Defining parameters
Level: | \( N \) | \(=\) | \( 40 = 2^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 40.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(12\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(40, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8 | 4 | 4 |
Cusp forms | 4 | 4 | 0 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(40, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
40.2.d.a | $4$ | $0.319$ | \(\Q(\zeta_{12})\) | None | \(-2\) | \(0\) | \(0\) | \(-4\) | \(q+(\beta_{2}-\beta_1)q^{2}+(-\beta_{3}+\beta_{2}+\beta_1-1)q^{3}+\cdots\) |