 0.963241i 0.586574π-0.586574\pi
−0.268639 + 0.963241i 0.586574π0.586574\pi
194194 0 0
195195 0 0
196196 0 0
197197 − 12.5359i − 0.893146i −0.894747 0.446573i 0.852644π-0.852644\pi
0.894747 0.446573i 0.147356π-0.147356\pi
198198 0 0
199199 −25.8564 −1.83291 −0.916456 0.400135i 0.868963π-0.868963\pi
−0.916456 + 0.400135i 0.868963π0.868963\pi
200200 0 0
201201 5.32051 0.375280
202202 0 0
203203 − 18.9282i − 1.32850i
204204 0 0
205205 0 0
206206 0 0
207207 10.3397 0.718662
208208 0 0
209209 14.9282 1.03261
210210 0 0
211211 − 14.7846i − 1.01781i −0.860821 0.508907i 0.830050π-0.830050\pi
0.860821 0.508907i 0.169950π-0.169950\pi
212212 0 0
213213 1.07180i 0.0734383i
214214 0 0
215215 0 0
216216 0 0
217217 4.00000 0.271538
218218 0 0
219219 − 0.392305i − 0.0265095i
220220 0 0
221221 12.0000i 0.807207i
222222 0 0
223223 −16.1962 −1.08457 −0.542287 0.840193i 0.682442π-0.682442\pi
−0.542287 + 0.840193i 0.682442π0.682442\pi
224224 0 0
225225 0 0
226226 0 0
227227 28.0526i 1.86191i 0.365129 + 0.930957i 0.381025π0.381025\pi
−0.365129 + 0.930957i 0.618975π0.618975\pi
228228 0 0
229229 4.00000i 0.264327i 0.991228 + 0.132164i 0.0421925π0.0421925\pi
−0.991228 + 0.132164i 0.957808π0.957808\pi
230230 0 0
231231 −4.00000 −0.263181
232232 0 0
233233 −29.3205 −1.92085 −0.960425 0.278538i 0.910150π-0.910150\pi
−0.960425 + 0.278538i 0.910150π0.910150\pi
234234 0 0
235235 0 0
236236 0 0
237237 10.9282i 0.709863i
238238 0 0
239239 20.0000 1.29369 0.646846 0.762620i 0.276088π-0.276088\pi
0.646846 + 0.762620i 0.276088π0.276088\pi
240240 0 0
241241 −4.39230 −0.282933 −0.141467 0.989943i 0.545182π-0.545182\pi
−0.141467 + 0.989943i 0.545182π0.545182\pi
242242 0 0
243243 15.2679i 0.979439i
244244 0 0
245245 0 0
246246 0 0
247247 −25.8564 −1.64520
248248 0 0
249249 3.46410 0.219529
250250 0 0
251251 11.0718i 0.698846i 0.936965 + 0.349423i 0.113622π0.113622\pi
−0.936965 + 0.349423i 0.886378π0.886378\pi
252252 0 0
253253 − 8.39230i − 0.527620i
254254 0 0
255255 0 0
256256 0 0
257257 2.00000 0.124757 0.0623783 0.998053i 0.480131π-0.480131\pi
0.0623783 + 0.998053i 0.480131π0.480131\pi
258258 0 0
259259 5.46410i 0.339523i
260260 0 0
261261 17.0718i 1.05672i
262262 0 0
263263 5.66025 0.349026 0.174513 0.984655i 0.444165π-0.444165\pi
0.174513 + 0.984655i 0.444165π0.444165\pi
264264 0 0
265265 0 0
266266 0 0
267267 − 3.60770i − 0.220787i
268268 0 0
269269 − 4.92820i − 0.300478i −0.988650 0.150239i 0.951996π-0.951996\pi
0.988650 0.150239i 0.0480043π-0.0480043\pi
270270 0 0
271271 −15.3205 −0.930655 −0.465327 0.885139i 0.654063π-0.654063\pi
−0.465327 + 0.885139i 0.654063π0.654063\pi
272272 0 0
273273 6.92820 0.419314
274274 0 0
275275 0 0
276276 0 0
277277 2.00000i 0.120168i 0.998193 + 0.0600842i 0.0191369π0.0191369\pi
−0.998193 + 0.0600842i 0.980863π0.980863\pi
278278 0 0
279279 −3.60770 −0.215987
280280 0 0
281281 17.4641 1.04182 0.520910 0.853611i 0.325593π-0.325593\pi
0.520910 + 0.853611i 0.325593π0.325593\pi
282282 0 0
283283 − 7.66025i − 0.455355i −0.973737 0.227677i 0.926887π-0.926887\pi
0.973737 0.227677i 0.0731132π-0.0731132\pi
284284 0 0
285285 0 0
286286 0 0
287287 14.9282 0.881184
288288 0 0
289289 −5.00000 −0.294118
290290 0 0
291291 − 4.67949i − 0.274317i
292292 0 0
293293 11.8564i 0.692659i 0.938113 + 0.346329i 0.112572π0.112572\pi
−0.938113 + 0.346329i 0.887428π0.887428\pi
294294 0 0
295295 0 0
296296 0 0
297297 8.00000 0.464207
298298 0 0
299299 14.5359i 0.840633i
300300 0 0
301301 − 23.8564i − 1.37506i
302302 0 0
303303 −8.00000 −0.459588
304304 0 0
305305 0 0
306306 0 0
307307 − 26.9808i − 1.53987i −0.638120 0.769937i 0.720288π-0.720288\pi
0.638120 0.769937i 0.279712π-0.279712\pi
308308 0 0
309309 − 1.21539i − 0.0691411i
310310 0 0
311311 3.32051 0.188289 0.0941444 0.995559i 0.469988π-0.469988\pi
0.0941444 + 0.995559i 0.469988π0.469988\pi
312312 0 0
313313 31.8564 1.80063 0.900315 0.435238i 0.143336π-0.143336\pi
0.900315 + 0.435238i 0.143336π0.143336\pi
314314 0 0
315315 0 0
316316 0 0
317317 15.4641i 0.868550i 0.900780 + 0.434275i 0.142995π0.142995\pi
−0.900780 + 0.434275i 0.857005π0.857005\pi
318318 0 0
319319 13.8564 0.775810
320320 0 0
321321 −0.535898 −0.0299109
322322 0 0
323323 25.8564i 1.43869i
324324 0 0
325325 0 0
326326 0 0
327327 2.24871 0.124354
328328 0 0
329329 −18.3923 −1.01400
330330 0 0
331331 − 14.0000i − 0.769510i −0.923019 0.384755i 0.874286π-0.874286\pi
0.923019 0.384755i 0.125714π-0.125714\pi
332332 0 0
333333 − 4.92820i − 0.270064i
334334 0 0
335335 0 0
336336 0 0
337337 −7.85641 −0.427966 −0.213983 0.976837i 0.568644π-0.568644\pi
−0.213983 + 0.976837i 0.568644π0.568644\pi
338338 0 0
339339 − 0.679492i − 0.0369049i
340340 0 0
341341 2.92820i 0.158571i
342342 0 0
343343 17.8564 0.964155
344344 0 0
345345 0 0
346346 0 0
347347 − 15.6603i − 0.840686i −0.907365 0.420343i 0.861910π-0.861910\pi
0.907365 0.420343i 0.138090π-0.138090\pi
348348 0 0
349349 28.0000i 1.49881i 0.662114 + 0.749403i 0.269659π0.269659\pi
−0.662114 + 0.749403i 0.730341π0.730341\pi
350350 0 0
351351 −13.8564 −0.739600
352352 0 0
353353 0.928203 0.0494033 0.0247016 0.999695i 0.492136π-0.492136\pi
0.0247016 + 0.999695i 0.492136π0.492136\pi
354354 0 0
355355 0 0
356356 0 0
357357 − 6.92820i − 0.366679i
358358 0 0
359359 −5.07180 −0.267679 −0.133840 0.991003i 0.542731π-0.542731\pi
−0.133840 + 0.991003i 0.542731π0.542731\pi
360360 0 0
361361 −36.7128 −1.93225
362362 0 0
363363 5.12436i 0.268959i
364364 0 0
365365 0 0
366366 0 0
367367 27.1244 1.41588 0.707940 0.706273i 0.249625π-0.249625\pi
0.707940 + 0.706273i 0.249625π0.249625\pi
368368 0 0
369369 −13.4641 −0.700913
370370 0 0
371371 − 12.3923i − 0.643376i
372372 0 0
373373 29.7128i 1.53847i 0.638965 + 0.769236i 0.279363π0.279363\pi
−0.638965 + 0.769236i 0.720637π0.720637\pi
374374 0 0
375375 0 0
376376 0 0
377377 −24.0000 −1.23606
378378 0 0
379379 12.2487i 0.629174i 0.949229 + 0.314587i 0.101866π0.101866\pi
−0.949229 + 0.314587i 0.898134π0.898134\pi
380380 0 0
381381 9.71281i 0.497602i
382382 0 0
383383 −3.12436 −0.159647 −0.0798236 0.996809i 0.525436π-0.525436\pi
−0.0798236 + 0.996809i 0.525436π0.525436\pi
384384 0 0
385385 0 0
386386 0 0
387387 21.5167i 1.09375i
388388 0 0
389389 34.7846i 1.76365i 0.471577 + 0.881825i 0.343685π0.343685\pi
−0.471577 + 0.881825i 0.656315π0.656315\pi
390390 0 0
391391 14.5359 0.735112
392392 0 0
393393 −5.75129 −0.290114
394394 0 0
395395 0 0
396396 0 0
397397 − 16.2487i − 0.815499i −0.913094 0.407750i 0.866314π-0.866314\pi
0.913094 0.407750i 0.133686π-0.133686\pi
398398 0 0
399399 14.9282 0.747345
400400 0 0
401401 19.8564 0.991582 0.495791 0.868442i 0.334878π-0.334878\pi
0.495791 + 0.868442i 0.334878π0.334878\pi
402402 0 0
403403 − 5.07180i − 0.252644i
404404 0 0
405405 0 0
406406 0 0
407407 −4.00000 −0.198273
408408 0 0
409409 23.3205 1.15312 0.576562 0.817053i 0.304394π-0.304394\pi
0.576562 + 0.817053i 0.304394π0.304394\pi
410410 0 0
411411 6.53590i 0.322392i
412412 0 0
413413 1.46410i 0.0720437i
414414 0 0
415415 0 0
416416 0 0
417417 5.46410 0.267578
418418 0 0
419419 − 2.39230i − 0.116872i −0.998291 0.0584359i 0.981389π-0.981389\pi
0.998291 0.0584359i 0.0186113π-0.0186113\pi
420420 0 0
421421 − 27.8564i − 1.35764i −0.734306 0.678819i 0.762492π-0.762492\pi
0.734306 0.678819i 0.237508π-0.237508\pi
422422 0 0
423423 16.5885 0.806558
424424 0 0
425425 0 0
426426 0 0
427427 13.4641i 0.651574i
428428 0 0
429429 5.07180i 0.244869i
430430 0 0
431431 14.5359 0.700170 0.350085 0.936718i 0.386153π-0.386153\pi
0.350085 + 0.936718i 0.386153π0.386153\pi
432432 0 0
433433 12.5359 0.602437 0.301218 0.953555i 0.402607π-0.402607\pi
0.301218 + 0.953555i 0.402607π0.402607\pi
434434 0 0
435435 0 0
436436 0 0
437437 31.3205i 1.49826i
438438 0 0
439439 0.784610 0.0374474 0.0187237 0.999825i 0.494040π-0.494040\pi
0.0187237 + 0.999825i 0.494040π0.494040\pi
440440 0 0
441441 1.14359 0.0544568
442442 0 0
443443 30.9808i 1.47194i 0.677014 + 0.735970i 0.263274π0.263274\pi
−0.677014 + 0.735970i 0.736726π0.736726\pi
444444 0 0
445445 0 0
446446 0 0
447447 14.5359 0.687524
448448 0 0
449449 11.3205 0.534248 0.267124 0.963662i 0.413927π-0.413927\pi
0.267124 + 0.963662i 0.413927π0.413927\pi
450450 0 0
451451 10.9282i 0.514589i
452452 0 0
453453 − 6.14359i − 0.288651i
454454 0 0
455455 0 0
456456 0 0
457457 −14.7846 −0.691595 −0.345797 0.938309i 0.612392π-0.612392\pi
−0.345797 + 0.938309i 0.612392π0.612392\pi
458458 0 0
459459 13.8564i 0.646762i
460460 0 0
461461 − 2.92820i − 0.136380i −0.997672 0.0681900i 0.978278π-0.978278\pi
0.997672 0.0681900i 0.0217224π-0.0217224\pi
462462 0 0
463463 −14.7321 −0.684656 −0.342328 0.939580i 0.611215π-0.611215\pi
−0.342328 + 0.939580i 0.611215π0.611215\pi
464464 0 0
465465 0 0
466466 0 0
467467 8.33975i 0.385917i 0.981207 + 0.192959i 0.0618083π0.0618083\pi
−0.981207 + 0.192959i 0.938192π0.938192\pi
468468 0 0
469469 19.8564i 0.916884i
470470 0 0
471471 12.3923 0.571007
472472 0 0
473473 17.4641 0.803000
474474 0 0
475475 0 0
476476 0 0
477477 11.1769i 0.511756i
478478 0 0
479479 21.8564 0.998645 0.499322 0.866416i 0.333582π-0.333582\pi
0.499322 + 0.866416i 0.333582π0.333582\pi
480480 0 0
481481 6.92820 0.315899
482482 0 0
483483 − 8.39230i − 0.381863i
484484 0 0
485485 0 0
486486 0 0
487487 −24.5885 −1.11421 −0.557105 0.830442i 0.688088π-0.688088\pi
−0.557105 + 0.830442i 0.688088π0.688088\pi
488488 0 0
489489 7.46410 0.337538
490490 0 0
491491 − 3.07180i − 0.138628i −0.997595 0.0693141i 0.977919π-0.977919\pi
0.997595 0.0693141i 0.0220811π-0.0220811\pi
492492 0 0
493493 24.0000i 1.08091i
494494 0 0
495495 0 0
496496 0 0
497497 −4.00000 −0.179425
498498 0 0
499499 24.5359i 1.09838i 0.835698 + 0.549189i 0.185063π0.185063\pi
−0.835698 + 0.549189i 0.814937π0.814937\pi
500500 0 0
501501 − 14.7846i − 0.660528i
502502 0 0
503503 −17.6603 −0.787432 −0.393716 0.919232i 0.628811π-0.628811\pi
−0.393716 + 0.919232i 0.628811π0.628811\pi
504504 0 0
505505 0 0
506506 0 0
507507 0.732051i 0.0325115i
508508 0 0
509509 − 25.8564i − 1.14607i −0.819533 0.573033i 0.805767π-0.805767\pi
0.819533 0.573033i 0.194233π-0.194233\pi
510510 0 0
511511 1.46410 0.0647680
512512 0 0
513513 −29.8564 −1.31819
514514 0 0
515515 0 0
516516 0 0
517517 − 13.4641i − 0.592151i
518518 0 0
519519 −1.46410 −0.0642669
520520 0 0
521521 −16.1436 −0.707264 −0.353632 0.935385i 0.615053π-0.615053\pi
−0.353632 + 0.935385i 0.615053π0.615053\pi
522522 0 0
523523 22.1962i 0.970570i 0.874356 + 0.485285i 0.161284π0.161284\pi
−0.874356 + 0.485285i 0.838716π0.838716\pi
524524 0 0
525525 0 0
526526 0 0
527527 −5.07180 −0.220931
528528 0 0
529529 −5.39230 −0.234448
530530 0 0
531531 − 1.32051i − 0.0573052i
532532 0 0
533533 − 18.9282i − 0.819871i
534534 0 0
535535 0 0
536536 0 0
537537 11.3205 0.488516
538538 0 0
539539 − 0.928203i − 0.0399805i
540540 0 0
541541 13.0718i 0.562000i 0.959708 + 0.281000i 0.0906662π0.0906662\pi
−0.959708 + 0.281000i 0.909334π0.909334\pi
542542 0 0
543543 11.7128 0.502645
544544 0 0
545545 0 0
546546 0 0
547547 − 36.7321i − 1.57055i −0.619148 0.785275i 0.712522π-0.712522\pi
0.619148 0.785275i 0.287478π-0.287478\pi
548548 0 0
549549 − 12.1436i − 0.518276i
550550 0 0
551551 −51.7128 −2.20304
552552 0 0
553553 −40.7846 −1.73434
554554 0 0
555555 0 0
556556 0 0
557557 − 26.7846i − 1.13490i −0.823408 0.567450i 0.807930π-0.807930\pi
0.823408 0.567450i 0.192070π-0.192070\pi
558558 0 0
559559 −30.2487 −1.27938
560560 0 0
561561 5.07180 0.214131
562562 0 0
563563 − 16.0526i − 0.676535i −0.941050 0.338267i 0.890159π-0.890159\pi
0.941050 0.338267i 0.109841π-0.109841\pi
564564 0 0
565565 0 0
566566 0 0
567567 −12.1962 −0.512190
568568 0 0
569569 −6.53590 −0.273999 −0.137000 0.990571i 0.543746π-0.543746\pi
−0.137000 + 0.990571i 0.543746π0.543746\pi
570570 0 0
571571 − 34.7846i − 1.45569i −0.685741 0.727845i 0.740522π-0.740522\pi
0.685741 0.727845i 0.259478π-0.259478\pi
572572 0 0
573573 14.1436i 0.590857i
574574 0 0
575575 0 0
576576 0 0
577577 43.5692 1.81381 0.906905 0.421335i 0.138438π-0.138438\pi
0.906905 + 0.421335i 0.138438π0.138438\pi
578578 0 0
579579 − 5.46410i − 0.227080i
580580 0 0
581581 12.9282i 0.536352i
582582 0 0
583583 9.07180 0.375715
584584 0 0
585585 0 0
586586 0 0
587587 14.1962i 0.585938i 0.956122 + 0.292969i 0.0946433π0.0946433\pi
−0.956122 + 0.292969i 0.905357π0.905357\pi
588588 0 0
589589 − 10.9282i − 0.450289i
590590 0 0
591591 9.17691 0.377488
592592 0 0
593593 36.6410 1.50467 0.752333 0.658783i 0.228928π-0.228928\pi
0.752333 + 0.658783i 0.228928π0.228928\pi
594594 0 0
595595 0 0
596596 0 0
597597 − 18.9282i − 0.774680i
598598 0 0
599599 −34.6410 −1.41539 −0.707697 0.706516i 0.750266π-0.750266\pi
−0.707697 + 0.706516i 0.750266π0.750266\pi
600600 0 0
601601 25.4641 1.03870 0.519351 0.854561i 0.326174π-0.326174\pi
0.519351 + 0.854561i 0.326174π0.326174\pi
602602 0 0
603603 − 17.9090i − 0.729309i
604604 0 0
605605 0 0
606606 0 0
607607 −20.9808 −0.851583 −0.425791 0.904821i 0.640004π-0.640004\pi
−0.425791 + 0.904821i 0.640004π0.640004\pi
608608 0 0
609609 13.8564 0.561490
610610 0 0
611611 23.3205i 0.943447i
612612 0 0
613613 5.60770i 0.226493i 0.993567 + 0.113246i 0.0361249π0.0361249\pi
−0.993567 + 0.113246i 0.963875π0.963875\pi
614614 0 0
615615 0 0
616616 0 0
617617 27.4641 1.10566 0.552832 0.833293i 0.313547π-0.313547\pi
0.552832 + 0.833293i 0.313547π0.313547\pi
618618 0 0
619619 − 33.3205i − 1.33926i −0.742693 0.669632i 0.766452π-0.766452\pi
0.742693 0.669632i 0.233548π-0.233548\pi
620620 0 0
621621 16.7846i 0.673543i
622622 0 0
623623 13.4641 0.539428
624624 0 0
625625 0 0
626626 0 0
627627 10.9282i 0.436430i
628628 0 0
629629 − 6.92820i − 0.276246i
630630 0 0
631631 −11.3205 −0.450662 −0.225331 0.974282i 0.572346π-0.572346\pi
−0.225331 + 0.974282i 0.572346π0.572346\pi
632632 0 0
633633 10.8231 0.430179
634634 0 0
635635 0 0
636636 0 0
637637 1.60770i 0.0636992i
638638 0 0
639639 3.60770 0.142718
640640 0 0
641641 −20.3923 −0.805448 −0.402724 0.915322i 0.631936π-0.631936\pi
−0.402724 + 0.915322i 0.631936π0.631936\pi
642642 0 0
643643 − 14.8756i − 0.586638i −0.956015 0.293319i 0.905240π-0.905240\pi
0.956015 0.293319i 0.0947598π-0.0947598\pi
644644 0 0
645645 0 0
646646 0 0
647647 13.2679 0.521617 0.260808 0.965391i 0.416011π-0.416011\pi
0.260808 + 0.965391i 0.416011π0.416011\pi
648648 0 0
649649 −1.07180 −0.0420717
650650 0 0
651651 2.92820i 0.114765i
652652 0 0
653653 − 36.2487i − 1.41852i −0.704946 0.709261i 0.749029π-0.749029\pi
0.704946 0.709261i 0.250971π-0.250971\pi
654654 0 0
655655 0 0
656656 0 0
657657 −1.32051 −0.0515179
658658 0 0
659659 17.3205i 0.674711i 0.941377 + 0.337356i 0.109532π0.109532\pi
−0.941377 + 0.337356i 0.890468π0.890468\pi
660660 0 0
661661 35.8564i 1.39465i 0.716754 + 0.697326i 0.245627π0.245627\pi
−0.716754 + 0.697326i 0.754373π0.754373\pi
662662 0 0
663663 −8.78461 −0.341166
664664 0 0
665665 0 0
666666 0 0
667667 29.0718i 1.12566i
668668 0 0
669669 − 11.8564i − 0.458395i
670670 0 0
671671 −9.85641 −0.380502
672672 0 0
673673 −19.4641 −0.750286 −0.375143 0.926967i 0.622406π-0.622406\pi
−0.375143 + 0.926967i 0.622406π0.622406\pi
674674 0 0
675675 0 0
676676 0 0
677677 38.3923i 1.47554i 0.675054 + 0.737768i 0.264120π0.264120\pi
−0.675054 + 0.737768i 0.735880π0.735880\pi
678678 0 0
679679 17.4641 0.670211
680680 0 0
681681 −20.5359 −0.786937
682682 0 0
683683 − 34.9808i − 1.33850i −0.743037 0.669251i 0.766615π-0.766615\pi
0.743037 0.669251i 0.233385π-0.233385\pi
684684 0 0
685685 0 0
686686 0 0
687687 −2.92820 −0.111718
688688 0 0
689689 −15.7128 −0.598610
690690 0 0
691691 18.0000i 0.684752i 0.939563 + 0.342376i 0.111232π0.111232\pi
−0.939563 + 0.342376i 0.888768π0.888768\pi
692692 0 0
693693 13.4641i 0.511459i
694694 0 0
695695 0 0
696696 0 0
697697 −18.9282 −0.716957
698698 0 0
699699 − 21.4641i − 0.811847i
700700 0 0
701701 − 32.9282i − 1.24368i −0.783144 0.621841i 0.786385π-0.786385\pi
0.783144 0.621841i 0.213615π-0.213615\pi
702702 0 0
703703 14.9282 0.563028
704704 0 0
705705 0 0
706706 0 0
707707 − 29.8564i − 1.12287i
708708 0 0
709709 − 28.7846i − 1.08103i −0.841335 0.540514i 0.818230π-0.818230\pi
0.841335 0.540514i 0.181770π-0.181770\pi
710710 0 0
711711 36.7846 1.37953
712712 0 0
713713 −6.14359 −0.230079
714714 0 0
715715 0 0
716716 0 0
717717 14.6410i 0.546779i
718718 0 0
719719 −25.8564 −0.964281 −0.482141 0.876094i 0.660141π-0.660141\pi
−0.482141 + 0.876094i 0.660141π0.660141\pi
720720 0 0
721721 4.53590 0.168926
722722 0 0
723723 − 3.21539i − 0.119582i
724724 0 0
725725 0 0
726726 0 0
727727 14.0526 0.521181 0.260590 0.965449i 0.416083π-0.416083\pi
0.260590 + 0.965449i 0.416083π0.416083\pi
728728 0 0
729729 2.21539 0.0820515
730730 0 0
731731 30.2487i 1.11879i
732732 0 0
733733 − 48.9282i − 1.80720i −0.428373 0.903602i 0.640913π-0.640913\pi
0.428373 0.903602i 0.359087π-0.359087\pi
734734 0 0
735735 0 0
736736 0 0
737737 −14.5359 −0.535437
738738 0 0
739739 − 5.32051i − 0.195718i −0.995200 0.0978590i 0.968801π-0.968801\pi
0.995200 0.0978590i 0.0311994π-0.0311994\pi
740740 0 0
741741 − 18.9282i − 0.695345i
742742 0 0
743743 −40.9808 −1.50344 −0.751719 0.659483i 0.770775π-0.770775\pi
−0.751719 + 0.659483i 0.770775π0.770775\pi
744744 0 0
745745 0 0
746746 0 0
747747 − 11.6603i − 0.426626i
748748 0 0
749749 − 2.00000i − 0.0730784i
750750 0 0
751751 22.2487 0.811867 0.405934 0.913903i 0.366946π-0.366946\pi
0.405934 + 0.913903i 0.366946π0.366946\pi
752752 0 0
753753 −8.10512 −0.295367
754754 0 0
755755 0 0
756756 0 0
757757 − 32.9282i − 1.19680i −0.801199 0.598398i 0.795804π-0.795804\pi
0.801199 0.598398i 0.204196π-0.204196\pi
758758 0 0
759759 6.14359 0.222998
760760 0 0
761761 49.7128 1.80209 0.901044 0.433728i 0.142802π-0.142802\pi
0.901044 + 0.433728i 0.142802π0.142802\pi
762762 0 0
763763 8.39230i 0.303822i
764764 0 0
765765 0 0
766766 0 0
767767 1.85641 0.0670310
768768 0 0
769769 −0.928203 −0.0334719 −0.0167359 0.999860i 0.505327π-0.505327\pi
−0.0167359 + 0.999860i 0.505327π0.505327\pi
770770 0 0
771771 1.46410i 0.0527283i
772772 0 0
773773 − 1.60770i − 0.0578248i −0.999582 0.0289124i 0.990796π-0.990796\pi
0.999582 0.0289124i 0.00920438π-0.00920438\pi
774774 0 0
775775 0 0
776776 0 0
777777 −4.00000 −0.143499
778778 0 0
779779 − 40.7846i − 1.46126i
780780 0 0
781781 − 2.92820i − 0.104779i
782782 0 0
783783 −27.7128 −0.990375
784784 0 0
785785 0 0
786786 0 0
787787 14.5885i 0.520022i 0.965606 + 0.260011i 0.0837262π0.0837262\pi
−0.965606 + 0.260011i 0.916274π0.916274\pi
788788 0 0
789789 4.14359i 0.147516i
790790 0 0
791791 2.53590 0.0901662
792792 0 0
793793 17.0718 0.606237
794794 0 0
795795 0 0
796796 0 0
797797 − 26.1051i − 0.924691i −0.886700 0.462345i 0.847008π-0.847008\pi
0.886700 0.462345i 0.152992π-0.152992\pi
798798 0 0
799799 23.3205 0.825020
800800 0 0
801801 −12.1436 −0.429073
802802 0 0
803803 1.07180i 0.0378229i
804804 0 0
805805 0 0
806806 0 0
807807 3.60770 0.126997
808808 0 0
809809 −3.85641 −0.135584 −0.0677920 0.997699i 0.521595π-0.521595\pi
−0.0677920 + 0.997699i 0.521595π0.521595\pi
810810 0 0
811811 − 15.0718i − 0.529242i −0.964352 0.264621i 0.914753π-0.914753\pi
0.964352 0.264621i 0.0852469π-0.0852469\pi
812812 0 0
813813 − 11.2154i − 0.393341i
814814 0 0
815815 0 0
816816 0 0
817817 −65.1769 −2.28025
818818 0 0
819819 − 23.3205i − 0.814885i
820820 0 0
821821 6.78461i 0.236785i 0.992967 + 0.118392i 0.0377740π0.0377740\pi
−0.992967 + 0.118392i 0.962226π0.962226\pi
822822 0 0
823823 15.1244 0.527202 0.263601 0.964632i 0.415090π-0.415090\pi
0.263601 + 0.964632i 0.415090π0.415090\pi
824824 0 0
825825 0 0
826826 0 0
827827 1.12436i 0.0390977i 0.999809 + 0.0195488i 0.00622298π0.00622298\pi
−0.999809 + 0.0195488i 0.993777π0.993777\pi
828828 0 0
829829 − 15.0718i − 0.523465i −0.965140 0.261733i 0.915706π-0.915706\pi
0.965140 0.261733i 0.0842938π-0.0842938\pi
830830 0 0
831831 −1.46410 −0.0507891
832832 0 0
833833 1.60770 0.0557033
834834 0 0
835835 0 0
836836 0 0
837837 − 5.85641i − 0.202427i
838838 0 0
839839 16.7846 0.579469 0.289735 0.957107i 0.406433π-0.406433\pi
0.289735 + 0.957107i 0.406433π0.406433\pi
840840 0 0
841841 −19.0000 −0.655172
842842 0 0
843843 12.7846i 0.440325i
844844 0 0
845845 0 0
846846 0 0
847847 −19.1244 −0.657121
848848 0 0
849849 5.60770 0.192456
850850 0 0
851851 − 8.39230i − 0.287685i
852852 0 0
853853 − 42.3923i − 1.45148i −0.687967 0.725742i 0.741496π-0.741496\pi
0.687967 0.725742i 0.258504π-0.258504\pi
854854 0 0
855855 0 0
856856 0 0
857857 −7.85641 −0.268370 −0.134185 0.990956i 0.542842π-0.542842\pi
−0.134185 + 0.990956i 0.542842π0.542842\pi
858858 0 0
859859 − 20.2487i − 0.690877i −0.938441 0.345439i 0.887730π-0.887730\pi
0.938441 0.345439i 0.112270π-0.112270\pi
860860 0 0
861861 10.9282i 0.372432i
862862 0 0
863863 30.3397 1.03278 0.516388 0.856354i 0.327276π-0.327276\pi
0.516388 + 0.856354i 0.327276π0.327276\pi
864864 0 0
865865 0 0
866866 0 0
867867 − 3.66025i − 0.124309i
868868 0 0
869869 − 29.8564i − 1.01281i
870870 0 0
871871 25.1769 0.853087
872872 0 0
873873 −15.7513 −0.533100
874874 0 0
875875 0 0
876876 0 0
877877 53.7128i 1.81375i 0.421397 + 0.906876i 0.361540π0.361540\pi
−0.421397 + 0.906876i 0.638460π0.638460\pi
878878 0 0
879879 −8.67949 −0.292752
880880 0 0
881881 2.53590 0.0854366 0.0427183 0.999087i 0.486398π-0.486398\pi
0.0427183 + 0.999087i 0.486398π0.486398\pi
882882 0 0
883883 − 37.9090i − 1.27574i −0.770145 0.637869i 0.779816π-0.779816\pi
0.770145 0.637869i 0.220184π-0.220184\pi
884884 0 0
885885 0 0
886886 0 0
887887 51.9090 1.74293 0.871466 0.490455i 0.163170π-0.163170\pi
0.871466 + 0.490455i 0.163170π0.163170\pi
888888 0 0
889889 −36.2487 −1.21574
890890 0 0
891891 − 8.92820i − 0.299106i
892892 0 0
893893 50.2487i 1.68151i
894894 0 0
895895 0 0
896896 0 0
897897 −10.6410 −0.355293
898898 0 0
899899 − 10.1436i − 0.338308i
900900 0 0
901901 15.7128i 0.523470i
902902 0 0
903903 17.4641 0.581169
904904 0 0
905905 0 0
906906 0 0
907907 − 29.1244i − 0.967058i −0.875328 0.483529i 0.839355π-0.839355\pi
0.875328 0.483529i 0.160645π-0.160645\pi
908908 0 0
909909 26.9282i 0.893152i
910910 0 0
911911 −13.1769 −0.436571 −0.218285 0.975885i 0.570046π-0.570046\pi
−0.218285 + 0.975885i 0.570046π0.570046\pi
912912 0 0
913913 −9.46410 −0.313216
914914 0 0
915915 0 0
916916 0 0
917917 − 21.4641i − 0.708807i
918918 0 0
919919 25.0718 0.827042 0.413521 0.910495i 0.364299π-0.364299\pi
0.413521 + 0.910495i 0.364299π0.364299\pi
920920 0 0
921921 19.7513 0.650827
922922 0 0
923923 5.07180i 0.166940i
924924 0 0
925925 0 0
926926 0 0
927927 −4.09103 −0.134367
928928 0 0
929929 −10.5359 −0.345672 −0.172836 0.984951i 0.555293π-0.555293\pi
−0.172836 + 0.984951i 0.555293π0.555293\pi
930930 0 0
931931 3.46410i 0.113531i
932932 0 0
933933 2.43078i 0.0795802i
934934 0 0
935935 0 0
936936 0 0
937937 44.2487 1.44554 0.722771 0.691087i 0.242868π-0.242868\pi
0.722771 + 0.691087i 0.242868π0.242868\pi
938938 0 0
939939 23.3205i 0.761036i
940940 0 0
941941 32.0000i 1.04317i 0.853199 + 0.521585i 0.174659π0.174659\pi
−0.853199 + 0.521585i 0.825341π0.825341\pi
942942 0 0
943943 −22.9282 −0.746645
944944 0 0
945945 0 0
946946 0 0
947947 − 21.1244i − 0.686449i −0.939253 0.343225i 0.888481π-0.888481\pi
0.939253 0.343225i 0.111519π-0.111519\pi
948948 0 0
949949 − 1.85641i − 0.0602615i
950950 0 0
951951 −11.3205 −0.367093
952952 0 0
953953 58.7846 1.90422 0.952110 0.305755i 0.0989089π-0.0989089\pi
0.952110 + 0.305755i 0.0989089π0.0989089\pi
954954 0 0
955955 0 0
956956 0 0
957957 10.1436i 0.327896i
958958 0 0
959959 −24.3923 −0.787669
960960 0 0
961961 −28.8564 −0.930852
962962 0 0
963963 1.80385i 0.0581282i
964964 0 0
965965 0 0
966966 0 0
967967 33.6603 1.08244 0.541220 0.840881i 0.317962π-0.317962\pi
0.541220 + 0.840881i 0.317962π0.317962\pi
968968 0 0
969969 −18.9282 −0.608061
970970 0 0
971971 23.0718i 0.740409i 0.928950 + 0.370205i 0.120712π0.120712\pi
−0.928950 + 0.370205i 0.879288π0.879288\pi
972972 0 0
973973 20.3923i 0.653747i
974974 0 0
975975 0 0
976976 0 0
977977 31.4641 1.00663 0.503313 0.864104i 0.332114π-0.332114\pi
0.503313 + 0.864104i 0.332114π0.332114\pi
978978 0 0
979979 9.85641i 0.315012i
980980 0 0
981981 − 7.56922i − 0.241667i
982982 0 0
983983 −45.2679 −1.44382 −0.721912 0.691985i 0.756736π-0.756736\pi
−0.721912 + 0.691985i 0.756736π0.756736\pi
984984 0 0
985985 0 0
986986 0 0
987987 − 13.4641i − 0.428567i
988988 0 0
989989 36.6410i 1.16512i
990990 0 0
991991 −34.5359 −1.09707 −0.548534 0.836128i 0.684814π-0.684814\pi
−0.548534 + 0.836128i 0.684814π0.684814\pi
992992 0 0
993993 10.2487 0.325233
994994 0 0
995995 0 0
996996 0 0
997997 51.1769i 1.62079i 0.585884 + 0.810395i 0.300747π0.300747\pi
−0.585884 + 0.810395i 0.699253π0.699253\pi
998998 0 0
999999 8.00000 0.253109
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.d.e.401.3 4
3.2 odd 2 7200.2.k.j.3601.2 4
4.3 odd 2 200.2.d.f.101.2 4
5.2 odd 4 800.2.f.c.49.3 4
5.3 odd 4 800.2.f.e.49.2 4
5.4 even 2 160.2.d.a.81.2 4
8.3 odd 2 200.2.d.f.101.1 4
8.5 even 2 inner 800.2.d.e.401.2 4
12.11 even 2 1800.2.k.j.901.3 4
15.2 even 4 7200.2.d.o.2449.1 4
15.8 even 4 7200.2.d.n.2449.4 4
15.14 odd 2 1440.2.k.e.721.2 4
16.3 odd 4 6400.2.a.z.1.2 2
16.5 even 4 6400.2.a.be.1.2 2
16.11 odd 4 6400.2.a.ce.1.1 2
16.13 even 4 6400.2.a.cj.1.1 2
20.3 even 4 200.2.f.e.149.4 4
20.7 even 4 200.2.f.c.149.1 4
20.19 odd 2 40.2.d.a.21.3 4
24.5 odd 2 7200.2.k.j.3601.1 4
24.11 even 2 1800.2.k.j.901.4 4
40.3 even 4 200.2.f.c.149.2 4
40.13 odd 4 800.2.f.c.49.4 4
40.19 odd 2 40.2.d.a.21.4 yes 4
40.27 even 4 200.2.f.e.149.3 4
40.29 even 2 160.2.d.a.81.3 4
40.37 odd 4 800.2.f.e.49.1 4
60.23 odd 4 1800.2.d.l.1549.1 4
60.47 odd 4 1800.2.d.p.1549.4 4
60.59 even 2 360.2.k.e.181.2 4
80.19 odd 4 1280.2.a.o.1.1 2
80.29 even 4 1280.2.a.d.1.2 2
80.59 odd 4 1280.2.a.a.1.2 2
80.69 even 4 1280.2.a.n.1.1 2
120.29 odd 2 1440.2.k.e.721.4 4
120.53 even 4 7200.2.d.o.2449.4 4
120.59 even 2 360.2.k.e.181.1 4
120.77 even 4 7200.2.d.n.2449.1 4
120.83 odd 4 1800.2.d.p.1549.3 4
120.107 odd 4 1800.2.d.l.1549.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.d.a.21.3 4 20.19 odd 2
40.2.d.a.21.4 yes 4 40.19 odd 2
160.2.d.a.81.2 4 5.4 even 2
160.2.d.a.81.3 4 40.29 even 2
200.2.d.f.101.1 4 8.3 odd 2
200.2.d.f.101.2 4 4.3 odd 2
200.2.f.c.149.1 4 20.7 even 4
200.2.f.c.149.2 4 40.3 even 4
200.2.f.e.149.3 4 40.27 even 4
200.2.f.e.149.4 4 20.3 even 4
360.2.k.e.181.1 4 120.59 even 2
360.2.k.e.181.2 4 60.59 even 2
800.2.d.e.401.2 4 8.5 even 2 inner
800.2.d.e.401.3 4 1.1 even 1 trivial
800.2.f.c.49.3 4 5.2 odd 4
800.2.f.c.49.4 4 40.13 odd 4
800.2.f.e.49.1 4 40.37 odd 4
800.2.f.e.49.2 4 5.3 odd 4
1280.2.a.a.1.2 2 80.59 odd 4
1280.2.a.d.1.2 2 80.29 even 4
1280.2.a.n.1.1 2 80.69 even 4
1280.2.a.o.1.1 2 80.19 odd 4
1440.2.k.e.721.2 4 15.14 odd 2
1440.2.k.e.721.4 4 120.29 odd 2
1800.2.d.l.1549.1 4 60.23 odd 4
1800.2.d.l.1549.2 4 120.107 odd 4
1800.2.d.p.1549.3 4 120.83 odd 4
1800.2.d.p.1549.4 4 60.47 odd 4
1800.2.k.j.901.3 4 12.11 even 2
1800.2.k.j.901.4 4 24.11 even 2
6400.2.a.z.1.2 2 16.3 odd 4
6400.2.a.be.1.2 2 16.5 even 4
6400.2.a.ce.1.1 2 16.11 odd 4
6400.2.a.cj.1.1 2 16.13 even 4
7200.2.d.n.2449.1 4 120.77 even 4
7200.2.d.n.2449.4 4 15.8 even 4
7200.2.d.o.2449.1 4 15.2 even 4
7200.2.d.o.2449.4 4 120.53 even 4
7200.2.k.j.3601.1 4 24.5 odd 2
7200.2.k.j.3601.2 4 3.2 odd 2