Properties

Label 40.2.d
Level $40$
Weight $2$
Character orbit 40.d
Rep. character $\chi_{40}(21,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $12$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 40.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(40, [\chi])\).

Total New Old
Modular forms 8 4 4
Cusp forms 4 4 0
Eisenstein series 4 0 4

Trace form

\( 4 q - 2 q^{2} + 4 q^{6} - 4 q^{7} - 8 q^{8} - 4 q^{9} + 2 q^{10} - 4 q^{12} - 4 q^{14} + 4 q^{15} + 8 q^{16} + 14 q^{18} + 4 q^{20} + 4 q^{22} - 4 q^{23} + 8 q^{24} - 4 q^{25} - 12 q^{26} + 12 q^{28} - 8 q^{30}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(40, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
40.2.d.a 40.d 8.b $4$ $0.319$ \(\Q(\zeta_{12})\) None 40.2.d.a \(-2\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{2}-\beta_1)q^{2}+(-\beta_{3}+\beta_{2}+\beta_1-1)q^{3}+\cdots\)