Properties

Label 392.2.m.c.19.1
Level $392$
Weight $2$
Character 392.19
Analytic conductor $3.130$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [392,2,Mod(19,392)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(392, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("392.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13013575923\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.339738624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 14x^{4} - 8x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.1
Root \(0.662827 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 392.19
Dual form 392.2.m.c.227.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 1.22474i) q^{2} +(-0.937379 + 0.541196i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(0.662827 - 1.14805i) q^{5} +(1.32565 + 0.765367i) q^{6} +2.82843 q^{8} +(-0.914214 + 1.58346i) q^{9} -1.87476 q^{10} +(1.00000 + 1.73205i) q^{11} -2.16478i q^{12} -5.85172 q^{13} +1.43488i q^{15} +(-2.00000 - 3.46410i) q^{16} +(-3.86324 + 2.23044i) q^{17} +2.58579 q^{18} +(3.58869 + 2.07193i) q^{19} +(1.32565 + 2.29610i) q^{20} +(1.41421 - 2.44949i) q^{22} +(7.24264 + 4.18154i) q^{23} +(-2.65131 + 1.53073i) q^{24} +(1.62132 + 2.80821i) q^{25} +(4.13779 + 7.16687i) q^{26} -5.22625i q^{27} +4.47871i q^{29} +(1.75736 - 1.01461i) q^{30} +(3.20041 + 5.54328i) q^{31} +(-2.82843 + 4.89898i) q^{32} +(-1.87476 - 1.08239i) q^{33} +(5.46345 + 3.15432i) q^{34} +(-1.82843 - 3.16693i) q^{36} +(-2.12132 - 1.22474i) q^{37} -5.86030i q^{38} +(5.48528 - 3.16693i) q^{39} +(1.87476 - 3.24718i) q^{40} -0.317025i q^{41} -3.17157 q^{43} -4.00000 q^{44} +(1.21193 + 2.09913i) q^{45} -11.8272i q^{46} +(-6.40083 + 11.0866i) q^{47} +(3.74952 + 2.16478i) q^{48} +(2.29289 - 3.97141i) q^{50} +(2.41421 - 4.18154i) q^{51} +(5.85172 - 10.1355i) q^{52} +(-3.00000 + 1.73205i) q^{53} +(-6.40083 + 3.69552i) q^{54} +2.65131 q^{55} -4.48528 q^{57} +(5.48528 - 3.16693i) q^{58} +(-0.937379 + 0.541196i) q^{59} +(-2.48528 - 1.43488i) q^{60} +(4.80062 - 8.31492i) q^{61} +(4.52607 - 7.83938i) q^{62} +8.00000 q^{64} +(-3.87868 + 6.71807i) q^{65} +3.06147i q^{66} +(-6.00000 - 10.3923i) q^{67} -8.92177i q^{68} -9.05213 q^{69} +(-2.58579 + 4.47871i) q^{72} +(6.12627 - 3.53701i) q^{73} +3.46410i q^{74} +(-3.03958 - 1.75490i) q^{75} +(-7.17738 + 4.14386i) q^{76} +(-7.75736 - 4.47871i) q^{78} +(1.75736 + 1.01461i) q^{79} -5.30262 q^{80} +(0.0857864 + 0.148586i) q^{81} +(-0.388275 + 0.224171i) q^{82} -5.67459i q^{83} +5.91359i q^{85} +(2.24264 + 3.88437i) q^{86} +(-2.42386 - 4.19825i) q^{87} +(2.82843 + 4.89898i) q^{88} +(-11.0406 - 6.37430i) q^{89} +(1.71393 - 2.96861i) q^{90} +(-14.4853 + 8.36308i) q^{92} +(-6.00000 - 3.46410i) q^{93} +18.1043 q^{94} +(4.75736 - 2.74666i) q^{95} -6.12293i q^{96} +9.23880i q^{97} -3.65685 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 4 q^{9} + 8 q^{11} - 16 q^{16} + 32 q^{18} + 24 q^{23} - 4 q^{25} + 48 q^{30} + 8 q^{36} - 24 q^{39} - 48 q^{43} - 32 q^{44} + 24 q^{50} + 8 q^{51} - 24 q^{53} + 32 q^{57} - 24 q^{58} + 48 q^{60}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 1.22474i −0.500000 0.866025i
\(3\) −0.937379 + 0.541196i −0.541196 + 0.312460i −0.745564 0.666435i \(-0.767820\pi\)
0.204367 + 0.978894i \(0.434486\pi\)
\(4\) −1.00000 + 1.73205i −0.500000 + 0.866025i
\(5\) 0.662827 1.14805i 0.296425 0.513424i −0.678890 0.734240i \(-0.737539\pi\)
0.975315 + 0.220816i \(0.0708721\pi\)
\(6\) 1.32565 + 0.765367i 0.541196 + 0.312460i
\(7\) 0 0
\(8\) 2.82843 1.00000
\(9\) −0.914214 + 1.58346i −0.304738 + 0.527821i
\(10\) −1.87476 −0.592851
\(11\) 1.00000 + 1.73205i 0.301511 + 0.522233i 0.976478 0.215615i \(-0.0691756\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(12\) 2.16478i 0.624919i
\(13\) −5.85172 −1.62298 −0.811488 0.584369i \(-0.801342\pi\)
−0.811488 + 0.584369i \(0.801342\pi\)
\(14\) 0 0
\(15\) 1.43488i 0.370484i
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) −3.86324 + 2.23044i −0.936973 + 0.540962i −0.889010 0.457887i \(-0.848606\pi\)
−0.0479630 + 0.998849i \(0.515273\pi\)
\(18\) 2.58579 0.609476
\(19\) 3.58869 + 2.07193i 0.823301 + 0.475333i 0.851554 0.524268i \(-0.175661\pi\)
−0.0282522 + 0.999601i \(0.508994\pi\)
\(20\) 1.32565 + 2.29610i 0.296425 + 0.513424i
\(21\) 0 0
\(22\) 1.41421 2.44949i 0.301511 0.522233i
\(23\) 7.24264 + 4.18154i 1.51019 + 0.871911i 0.999929 + 0.0118947i \(0.00378628\pi\)
0.510266 + 0.860017i \(0.329547\pi\)
\(24\) −2.65131 + 1.53073i −0.541196 + 0.312460i
\(25\) 1.62132 + 2.80821i 0.324264 + 0.561642i
\(26\) 4.13779 + 7.16687i 0.811488 + 1.40554i
\(27\) 5.22625i 1.00579i
\(28\) 0 0
\(29\) 4.47871i 0.831676i 0.909439 + 0.415838i \(0.136512\pi\)
−0.909439 + 0.415838i \(0.863488\pi\)
\(30\) 1.75736 1.01461i 0.320848 0.185242i
\(31\) 3.20041 + 5.54328i 0.574811 + 0.995602i 0.996062 + 0.0886579i \(0.0282578\pi\)
−0.421251 + 0.906944i \(0.638409\pi\)
\(32\) −2.82843 + 4.89898i −0.500000 + 0.866025i
\(33\) −1.87476 1.08239i −0.326354 0.188420i
\(34\) 5.46345 + 3.15432i 0.936973 + 0.540962i
\(35\) 0 0
\(36\) −1.82843 3.16693i −0.304738 0.527821i
\(37\) −2.12132 1.22474i −0.348743 0.201347i 0.315389 0.948963i \(-0.397865\pi\)
−0.664131 + 0.747616i \(0.731198\pi\)
\(38\) 5.86030i 0.950667i
\(39\) 5.48528 3.16693i 0.878348 0.507114i
\(40\) 1.87476 3.24718i 0.296425 0.513424i
\(41\) 0.317025i 0.0495110i −0.999694 0.0247555i \(-0.992119\pi\)
0.999694 0.0247555i \(-0.00788073\pi\)
\(42\) 0 0
\(43\) −3.17157 −0.483660 −0.241830 0.970319i \(-0.577748\pi\)
−0.241830 + 0.970319i \(0.577748\pi\)
\(44\) −4.00000 −0.603023
\(45\) 1.21193 + 2.09913i 0.180664 + 0.312919i
\(46\) 11.8272i 1.74382i
\(47\) −6.40083 + 11.0866i −0.933656 + 1.61714i −0.156644 + 0.987655i \(0.550067\pi\)
−0.777013 + 0.629485i \(0.783266\pi\)
\(48\) 3.74952 + 2.16478i 0.541196 + 0.312460i
\(49\) 0 0
\(50\) 2.29289 3.97141i 0.324264 0.561642i
\(51\) 2.41421 4.18154i 0.338058 0.585533i
\(52\) 5.85172 10.1355i 0.811488 1.40554i
\(53\) −3.00000 + 1.73205i −0.412082 + 0.237915i −0.691684 0.722200i \(-0.743131\pi\)
0.279602 + 0.960116i \(0.409797\pi\)
\(54\) −6.40083 + 3.69552i −0.871042 + 0.502896i
\(55\) 2.65131 0.357502
\(56\) 0 0
\(57\) −4.48528 −0.594090
\(58\) 5.48528 3.16693i 0.720253 0.415838i
\(59\) −0.937379 + 0.541196i −0.122036 + 0.0704577i −0.559776 0.828644i \(-0.689113\pi\)
0.437739 + 0.899102i \(0.355779\pi\)
\(60\) −2.48528 1.43488i −0.320848 0.185242i
\(61\) 4.80062 8.31492i 0.614656 1.06462i −0.375788 0.926705i \(-0.622628\pi\)
0.990445 0.137910i \(-0.0440386\pi\)
\(62\) 4.52607 7.83938i 0.574811 0.995602i
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) −3.87868 + 6.71807i −0.481091 + 0.833274i
\(66\) 3.06147i 0.376841i
\(67\) −6.00000 10.3923i −0.733017 1.26962i −0.955588 0.294706i \(-0.904778\pi\)
0.222571 0.974916i \(-0.428555\pi\)
\(68\) 8.92177i 1.08192i
\(69\) −9.05213 −1.08975
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −2.58579 + 4.47871i −0.304738 + 0.527821i
\(73\) 6.12627 3.53701i 0.717026 0.413975i −0.0966311 0.995320i \(-0.530807\pi\)
0.813657 + 0.581345i \(0.197473\pi\)
\(74\) 3.46410i 0.402694i
\(75\) −3.03958 1.75490i −0.350981 0.202639i
\(76\) −7.17738 + 4.14386i −0.823301 + 0.475333i
\(77\) 0 0
\(78\) −7.75736 4.47871i −0.878348 0.507114i
\(79\) 1.75736 + 1.01461i 0.197718 + 0.114153i 0.595591 0.803288i \(-0.296918\pi\)
−0.397872 + 0.917441i \(0.630251\pi\)
\(80\) −5.30262 −0.592851
\(81\) 0.0857864 + 0.148586i 0.00953183 + 0.0165096i
\(82\) −0.388275 + 0.224171i −0.0428778 + 0.0247555i
\(83\) 5.67459i 0.622868i −0.950268 0.311434i \(-0.899191\pi\)
0.950268 0.311434i \(-0.100809\pi\)
\(84\) 0 0
\(85\) 5.91359i 0.641419i
\(86\) 2.24264 + 3.88437i 0.241830 + 0.418862i
\(87\) −2.42386 4.19825i −0.259865 0.450100i
\(88\) 2.82843 + 4.89898i 0.301511 + 0.522233i
\(89\) −11.0406 6.37430i −1.17030 0.675675i −0.216551 0.976271i \(-0.569481\pi\)
−0.953751 + 0.300597i \(0.902814\pi\)
\(90\) 1.71393 2.96861i 0.180664 0.312919i
\(91\) 0 0
\(92\) −14.4853 + 8.36308i −1.51019 + 0.871911i
\(93\) −6.00000 3.46410i −0.622171 0.359211i
\(94\) 18.1043 1.86731
\(95\) 4.75736 2.74666i 0.488095 0.281802i
\(96\) 6.12293i 0.624919i
\(97\) 9.23880i 0.938058i 0.883183 + 0.469029i \(0.155396\pi\)
−0.883183 + 0.469029i \(0.844604\pi\)
\(98\) 0 0
\(99\) −3.65685 −0.367528
\(100\) −6.48528 −0.648528
\(101\) 0.274552 + 0.475538i 0.0273189 + 0.0473178i 0.879362 0.476154i \(-0.157970\pi\)
−0.852043 + 0.523472i \(0.824636\pi\)
\(102\) −6.82843 −0.676115
\(103\) −0.549104 + 0.951076i −0.0541048 + 0.0937123i −0.891809 0.452411i \(-0.850564\pi\)
0.837704 + 0.546124i \(0.183897\pi\)
\(104\) −16.5512 −1.62298
\(105\) 0 0
\(106\) 4.24264 + 2.44949i 0.412082 + 0.237915i
\(107\) −4.24264 + 7.34847i −0.410152 + 0.710403i −0.994906 0.100807i \(-0.967858\pi\)
0.584754 + 0.811210i \(0.301191\pi\)
\(108\) 9.05213 + 5.22625i 0.871042 + 0.502896i
\(109\) −12.3640 + 7.13834i −1.18425 + 0.683729i −0.956995 0.290106i \(-0.906309\pi\)
−0.227258 + 0.973835i \(0.572976\pi\)
\(110\) −1.87476 3.24718i −0.178751 0.309606i
\(111\) 2.65131 0.251651
\(112\) 0 0
\(113\) 0.485281 0.0456514 0.0228257 0.999739i \(-0.492734\pi\)
0.0228257 + 0.999739i \(0.492734\pi\)
\(114\) 3.17157 + 5.49333i 0.297045 + 0.514497i
\(115\) 9.60124 5.54328i 0.895320 0.516913i
\(116\) −7.75736 4.47871i −0.720253 0.415838i
\(117\) 5.34972 9.26599i 0.494582 0.856641i
\(118\) 1.32565 + 0.765367i 0.122036 + 0.0704577i
\(119\) 0 0
\(120\) 4.05845i 0.370484i
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) −13.5782 −1.22931
\(123\) 0.171573 + 0.297173i 0.0154702 + 0.0267952i
\(124\) −12.8017 −1.14962
\(125\) 10.9269 0.977331
\(126\) 0 0
\(127\) 15.2913i 1.35688i −0.734655 0.678441i \(-0.762656\pi\)
0.734655 0.678441i \(-0.237344\pi\)
\(128\) −5.65685 9.79796i −0.500000 0.866025i
\(129\) 2.97297 1.71644i 0.261755 0.151124i
\(130\) 10.9706 0.962182
\(131\) 11.8643 + 6.84984i 1.03659 + 0.598473i 0.918864 0.394573i \(-0.129108\pi\)
0.117722 + 0.993047i \(0.462441\pi\)
\(132\) 3.74952 2.16478i 0.326354 0.188420i
\(133\) 0 0
\(134\) −8.48528 + 14.6969i −0.733017 + 1.26962i
\(135\) −6.00000 3.46410i −0.516398 0.298142i
\(136\) −10.9269 + 6.30864i −0.936973 + 0.540962i
\(137\) 4.12132 + 7.13834i 0.352108 + 0.609869i 0.986619 0.163045i \(-0.0521316\pi\)
−0.634510 + 0.772914i \(0.718798\pi\)
\(138\) 6.40083 + 11.0866i 0.544874 + 0.943750i
\(139\) 17.3952i 1.47544i 0.675106 + 0.737721i \(0.264098\pi\)
−0.675106 + 0.737721i \(0.735902\pi\)
\(140\) 0 0
\(141\) 13.8564i 1.16692i
\(142\) 0 0
\(143\) −5.85172 10.1355i −0.489346 0.847571i
\(144\) 7.31371 0.609476
\(145\) 5.14179 + 2.96861i 0.427002 + 0.246530i
\(146\) −8.66386 5.00208i −0.717026 0.413975i
\(147\) 0 0
\(148\) 4.24264 2.44949i 0.348743 0.201347i
\(149\) −0.514719 0.297173i −0.0421674 0.0243454i 0.478768 0.877941i \(-0.341083\pi\)
−0.520936 + 0.853596i \(0.674417\pi\)
\(150\) 4.96362i 0.405278i
\(151\) 4.75736 2.74666i 0.387148 0.223520i −0.293775 0.955874i \(-0.594912\pi\)
0.680924 + 0.732354i \(0.261578\pi\)
\(152\) 10.1503 + 5.86030i 0.823301 + 0.475333i
\(153\) 8.15640i 0.659406i
\(154\) 0 0
\(155\) 8.48528 0.681554
\(156\) 12.6677i 1.01423i
\(157\) −6.28710 10.8896i −0.501765 0.869083i −0.999998 0.00203967i \(-0.999351\pi\)
0.498233 0.867043i \(-0.333983\pi\)
\(158\) 2.86976i 0.228306i
\(159\) 1.87476 3.24718i 0.148678 0.257518i
\(160\) 3.74952 + 6.49435i 0.296425 + 0.513424i
\(161\) 0 0
\(162\) 0.121320 0.210133i 0.00953183 0.0165096i
\(163\) 10.0711 17.4436i 0.788827 1.36629i −0.137859 0.990452i \(-0.544022\pi\)
0.926686 0.375836i \(-0.122645\pi\)
\(164\) 0.549104 + 0.317025i 0.0428778 + 0.0247555i
\(165\) −2.48528 + 1.43488i −0.193479 + 0.111705i
\(166\) −6.94993 + 4.01254i −0.539419 + 0.311434i
\(167\) 16.5512 1.28077 0.640384 0.768055i \(-0.278775\pi\)
0.640384 + 0.768055i \(0.278775\pi\)
\(168\) 0 0
\(169\) 21.2426 1.63405
\(170\) 7.24264 4.18154i 0.555485 0.320710i
\(171\) −6.56165 + 3.78837i −0.501782 + 0.289704i
\(172\) 3.17157 5.49333i 0.241830 0.418862i
\(173\) −5.18889 + 8.98743i −0.394504 + 0.683302i −0.993038 0.117796i \(-0.962417\pi\)
0.598533 + 0.801098i \(0.295750\pi\)
\(174\) −3.42786 + 5.93723i −0.259865 + 0.450100i
\(175\) 0 0
\(176\) 4.00000 6.92820i 0.301511 0.522233i
\(177\) 0.585786 1.01461i 0.0440304 0.0762629i
\(178\) 18.0292i 1.35135i
\(179\) 1.75736 + 3.04384i 0.131351 + 0.227507i 0.924198 0.381914i \(-0.124735\pi\)
−0.792846 + 0.609421i \(0.791402\pi\)
\(180\) −4.84772 −0.361328
\(181\) 14.1273 1.05007 0.525037 0.851079i \(-0.324051\pi\)
0.525037 + 0.851079i \(0.324051\pi\)
\(182\) 0 0
\(183\) 10.3923i 0.768221i
\(184\) 20.4853 + 11.8272i 1.51019 + 0.871911i
\(185\) −2.81214 + 1.62359i −0.206752 + 0.119369i
\(186\) 9.79796i 0.718421i
\(187\) −7.72648 4.46088i −0.565016 0.326212i
\(188\) −12.8017 22.1731i −0.933656 1.61714i
\(189\) 0 0
\(190\) −6.72792 3.88437i −0.488095 0.281802i
\(191\) 1.75736 + 1.01461i 0.127158 + 0.0734147i 0.562230 0.826981i \(-0.309944\pi\)
−0.435072 + 0.900396i \(0.643277\pi\)
\(192\) −7.49903 + 4.32957i −0.541196 + 0.312460i
\(193\) −7.07107 12.2474i −0.508987 0.881591i −0.999946 0.0104081i \(-0.996687\pi\)
0.490959 0.871183i \(-0.336646\pi\)
\(194\) 11.3152 6.53281i 0.812382 0.469029i
\(195\) 8.39651i 0.601286i
\(196\) 0 0
\(197\) 12.6677i 0.902537i −0.892388 0.451269i \(-0.850972\pi\)
0.892388 0.451269i \(-0.149028\pi\)
\(198\) 2.58579 + 4.47871i 0.183764 + 0.318288i
\(199\) 3.20041 + 5.54328i 0.226871 + 0.392953i 0.956879 0.290486i \(-0.0938170\pi\)
−0.730008 + 0.683439i \(0.760484\pi\)
\(200\) 4.58579 + 7.94282i 0.324264 + 0.561642i
\(201\) 11.2485 + 6.49435i 0.793412 + 0.458076i
\(202\) 0.388275 0.672512i 0.0273189 0.0473178i
\(203\) 0 0
\(204\) 4.82843 + 8.36308i 0.338058 + 0.585533i
\(205\) −0.363961 0.210133i −0.0254201 0.0146763i
\(206\) 1.55310 0.108210
\(207\) −13.2426 + 7.64564i −0.920427 + 0.531409i
\(208\) 11.7034 + 20.2710i 0.811488 + 1.40554i
\(209\) 8.28772i 0.573274i
\(210\) 0 0
\(211\) 3.51472 0.241963 0.120982 0.992655i \(-0.461396\pi\)
0.120982 + 0.992655i \(0.461396\pi\)
\(212\) 6.92820i 0.475831i
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) −2.10220 + 3.64113i −0.143369 + 0.248323i
\(216\) 14.7821i 1.00579i
\(217\) 0 0
\(218\) 17.4853 + 10.0951i 1.18425 + 0.683729i
\(219\) −3.82843 + 6.63103i −0.258701 + 0.448084i
\(220\) −2.65131 + 4.59220i −0.178751 + 0.309606i
\(221\) 22.6066 13.0519i 1.52068 0.877968i
\(222\) −1.87476 3.24718i −0.125826 0.217936i
\(223\) −4.84772 −0.324628 −0.162314 0.986739i \(-0.551896\pi\)
−0.162314 + 0.986739i \(0.551896\pi\)
\(224\) 0 0
\(225\) −5.92893 −0.395262
\(226\) −0.343146 0.594346i −0.0228257 0.0395353i
\(227\) −10.2170 + 5.89876i −0.678123 + 0.391515i −0.799148 0.601135i \(-0.794715\pi\)
0.121024 + 0.992650i \(0.461382\pi\)
\(228\) 4.48528 7.76874i 0.297045 0.514497i
\(229\) −7.61276 + 13.1857i −0.503065 + 0.871334i 0.496929 + 0.867791i \(0.334461\pi\)
−0.999994 + 0.00354289i \(0.998872\pi\)
\(230\) −13.5782 7.83938i −0.895320 0.516913i
\(231\) 0 0
\(232\) 12.6677i 0.831676i
\(233\) 5.87868 10.1822i 0.385125 0.667056i −0.606661 0.794960i \(-0.707492\pi\)
0.991787 + 0.127904i \(0.0408250\pi\)
\(234\) −15.1313 −0.989164
\(235\) 8.48528 + 14.6969i 0.553519 + 0.958723i
\(236\) 2.16478i 0.140915i
\(237\) −2.19642 −0.142673
\(238\) 0 0
\(239\) 6.33386i 0.409703i −0.978793 0.204852i \(-0.934329\pi\)
0.978793 0.204852i \(-0.0656712\pi\)
\(240\) 4.97056 2.86976i 0.320848 0.185242i
\(241\) −14.5627 + 8.40777i −0.938065 + 0.541592i −0.889353 0.457221i \(-0.848845\pi\)
−0.0487118 + 0.998813i \(0.515512\pi\)
\(242\) −9.89949 −0.636364
\(243\) 13.4174 + 7.74652i 0.860725 + 0.496940i
\(244\) 9.60124 + 16.6298i 0.614656 + 1.06462i
\(245\) 0 0
\(246\) 0.242641 0.420266i 0.0154702 0.0267952i
\(247\) −21.0000 12.1244i −1.33620 0.771454i
\(248\) 9.05213 + 15.6788i 0.574811 + 0.995602i
\(249\) 3.07107 + 5.31925i 0.194621 + 0.337093i
\(250\) −7.72648 13.3827i −0.488665 0.846393i
\(251\) 20.1940i 1.27464i 0.770601 + 0.637318i \(0.219956\pi\)
−0.770601 + 0.637318i \(0.780044\pi\)
\(252\) 0 0
\(253\) 16.7262i 1.05156i
\(254\) −18.7279 + 10.8126i −1.17509 + 0.678441i
\(255\) −3.20041 5.54328i −0.200418 0.347133i
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −1.05110 0.606854i −0.0655660 0.0378545i 0.466859 0.884332i \(-0.345386\pi\)
−0.532425 + 0.846477i \(0.678719\pi\)
\(258\) −4.20441 2.42742i −0.261755 0.151124i
\(259\) 0 0
\(260\) −7.75736 13.4361i −0.481091 0.833274i
\(261\) −7.09188 4.09450i −0.438977 0.253443i
\(262\) 19.3743i 1.19695i
\(263\) −16.2426 + 9.37769i −1.00156 + 0.578253i −0.908711 0.417426i \(-0.862932\pi\)
−0.0928534 + 0.995680i \(0.529599\pi\)
\(264\) −5.30262 3.06147i −0.326354 0.188420i
\(265\) 4.59220i 0.282097i
\(266\) 0 0
\(267\) 13.7990 0.844484
\(268\) 24.0000 1.46603
\(269\) 6.12627 + 10.6110i 0.373525 + 0.646965i 0.990105 0.140327i \(-0.0448155\pi\)
−0.616580 + 0.787293i \(0.711482\pi\)
\(270\) 9.79796i 0.596285i
\(271\) 16.0021 27.7164i 0.972056 1.68365i 0.282730 0.959200i \(-0.408760\pi\)
0.689326 0.724451i \(-0.257907\pi\)
\(272\) 15.4530 + 8.92177i 0.936973 + 0.540962i
\(273\) 0 0
\(274\) 5.82843 10.0951i 0.352108 0.609869i
\(275\) −3.24264 + 5.61642i −0.195539 + 0.338683i
\(276\) 9.05213 15.6788i 0.544874 0.943750i
\(277\) 2.48528 1.43488i 0.149326 0.0862135i −0.423475 0.905908i \(-0.639190\pi\)
0.572801 + 0.819694i \(0.305857\pi\)
\(278\) 21.3047 12.3003i 1.27777 0.737721i
\(279\) −11.7034 −0.700667
\(280\) 0 0
\(281\) −16.7279 −0.997904 −0.498952 0.866630i \(-0.666282\pi\)
−0.498952 + 0.866630i \(0.666282\pi\)
\(282\) −16.9706 + 9.79796i −1.01058 + 0.583460i
\(283\) 13.1899 7.61521i 0.784060 0.452677i −0.0538074 0.998551i \(-0.517136\pi\)
0.837867 + 0.545874i \(0.183802\pi\)
\(284\) 0 0
\(285\) −2.97297 + 5.14933i −0.176103 + 0.305020i
\(286\) −8.27558 + 14.3337i −0.489346 + 0.847571i
\(287\) 0 0
\(288\) −5.17157 8.95743i −0.304738 0.527821i
\(289\) 1.44975 2.51104i 0.0852793 0.147708i
\(290\) 8.39651i 0.493060i
\(291\) −5.00000 8.66025i −0.293105 0.507673i
\(292\) 14.1480i 0.827950i
\(293\) 5.85172 0.341861 0.170931 0.985283i \(-0.445323\pi\)
0.170931 + 0.985283i \(0.445323\pi\)
\(294\) 0 0
\(295\) 1.43488i 0.0835418i
\(296\) −6.00000 3.46410i −0.348743 0.201347i
\(297\) 9.05213 5.22625i 0.525258 0.303258i
\(298\) 0.840532i 0.0486907i
\(299\) −42.3819 24.4692i −2.45101 1.41509i
\(300\) 6.07917 3.50981i 0.350981 0.202639i
\(301\) 0 0
\(302\) −6.72792 3.88437i −0.387148 0.223520i
\(303\) −0.514719 0.297173i −0.0295698 0.0170721i
\(304\) 16.5754i 0.950667i
\(305\) −6.36396 11.0227i −0.364399 0.631158i
\(306\) −9.98951 + 5.76745i −0.571062 + 0.329703i
\(307\) 21.9874i 1.25489i −0.778662 0.627444i \(-0.784101\pi\)
0.778662 0.627444i \(-0.215899\pi\)
\(308\) 0 0
\(309\) 1.18869i 0.0676223i
\(310\) −6.00000 10.3923i −0.340777 0.590243i
\(311\) 5.62427 + 9.74153i 0.318923 + 0.552391i 0.980264 0.197695i \(-0.0633454\pi\)
−0.661340 + 0.750086i \(0.730012\pi\)
\(312\) 15.5147 8.95743i 0.878348 0.507114i
\(313\) 13.0762 + 7.54955i 0.739111 + 0.426726i 0.821746 0.569854i \(-0.193000\pi\)
−0.0826352 + 0.996580i \(0.526334\pi\)
\(314\) −8.89130 + 15.4002i −0.501765 + 0.869083i
\(315\) 0 0
\(316\) −3.51472 + 2.02922i −0.197718 + 0.114153i
\(317\) 20.4853 + 11.8272i 1.15057 + 0.664281i 0.949026 0.315199i \(-0.102071\pi\)
0.201542 + 0.979480i \(0.435405\pi\)
\(318\) −5.30262 −0.297356
\(319\) −7.75736 + 4.47871i −0.434329 + 0.250760i
\(320\) 5.30262 9.18440i 0.296425 0.513424i
\(321\) 9.18440i 0.512623i
\(322\) 0 0
\(323\) −18.4853 −1.02855
\(324\) −0.343146 −0.0190637
\(325\) −9.48751 16.4329i −0.526273 0.911531i
\(326\) −28.4853 −1.57765
\(327\) 7.72648 13.3827i 0.427275 0.740063i
\(328\) 0.896683i 0.0495110i
\(329\) 0 0
\(330\) 3.51472 + 2.02922i 0.193479 + 0.111705i
\(331\) −7.58579 + 13.1390i −0.416953 + 0.722183i −0.995631 0.0933726i \(-0.970235\pi\)
0.578679 + 0.815556i \(0.303569\pi\)
\(332\) 9.82868 + 5.67459i 0.539419 + 0.311434i
\(333\) 3.87868 2.23936i 0.212550 0.122716i
\(334\) −11.7034 20.2710i −0.640384 1.10918i
\(335\) −15.9079 −0.869139
\(336\) 0 0
\(337\) −4.24264 −0.231111 −0.115556 0.993301i \(-0.536865\pi\)
−0.115556 + 0.993301i \(0.536865\pi\)
\(338\) −15.0208 26.0168i −0.817025 1.41513i
\(339\) −0.454893 + 0.262632i −0.0247064 + 0.0142642i
\(340\) −10.2426 5.91359i −0.555485 0.320710i
\(341\) −6.40083 + 11.0866i −0.346624 + 0.600371i
\(342\) 9.27958 + 5.35757i 0.501782 + 0.289704i
\(343\) 0 0
\(344\) −8.97056 −0.483660
\(345\) −6.00000 + 10.3923i −0.323029 + 0.559503i
\(346\) 14.6764 0.789009
\(347\) 13.4853 + 23.3572i 0.723928 + 1.25388i 0.959414 + 0.282002i \(0.0909985\pi\)
−0.235486 + 0.971878i \(0.575668\pi\)
\(348\) 9.69545 0.519731
\(349\) −9.27958 −0.496725 −0.248362 0.968667i \(-0.579892\pi\)
−0.248362 + 0.968667i \(0.579892\pi\)
\(350\) 0 0
\(351\) 30.5826i 1.63238i
\(352\) −11.3137 −0.603023
\(353\) 17.8297 10.2940i 0.948980 0.547894i 0.0562161 0.998419i \(-0.482096\pi\)
0.892764 + 0.450525i \(0.148763\pi\)
\(354\) −1.65685 −0.0880608
\(355\) 0 0
\(356\) 22.0812 12.7486i 1.17030 0.675675i
\(357\) 0 0
\(358\) 2.48528 4.30463i 0.131351 0.227507i
\(359\) 15.0000 + 8.66025i 0.791670 + 0.457071i 0.840550 0.541734i \(-0.182232\pi\)
−0.0488803 + 0.998805i \(0.515565\pi\)
\(360\) 3.42786 + 5.93723i 0.180664 + 0.312919i
\(361\) −0.914214 1.58346i −0.0481165 0.0833402i
\(362\) −9.98951 17.3023i −0.525037 0.909391i
\(363\) 7.57675i 0.397676i
\(364\) 0 0
\(365\) 9.37769i 0.490851i
\(366\) 12.7279 7.34847i 0.665299 0.384111i
\(367\) 11.4760 + 19.8770i 0.599042 + 1.03757i 0.992963 + 0.118427i \(0.0377851\pi\)
−0.393921 + 0.919144i \(0.628882\pi\)
\(368\) 33.4523i 1.74382i
\(369\) 0.501998 + 0.289829i 0.0261330 + 0.0150879i
\(370\) 3.97696 + 2.29610i 0.206752 + 0.119369i
\(371\) 0 0
\(372\) 12.0000 6.92820i 0.622171 0.359211i
\(373\) 25.9706 + 14.9941i 1.34470 + 0.776366i 0.987494 0.157658i \(-0.0503944\pi\)
0.357211 + 0.934024i \(0.383728\pi\)
\(374\) 12.6173i 0.652424i
\(375\) −10.2426 + 5.91359i −0.528928 + 0.305377i
\(376\) −18.1043 + 31.3575i −0.933656 + 1.61714i
\(377\) 26.2082i 1.34979i
\(378\) 0 0
\(379\) −5.31371 −0.272947 −0.136473 0.990644i \(-0.543577\pi\)
−0.136473 + 0.990644i \(0.543577\pi\)
\(380\) 10.9867i 0.563603i
\(381\) 8.27558 + 14.3337i 0.423971 + 0.734339i
\(382\) 2.86976i 0.146829i
\(383\) −6.40083 + 11.0866i −0.327067 + 0.566496i −0.981928 0.189252i \(-0.939394\pi\)
0.654862 + 0.755749i \(0.272727\pi\)
\(384\) 10.6052 + 6.12293i 0.541196 + 0.312460i
\(385\) 0 0
\(386\) −10.0000 + 17.3205i −0.508987 + 0.881591i
\(387\) 2.89949 5.02207i 0.147390 0.255286i
\(388\) −16.0021 9.23880i −0.812382 0.469029i
\(389\) 32.8492 18.9655i 1.66552 0.961590i 0.695516 0.718510i \(-0.255176\pi\)
0.970006 0.243080i \(-0.0781577\pi\)
\(390\) −10.2836 + 5.93723i −0.520729 + 0.300643i
\(391\) −37.3067 −1.88668
\(392\) 0 0
\(393\) −14.8284 −0.747995
\(394\) −15.5147 + 8.95743i −0.781620 + 0.451269i
\(395\) 2.32965 1.34502i 0.117217 0.0676755i
\(396\) 3.65685 6.33386i 0.183764 0.318288i
\(397\) −6.90282 + 11.9560i −0.346443 + 0.600056i −0.985615 0.169007i \(-0.945944\pi\)
0.639172 + 0.769064i \(0.279277\pi\)
\(398\) 4.52607 7.83938i 0.226871 0.392953i
\(399\) 0 0
\(400\) 6.48528 11.2328i 0.324264 0.561642i
\(401\) −8.12132 + 14.0665i −0.405559 + 0.702449i −0.994386 0.105810i \(-0.966257\pi\)
0.588827 + 0.808259i \(0.299590\pi\)
\(402\) 18.3688i 0.916153i
\(403\) −18.7279 32.4377i −0.932904 1.61584i
\(404\) −1.09821 −0.0546379
\(405\) 0.227446 0.0113019
\(406\) 0 0
\(407\) 4.89898i 0.242833i
\(408\) 6.82843 11.8272i 0.338058 0.585533i
\(409\) −8.00103 + 4.61940i −0.395626 + 0.228415i −0.684595 0.728924i \(-0.740021\pi\)
0.288969 + 0.957338i \(0.406687\pi\)
\(410\) 0.594346i 0.0293527i
\(411\) −7.72648 4.46088i −0.381119 0.220039i
\(412\) −1.09821 1.90215i −0.0541048 0.0937123i
\(413\) 0 0
\(414\) 18.7279 + 10.8126i 0.920427 + 0.531409i
\(415\) −6.51472 3.76127i −0.319795 0.184634i
\(416\) 16.5512 28.6675i 0.811488 1.40554i
\(417\) −9.41421 16.3059i −0.461016 0.798503i
\(418\) 10.1503 5.86030i 0.496469 0.286637i
\(419\) 7.31411i 0.357318i −0.983911 0.178659i \(-0.942824\pi\)
0.983911 0.178659i \(-0.0571759\pi\)
\(420\) 0 0
\(421\) 12.6677i 0.617387i 0.951162 + 0.308693i \(0.0998917\pi\)
−0.951162 + 0.308693i \(0.900108\pi\)
\(422\) −2.48528 4.30463i −0.120982 0.209546i
\(423\) −11.7034 20.2710i −0.569041 0.985608i
\(424\) −8.48528 + 4.89898i −0.412082 + 0.237915i
\(425\) −12.5271 7.23252i −0.607654 0.350829i
\(426\) 0 0
\(427\) 0 0
\(428\) −8.48528 14.6969i −0.410152 0.710403i
\(429\) 10.9706 + 6.33386i 0.529664 + 0.305802i
\(430\) 5.94593 0.286738
\(431\) 23.4853 13.5592i 1.13125 0.653125i 0.186998 0.982360i \(-0.440124\pi\)
0.944248 + 0.329235i \(0.106791\pi\)
\(432\) −18.1043 + 10.4525i −0.871042 + 0.502896i
\(433\) 28.1647i 1.35351i −0.736208 0.676755i \(-0.763386\pi\)
0.736208 0.676755i \(-0.236614\pi\)
\(434\) 0 0
\(435\) −6.42641 −0.308123
\(436\) 28.5533i 1.36746i
\(437\) 17.3277 + 30.0125i 0.828897 + 1.43569i
\(438\) 10.8284 0.517402
\(439\) 11.1543 19.3199i 0.532368 0.922088i −0.466918 0.884300i \(-0.654636\pi\)
0.999286 0.0377871i \(-0.0120309\pi\)
\(440\) 7.49903 0.357502
\(441\) 0 0
\(442\) −31.9706 18.4582i −1.52068 0.877968i
\(443\) −14.1421 + 24.4949i −0.671913 + 1.16379i 0.305448 + 0.952209i \(0.401194\pi\)
−0.977361 + 0.211579i \(0.932139\pi\)
\(444\) −2.65131 + 4.59220i −0.125826 + 0.217936i
\(445\) −14.6360 + 8.45012i −0.693815 + 0.400574i
\(446\) 3.42786 + 5.93723i 0.162314 + 0.281136i
\(447\) 0.643315 0.0304278
\(448\) 0 0
\(449\) 5.65685 0.266963 0.133482 0.991051i \(-0.457384\pi\)
0.133482 + 0.991051i \(0.457384\pi\)
\(450\) 4.19239 + 7.26143i 0.197631 + 0.342307i
\(451\) 0.549104 0.317025i 0.0258563 0.0149281i
\(452\) −0.485281 + 0.840532i −0.0228257 + 0.0395353i
\(453\) −2.97297 + 5.14933i −0.139682 + 0.241937i
\(454\) 14.4490 + 8.34211i 0.678123 + 0.391515i
\(455\) 0 0
\(456\) −12.6863 −0.594090
\(457\) 13.4142 23.2341i 0.627490 1.08685i −0.360563 0.932735i \(-0.617415\pi\)
0.988054 0.154111i \(-0.0492512\pi\)
\(458\) 21.5321 1.00613
\(459\) 11.6569 + 20.1903i 0.544095 + 0.942401i
\(460\) 22.1731i 1.03383i
\(461\) 18.9750 0.883755 0.441878 0.897075i \(-0.354313\pi\)
0.441878 + 0.897075i \(0.354313\pi\)
\(462\) 0 0
\(463\) 8.95743i 0.416287i 0.978098 + 0.208143i \(0.0667421\pi\)
−0.978098 + 0.208143i \(0.933258\pi\)
\(464\) 15.5147 8.95743i 0.720253 0.415838i
\(465\) −7.95393 + 4.59220i −0.368854 + 0.212958i
\(466\) −16.6274 −0.770250
\(467\) 31.8433 + 18.3847i 1.47353 + 0.850744i 0.999556 0.0297936i \(-0.00948502\pi\)
0.473976 + 0.880538i \(0.342818\pi\)
\(468\) 10.6994 + 18.5320i 0.494582 + 0.856641i
\(469\) 0 0
\(470\) 12.0000 20.7846i 0.553519 0.958723i
\(471\) 11.7868 + 6.80511i 0.543107 + 0.313563i
\(472\) −2.65131 + 1.53073i −0.122036 + 0.0704577i
\(473\) −3.17157 5.49333i −0.145829 0.252583i
\(474\) 1.55310 + 2.69005i 0.0713363 + 0.123558i
\(475\) 13.4370i 0.616534i
\(476\) 0 0
\(477\) 6.33386i 0.290007i
\(478\) −7.75736 + 4.47871i −0.354813 + 0.204852i
\(479\) −5.07517 8.79045i −0.231890 0.401646i 0.726474 0.687194i \(-0.241158\pi\)
−0.958364 + 0.285548i \(0.907824\pi\)
\(480\) −7.02944 4.05845i −0.320848 0.185242i
\(481\) 12.4134 + 7.16687i 0.566001 + 0.326781i
\(482\) 20.5947 + 11.8904i 0.938065 + 0.541592i
\(483\) 0 0
\(484\) 7.00000 + 12.1244i 0.318182 + 0.551107i
\(485\) 10.6066 + 6.12372i 0.481621 + 0.278064i
\(486\) 21.9105i 0.993879i
\(487\) 12.5147 7.22538i 0.567096 0.327413i −0.188893 0.981998i \(-0.560490\pi\)
0.755989 + 0.654585i \(0.227156\pi\)
\(488\) 13.5782 23.5181i 0.614656 1.06462i
\(489\) 21.8017i 0.985907i
\(490\) 0 0
\(491\) 7.79899 0.351963 0.175982 0.984393i \(-0.443690\pi\)
0.175982 + 0.984393i \(0.443690\pi\)
\(492\) −0.686292 −0.0309404
\(493\) −9.98951 17.3023i −0.449905 0.779258i
\(494\) 34.2929i 1.54291i
\(495\) −2.42386 + 4.19825i −0.108945 + 0.188697i
\(496\) 12.8017 22.1731i 0.574811 0.995602i
\(497\) 0 0
\(498\) 4.34315 7.52255i 0.194621 0.337093i
\(499\) −4.24264 + 7.34847i −0.189927 + 0.328963i −0.945226 0.326418i \(-0.894158\pi\)
0.755299 + 0.655380i \(0.227492\pi\)
\(500\) −10.9269 + 18.9259i −0.488665 + 0.846393i
\(501\) −15.5147 + 8.95743i −0.693147 + 0.400188i
\(502\) 24.7325 14.2793i 1.10387 0.637318i
\(503\) −4.84772 −0.216149 −0.108075 0.994143i \(-0.534469\pi\)
−0.108075 + 0.994143i \(0.534469\pi\)
\(504\) 0 0
\(505\) 0.727922 0.0323921
\(506\) 20.4853 11.8272i 0.910682 0.525782i
\(507\) −19.9124 + 11.4964i −0.884341 + 0.510575i
\(508\) 26.4853 + 15.2913i 1.17509 + 0.678441i
\(509\) −1.05110 + 1.82056i −0.0465893 + 0.0806950i −0.888380 0.459110i \(-0.848169\pi\)
0.841790 + 0.539805i \(0.181502\pi\)
\(510\) −4.52607 + 7.83938i −0.200418 + 0.347133i
\(511\) 0 0
\(512\) 22.6274 1.00000
\(513\) 10.8284 18.7554i 0.478087 0.828071i
\(514\) 1.71644i 0.0757090i
\(515\) 0.727922 + 1.26080i 0.0320761 + 0.0555574i
\(516\) 6.86577i 0.302249i
\(517\) −25.6033 −1.12603
\(518\) 0 0
\(519\) 11.2328i 0.493067i
\(520\) −10.9706 + 19.0016i −0.481091 + 0.833274i
\(521\) 2.69841 1.55793i 0.118220 0.0682542i −0.439724 0.898133i \(-0.644924\pi\)
0.557944 + 0.829879i \(0.311590\pi\)
\(522\) 11.5810i 0.506886i
\(523\) −17.3943 10.0426i −0.760601 0.439133i 0.0689104 0.997623i \(-0.478048\pi\)
−0.829512 + 0.558490i \(0.811381\pi\)
\(524\) −23.7285 + 13.6997i −1.03659 + 0.598473i
\(525\) 0 0
\(526\) 22.9706 + 13.2621i 1.00156 + 0.578253i
\(527\) −24.7279 14.2767i −1.07717 0.621902i
\(528\) 8.65914i 0.376841i
\(529\) 23.4706 + 40.6522i 1.02046 + 1.76749i
\(530\) 5.62427 3.24718i 0.244303 0.141048i
\(531\) 1.97908i 0.0858846i
\(532\) 0 0
\(533\) 1.85514i 0.0803552i
\(534\) −9.75736 16.9002i −0.422242 0.731345i
\(535\) 5.62427 + 9.74153i 0.243159 + 0.421163i
\(536\) −16.9706 29.3939i −0.733017 1.26962i
\(537\) −3.29462 1.90215i −0.142174 0.0820839i
\(538\) 8.66386 15.0062i 0.373525 0.646965i
\(539\) 0 0
\(540\) 12.0000 6.92820i 0.516398 0.298142i
\(541\) −22.4558 12.9649i −0.965452 0.557404i −0.0676054 0.997712i \(-0.521536\pi\)
−0.897847 + 0.440308i \(0.854869\pi\)
\(542\) −45.2607 −1.94411
\(543\) −13.2426 + 7.64564i −0.568296 + 0.328106i
\(544\) 25.2346i 1.08192i
\(545\) 18.9259i 0.810698i
\(546\) 0 0
\(547\) −20.8284 −0.890559 −0.445280 0.895392i \(-0.646896\pi\)
−0.445280 + 0.895392i \(0.646896\pi\)
\(548\) −16.4853 −0.704216
\(549\) 8.77758 + 15.2032i 0.374618 + 0.648858i
\(550\) 9.17157 0.391077
\(551\) −9.27958 + 16.0727i −0.395323 + 0.684720i
\(552\) −25.6033 −1.08975
\(553\) 0 0
\(554\) −3.51472 2.02922i −0.149326 0.0862135i
\(555\) 1.75736 3.04384i 0.0745957 0.129204i
\(556\) −30.1294 17.3952i −1.27777 0.737721i
\(557\) 2.48528 1.43488i 0.105305 0.0607977i −0.446423 0.894822i \(-0.647302\pi\)
0.551727 + 0.834024i \(0.313969\pi\)
\(558\) 8.27558 + 14.3337i 0.350333 + 0.606795i
\(559\) 18.5592 0.784969
\(560\) 0 0
\(561\) 9.65685 0.407713
\(562\) 11.8284 + 20.4874i 0.498952 + 0.864210i
\(563\) −3.36124 + 1.94061i −0.141659 + 0.0817871i −0.569155 0.822231i \(-0.692729\pi\)
0.427495 + 0.904018i \(0.359396\pi\)
\(564\) 24.0000 + 13.8564i 1.01058 + 0.583460i
\(565\) 0.321658 0.557127i 0.0135322 0.0234385i
\(566\) −18.6534 10.7695i −0.784060 0.452677i
\(567\) 0 0
\(568\) 0 0
\(569\) −16.9497 + 29.3578i −0.710570 + 1.23074i 0.254073 + 0.967185i \(0.418230\pi\)
−0.964643 + 0.263559i \(0.915104\pi\)
\(570\) 8.40882 0.352207
\(571\) 6.17157 + 10.6895i 0.258272 + 0.447341i 0.965779 0.259366i \(-0.0835135\pi\)
−0.707507 + 0.706706i \(0.750180\pi\)
\(572\) 23.4069 0.978691
\(573\) −2.19642 −0.0917566
\(574\) 0 0
\(575\) 27.1185i 1.13092i
\(576\) −7.31371 + 12.6677i −0.304738 + 0.527821i
\(577\) −17.9905 + 10.3868i −0.748956 + 0.432410i −0.825317 0.564670i \(-0.809003\pi\)
0.0763605 + 0.997080i \(0.475670\pi\)
\(578\) −4.10051 −0.170559
\(579\) 13.2565 + 7.65367i 0.550923 + 0.318076i
\(580\) −10.2836 + 5.93723i −0.427002 + 0.246530i
\(581\) 0 0
\(582\) −7.07107 + 12.2474i −0.293105 + 0.507673i
\(583\) −6.00000 3.46410i −0.248495 0.143468i
\(584\) 17.3277 10.0042i 0.717026 0.413975i
\(585\) −7.09188 12.2835i −0.293213 0.507860i
\(586\) −4.13779 7.16687i −0.170931 0.296060i
\(587\) 15.7557i 0.650306i 0.945661 + 0.325153i \(0.105416\pi\)
−0.945661 + 0.325153i \(0.894584\pi\)
\(588\) 0 0
\(589\) 26.5241i 1.09291i
\(590\) 1.75736 1.01461i 0.0723493 0.0417709i
\(591\) 6.85572 + 11.8745i 0.282007 + 0.488450i
\(592\) 9.79796i 0.402694i
\(593\) 3.08669 + 1.78210i 0.126755 + 0.0731821i 0.562037 0.827112i \(-0.310018\pi\)
−0.435282 + 0.900294i \(0.643351\pi\)
\(594\) −12.8017 7.39104i −0.525258 0.303258i
\(595\) 0 0
\(596\) 1.02944 0.594346i 0.0421674 0.0243454i
\(597\) −6.00000 3.46410i −0.245564 0.141776i
\(598\) 69.2094i 2.83018i
\(599\) −5.27208 + 3.04384i −0.215411 + 0.124368i −0.603824 0.797118i \(-0.706357\pi\)
0.388412 + 0.921486i \(0.373024\pi\)
\(600\) −8.59724 4.96362i −0.350981 0.202639i
\(601\) 22.2275i 0.906679i −0.891338 0.453339i \(-0.850233\pi\)
0.891338 0.453339i \(-0.149767\pi\)
\(602\) 0 0
\(603\) 21.9411 0.893512
\(604\) 10.9867i 0.447040i
\(605\) −4.63979 8.03635i −0.188634 0.326724i
\(606\) 0.840532i 0.0341443i
\(607\) 5.30262 9.18440i 0.215227 0.372783i −0.738116 0.674674i \(-0.764284\pi\)
0.953343 + 0.301890i \(0.0976177\pi\)
\(608\) −20.3007 + 11.7206i −0.823301 + 0.475333i
\(609\) 0 0
\(610\) −9.00000 + 15.5885i −0.364399 + 0.631158i
\(611\) 37.4558 64.8754i 1.51530 2.62458i
\(612\) 14.1273 + 8.15640i 0.571062 + 0.329703i
\(613\) −23.3345 + 13.4722i −0.942473 + 0.544137i −0.890735 0.454524i \(-0.849809\pi\)
−0.0517380 + 0.998661i \(0.516476\pi\)
\(614\) −26.9290 + 15.5474i −1.08676 + 0.627444i
\(615\) 0.454893 0.0183430
\(616\) 0 0
\(617\) 33.2132 1.33711 0.668557 0.743661i \(-0.266912\pi\)
0.668557 + 0.743661i \(0.266912\pi\)
\(618\) −1.45584 + 0.840532i −0.0585626 + 0.0338112i
\(619\) −16.0687 + 9.27726i −0.645855 + 0.372884i −0.786866 0.617124i \(-0.788298\pi\)
0.141011 + 0.990008i \(0.454965\pi\)
\(620\) −8.48528 + 14.6969i −0.340777 + 0.590243i
\(621\) 21.8538 37.8519i 0.876962 1.51894i
\(622\) 7.95393 13.7766i 0.318923 0.552391i
\(623\) 0 0
\(624\) −21.9411 12.6677i −0.878348 0.507114i
\(625\) −0.863961 + 1.49642i −0.0345584 + 0.0598570i
\(626\) 21.3533i 0.853451i
\(627\) −4.48528 7.76874i −0.179125 0.310253i
\(628\) 25.1484 1.00353
\(629\) 10.9269 0.435684
\(630\) 0 0
\(631\) 39.5400i 1.57406i −0.616913 0.787031i \(-0.711617\pi\)
0.616913 0.787031i \(-0.288383\pi\)
\(632\) 4.97056 + 2.86976i 0.197718 + 0.114153i
\(633\) −3.29462 + 1.90215i −0.130950 + 0.0756038i
\(634\) 33.4523i 1.32856i
\(635\) −17.5552 10.1355i −0.696655 0.402214i
\(636\) 3.74952 + 6.49435i 0.148678 + 0.257518i
\(637\) 0 0
\(638\) 10.9706 + 6.33386i 0.434329 + 0.250760i
\(639\) 0 0
\(640\) −14.9981 −0.592851
\(641\) 15.5355 + 26.9083i 0.613617 + 1.06282i 0.990626 + 0.136606i \(0.0436193\pi\)
−0.377009 + 0.926210i \(0.623047\pi\)
\(642\) −11.2485 + 6.49435i −0.443945 + 0.256312i
\(643\) 30.3839i 1.19822i −0.800665 0.599112i \(-0.795520\pi\)
0.800665 0.599112i \(-0.204480\pi\)
\(644\) 0 0
\(645\) 4.55082i 0.179188i
\(646\) 13.0711 + 22.6398i 0.514274 + 0.890749i
\(647\) −5.07517 8.79045i −0.199526 0.345588i 0.748849 0.662741i \(-0.230607\pi\)
−0.948375 + 0.317152i \(0.897273\pi\)
\(648\) 0.242641 + 0.420266i 0.00953183 + 0.0165096i
\(649\) −1.87476 1.08239i −0.0735907 0.0424876i
\(650\) −13.4174 + 23.2396i −0.526273 + 0.911531i
\(651\) 0 0
\(652\) 20.1421 + 34.8872i 0.788827 + 1.36629i
\(653\) −17.6360 10.1822i −0.690152 0.398459i 0.113517 0.993536i \(-0.463788\pi\)
−0.803669 + 0.595077i \(0.797122\pi\)
\(654\) −21.8538 −0.854551
\(655\) 15.7279 9.08052i 0.614541 0.354805i
\(656\) −1.09821 + 0.634051i −0.0428778 + 0.0247555i
\(657\) 12.9343i 0.504616i
\(658\) 0 0
\(659\) 42.4853 1.65499 0.827496 0.561472i \(-0.189765\pi\)
0.827496 + 0.561472i \(0.189765\pi\)
\(660\) 5.73951i 0.223410i
\(661\) −15.5667 26.9623i −0.605474 1.04871i −0.991976 0.126423i \(-0.959650\pi\)
0.386503 0.922288i \(-0.373683\pi\)
\(662\) 21.4558 0.833905
\(663\) −14.1273 + 24.4692i −0.548659 + 0.950305i
\(664\) 16.0502i 0.622868i
\(665\) 0 0
\(666\) −5.48528 3.16693i −0.212550 0.122716i
\(667\) −18.7279 + 32.4377i −0.725148 + 1.25599i
\(668\) −16.5512 + 28.6675i −0.640384 + 1.10918i
\(669\) 4.54416 2.62357i 0.175687 0.101433i
\(670\) 11.2485 + 19.4831i 0.434569 + 0.752696i
\(671\) 19.2025 0.741303
\(672\) 0 0
\(673\) −6.38478 −0.246115 −0.123058 0.992400i \(-0.539270\pi\)
−0.123058 + 0.992400i \(0.539270\pi\)
\(674\) 3.00000 + 5.19615i 0.115556 + 0.200148i
\(675\) 14.6764 8.47343i 0.564895 0.326142i
\(676\) −21.2426 + 36.7933i −0.817025 + 1.41513i
\(677\) 14.7901 25.6173i 0.568431 0.984551i −0.428290 0.903641i \(-0.640884\pi\)
0.996721 0.0809101i \(-0.0257827\pi\)
\(678\) 0.643315 + 0.371418i 0.0247064 + 0.0142642i
\(679\) 0 0
\(680\) 16.7262i 0.641419i
\(681\) 6.38478 11.0588i 0.244665 0.423772i
\(682\) 18.1043 0.693248
\(683\) −7.07107 12.2474i −0.270567 0.468636i 0.698440 0.715668i \(-0.253878\pi\)
−0.969007 + 0.247033i \(0.920544\pi\)
\(684\) 15.1535i 0.579408i
\(685\) 10.9269 0.417495
\(686\) 0 0
\(687\) 16.4800i 0.628750i
\(688\) 6.34315 + 10.9867i 0.241830 + 0.418862i
\(689\) 17.5552 10.1355i 0.668798 0.386131i
\(690\) 16.9706 0.646058
\(691\) 35.2712 + 20.3638i 1.34178 + 0.774676i 0.987068 0.160301i \(-0.0512463\pi\)
0.354710 + 0.934976i \(0.384580\pi\)
\(692\) −10.3778 17.9749i −0.394504 0.683302i
\(693\) 0 0
\(694\) 19.0711 33.0321i 0.723928 1.25388i
\(695\) 19.9706 + 11.5300i 0.757527 + 0.437358i
\(696\) −6.85572 11.8745i −0.259865 0.450100i
\(697\) 0.707107 + 1.22474i 0.0267836 + 0.0463905i
\(698\) 6.56165 + 11.3651i 0.248362 + 0.430176i
\(699\) 12.7261i 0.481344i
\(700\) 0 0
\(701\) 47.7290i 1.80270i −0.433092 0.901350i \(-0.642578\pi\)
0.433092 0.901350i \(-0.357422\pi\)
\(702\) 37.4558 21.6251i 1.41368 0.816188i
\(703\) −5.07517 8.79045i −0.191414 0.331538i
\(704\) 8.00000 + 13.8564i 0.301511 + 0.522233i
\(705\) −15.9079 9.18440i −0.599124 0.345905i
\(706\) −25.2150 14.5579i −0.948980 0.547894i
\(707\) 0 0
\(708\) 1.17157 + 2.02922i 0.0440304 + 0.0762629i
\(709\) −31.8198 18.3712i −1.19502 0.689944i −0.235578 0.971856i \(-0.575698\pi\)
−0.959440 + 0.281912i \(0.909031\pi\)
\(710\) 0 0
\(711\) −3.21320 + 1.85514i −0.120505 + 0.0695733i
\(712\) −31.2276 18.0292i −1.17030 0.675675i
\(713\) 53.5306i 2.00474i
\(714\) 0 0
\(715\) −15.5147 −0.580218
\(716\) −7.02944 −0.262702
\(717\) 3.42786 + 5.93723i 0.128016 + 0.221730i
\(718\) 24.4949i 0.914141i
\(719\) −9.82868 + 17.0238i −0.366548 + 0.634880i −0.989023 0.147760i \(-0.952794\pi\)
0.622475 + 0.782639i \(0.286127\pi\)
\(720\) 4.84772 8.39651i 0.180664 0.312919i
\(721\) 0 0
\(722\) −1.29289 + 2.23936i −0.0481165 + 0.0833402i
\(723\) 9.10051 15.7625i 0.338451 0.586215i
\(724\) −14.1273 + 24.4692i −0.525037 + 0.909391i
\(725\) −12.5772 + 7.26143i −0.467104 + 0.269683i
\(726\) 9.27958 5.35757i 0.344398 0.198838i
\(727\) 49.6535 1.84155 0.920773 0.390098i \(-0.127559\pi\)
0.920773 + 0.390098i \(0.127559\pi\)
\(728\) 0 0
\(729\) −17.2843 −0.640158
\(730\) −11.4853 + 6.63103i −0.425089 + 0.245425i
\(731\) 12.2525 7.07401i 0.453177 0.261642i
\(732\) −18.0000 10.3923i −0.665299 0.384111i
\(733\) −13.4645 + 23.3212i −0.497322 + 0.861387i −0.999995 0.00308974i \(-0.999017\pi\)
0.502673 + 0.864476i \(0.332350\pi\)
\(734\) 16.2295 28.1103i 0.599042 1.03757i
\(735\) 0 0
\(736\) −40.9706 + 23.6544i −1.51019 + 0.871911i
\(737\) 12.0000 20.7846i 0.442026 0.765611i
\(738\) 0.819760i 0.0301758i
\(739\) −10.4142 18.0379i −0.383093 0.663537i 0.608410 0.793623i \(-0.291808\pi\)
−0.991503 + 0.130087i \(0.958474\pi\)
\(740\) 6.49435i 0.238737i
\(741\) 26.2466 0.964194
\(742\) 0 0
\(743\) 6.33386i 0.232367i 0.993228 + 0.116183i \(0.0370660\pi\)
−0.993228 + 0.116183i \(0.962934\pi\)
\(744\) −16.9706 9.79796i −0.622171 0.359211i
\(745\) −0.682339 + 0.393949i −0.0249990 + 0.0144332i
\(746\) 42.4098i 1.55273i
\(747\) 8.98552 + 5.18779i 0.328763 + 0.189811i
\(748\) 15.4530 8.92177i 0.565016 0.326212i
\(749\) 0 0
\(750\) 14.4853 + 8.36308i 0.528928 + 0.305377i
\(751\) 36.9411 + 21.3280i 1.34800 + 0.778269i 0.987966 0.154670i \(-0.0494315\pi\)
0.360035 + 0.932939i \(0.382765\pi\)
\(752\) 51.2066 1.86731
\(753\) −10.9289 18.9295i −0.398272 0.689828i
\(754\) −32.0983 + 18.5320i −1.16895 + 0.674895i
\(755\) 7.28225i 0.265028i
\(756\) 0 0
\(757\) 8.18900i 0.297634i −0.988865 0.148817i \(-0.952453\pi\)
0.988865 0.148817i \(-0.0475466\pi\)
\(758\) 3.75736 + 6.50794i 0.136473 + 0.236379i
\(759\) −9.05213 15.6788i −0.328572 0.569103i
\(760\) 13.4558 7.76874i 0.488095 0.281802i
\(761\) 4.09069 + 2.36176i 0.148287 + 0.0856137i 0.572308 0.820039i \(-0.306048\pi\)
−0.424021 + 0.905653i \(0.639382\pi\)
\(762\) 11.7034 20.2710i 0.423971 0.734339i
\(763\) 0 0
\(764\) −3.51472 + 2.02922i −0.127158 + 0.0734147i
\(765\) −9.36396 5.40629i −0.338555 0.195465i
\(766\) 18.1043 0.654134
\(767\) 5.48528 3.16693i 0.198062 0.114351i
\(768\) 17.3183i 0.624919i
\(769\) 19.1342i 0.689996i 0.938603 + 0.344998i \(0.112120\pi\)
−0.938603 + 0.344998i \(0.887880\pi\)
\(770\) 0 0
\(771\) 1.31371 0.0473121
\(772\) 28.2843 1.01797
\(773\) −21.4184 37.0978i −0.770366 1.33431i −0.937362 0.348356i \(-0.886740\pi\)
0.166996 0.985958i \(-0.446593\pi\)
\(774\) −8.20101 −0.294779
\(775\) −10.3778 + 17.9749i −0.372781 + 0.645676i
\(776\) 26.1313i 0.938058i
\(777\) 0 0
\(778\) −46.4558 26.8213i −1.66552 0.961590i
\(779\) 0.656854 1.13770i 0.0235342 0.0407625i
\(780\) 14.5432 + 8.39651i 0.520729 + 0.300643i
\(781\) 0 0
\(782\) 26.3799 + 45.6912i 0.943342 + 1.63392i
\(783\) 23.4069 0.836494
\(784\) 0 0
\(785\) −16.6690 −0.594944
\(786\) 10.4853 + 18.1610i 0.373998 + 0.647783i
\(787\) 40.4405 23.3484i 1.44155 0.832279i 0.443596 0.896227i \(-0.353702\pi\)
0.997953 + 0.0639477i \(0.0203691\pi\)
\(788\) 21.9411 + 12.6677i 0.781620 + 0.451269i
\(789\) 10.1503 17.5809i 0.361362 0.625897i
\(790\) −3.29462 1.90215i −0.117217 0.0676755i
\(791\) 0 0
\(792\) −10.3431 −0.367528
\(793\) −28.0919 + 48.6566i −0.997572 + 1.72785i
\(794\) 19.5241 0.692886
\(795\) −2.48528 4.30463i −0.0881438 0.152670i
\(796\) −12.8017 −0.453742
\(797\) −50.6575 −1.79438 −0.897190 0.441644i \(-0.854395\pi\)
−0.897190 + 0.441644i \(0.854395\pi\)
\(798\) 0 0
\(799\) 57.1067i 2.02029i
\(800\) −18.3431 −0.648528
\(801\) 20.1870 11.6549i 0.713271 0.411807i
\(802\) 22.9706 0.811119
\(803\) 12.2525 + 7.07401i 0.432383 + 0.249636i
\(804\) −22.4971 + 12.9887i −0.793412 + 0.458076i
\(805\) 0 0
\(806\) −26.4853 + 45.8739i −0.932904 + 1.61584i
\(807\) −11.4853 6.63103i −0.404301 0.233423i
\(808\) 0.776550 + 1.34502i 0.0273189 + 0.0473178i
\(809\) −17.7279 30.7057i −0.623281 1.07955i −0.988871 0.148778i \(-0.952466\pi\)
0.365590 0.930776i \(-0.380867\pi\)
\(810\) −0.160829 0.278564i −0.00565095 0.00978773i
\(811\) 9.63274i 0.338251i −0.985594 0.169126i \(-0.945906\pi\)
0.985594 0.169126i \(-0.0540944\pi\)
\(812\) 0 0
\(813\) 34.6410i 1.21491i
\(814\) −6.00000 + 3.46410i −0.210300 + 0.121417i
\(815\) −13.3508 23.1242i −0.467657 0.810005i
\(816\) −19.3137 −0.676115
\(817\) −11.3818 6.57128i −0.398198 0.229900i
\(818\) 11.3152 + 6.53281i 0.395626 + 0.228415i
\(819\) 0 0
\(820\) 0.727922 0.420266i 0.0254201 0.0146763i
\(821\) −32.4853 18.7554i −1.13374 0.654567i −0.188870 0.982002i \(-0.560483\pi\)
−0.944874 + 0.327435i \(0.893816\pi\)
\(822\) 12.6173i 0.440078i
\(823\) 18.0000 10.3923i 0.627441 0.362253i −0.152320 0.988331i \(-0.548674\pi\)
0.779760 + 0.626078i \(0.215341\pi\)
\(824\) −1.55310 + 2.69005i −0.0541048 + 0.0937123i
\(825\) 7.01962i 0.244392i
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 30.5826i 1.06282i
\(829\) −2.14931 3.72271i −0.0746486 0.129295i 0.826285 0.563253i \(-0.190450\pi\)
−0.900933 + 0.433957i \(0.857117\pi\)
\(830\) 10.6385i 0.369267i
\(831\) −1.55310 + 2.69005i −0.0538765 + 0.0933168i
\(832\) −46.8138 −1.62298
\(833\) 0 0
\(834\) −13.3137 + 23.0600i −0.461016 + 0.798503i
\(835\) 10.9706 19.0016i 0.379652 0.657577i
\(836\) −14.3548 8.28772i −0.496469 0.286637i
\(837\) 28.9706 16.7262i 1.00137 0.578141i
\(838\) −8.95792 + 5.17186i −0.309446 + 0.178659i
\(839\) 35.1103 1.21214 0.606072 0.795410i \(-0.292745\pi\)
0.606072 + 0.795410i \(0.292745\pi\)
\(840\) 0 0
\(841\) 8.94113 0.308315
\(842\) 15.5147 8.95743i 0.534673 0.308693i
\(843\) 15.6804 9.05309i 0.540062 0.311805i
\(844\) −3.51472 + 6.08767i −0.120982 + 0.209546i
\(845\) 14.0802 24.3876i 0.484374 0.838960i
\(846\) −16.5512 + 28.6675i −0.569041 + 0.985608i
\(847\) 0 0
\(848\) 12.0000 + 6.92820i 0.412082 + 0.237915i
\(849\) −8.24264 + 14.2767i −0.282887 + 0.489974i
\(850\) 20.4567i 0.701658i
\(851\) −10.2426 17.7408i −0.351113 0.608146i
\(852\) 0 0
\(853\) −20.9830 −0.718445 −0.359223 0.933252i \(-0.616958\pi\)
−0.359223 + 0.933252i \(0.616958\pi\)
\(854\) 0 0
\(855\) 10.0441i 0.343503i
\(856\) −12.0000 + 20.7846i −0.410152 + 0.710403i
\(857\) −4.86724 + 2.81010i −0.166262 + 0.0959912i −0.580822 0.814031i \(-0.697269\pi\)
0.414560 + 0.910022i \(0.363935\pi\)
\(858\) 17.9149i 0.611603i
\(859\) −29.0978 16.7996i −0.992803 0.573195i −0.0866923 0.996235i \(-0.527630\pi\)
−0.906111 + 0.423040i \(0.860963\pi\)
\(860\) −4.20441 7.28225i −0.143369 0.248323i
\(861\) 0 0
\(862\) −33.2132 19.1757i −1.13125 0.653125i
\(863\) 20.4853 + 11.8272i 0.697327 + 0.402602i 0.806351 0.591437i \(-0.201439\pi\)
−0.109024 + 0.994039i \(0.534773\pi\)
\(864\) 25.6033 + 14.7821i 0.871042 + 0.502896i
\(865\) 6.87868 + 11.9142i 0.233882 + 0.405096i
\(866\) −34.4946 + 19.9155i −1.17217 + 0.676755i
\(867\) 3.13839i 0.106585i
\(868\) 0 0
\(869\) 4.05845i 0.137673i
\(870\) 4.54416 + 7.87071i 0.154061 + 0.266842i
\(871\) 35.1103 + 60.8129i 1.18967 + 2.06057i
\(872\) −34.9706 + 20.1903i −1.18425 + 0.683729i
\(873\) −14.6293 8.44623i −0.495127 0.285862i
\(874\) 24.5051 42.4441i 0.828897 1.43569i
\(875\) 0 0
\(876\) −7.65685 13.2621i −0.258701 0.448084i
\(877\) 32.1213 + 18.5453i 1.08466 + 0.626229i 0.932150 0.362073i \(-0.117931\pi\)
0.152510 + 0.988302i \(0.451264\pi\)
\(878\) −31.5492 −1.06474
\(879\) −5.48528 + 3.16693i −0.185014 + 0.106818i
\(880\) −5.30262 9.18440i −0.178751 0.309606i
\(881\) 36.0810i 1.21560i −0.794090 0.607800i \(-0.792052\pi\)
0.794090 0.607800i \(-0.207948\pi\)
\(882\) 0 0
\(883\) −46.4264 −1.56237 −0.781186 0.624298i \(-0.785385\pi\)
−0.781186 + 0.624298i \(0.785385\pi\)
\(884\) 52.2077i 1.75594i
\(885\) −0.776550 1.34502i −0.0261035 0.0452125i
\(886\) 40.0000 1.34383
\(887\) −2.97297 + 5.14933i −0.0998224 + 0.172898i −0.911611 0.411054i \(-0.865161\pi\)
0.811789 + 0.583951i \(0.198494\pi\)
\(888\) 7.49903 0.251651
\(889\) 0 0
\(890\) 20.6985 + 11.9503i 0.693815 + 0.400574i
\(891\) −0.171573 + 0.297173i −0.00574791 + 0.00995567i
\(892\) 4.84772 8.39651i 0.162314 0.281136i
\(893\) −45.9411 + 26.5241i −1.53736 + 0.887596i
\(894\) −0.454893 0.787897i −0.0152139 0.0263512i
\(895\) 4.65930 0.155743
\(896\) 0 0
\(897\) 52.9706 1.76864
\(898\) −4.00000 6.92820i −0.133482 0.231197i
\(899\) −24.8268 + 14.3337i −0.828018 + 0.478057i
\(900\) 5.92893 10.2692i 0.197631 0.342307i
\(901\) 7.72648 13.3827i 0.257406 0.445841i
\(902\) −0.776550 0.448342i −0.0258563 0.0149281i
\(903\) 0 0
\(904\) 1.37258 0.0456514
\(905\) 9.36396 16.2189i 0.311269 0.539133i
\(906\) 8.40882 0.279364
\(907\) 8.00000 + 13.8564i 0.265636 + 0.460094i 0.967730 0.251990i \(-0.0810849\pi\)
−0.702094 + 0.712084i \(0.747752\pi\)
\(908\) 23.5951i 0.783029i
\(909\) −1.00400 −0.0333005
\(910\) 0 0
\(911\) 15.2913i 0.506623i 0.967385 + 0.253311i \(0.0815197\pi\)
−0.967385 + 0.253311i \(0.918480\pi\)
\(912\) 8.97056 + 15.5375i 0.297045 + 0.514497i
\(913\) 9.82868 5.67459i 0.325282 0.187802i
\(914\) −37.9411 −1.25498
\(915\) 11.9309 + 6.88830i 0.394423 + 0.227720i
\(916\) −15.2255 26.3714i −0.503065 0.871334i
\(917\) 0 0
\(918\) 16.4853 28.5533i 0.544095 0.942401i
\(919\) −32.4853 18.7554i −1.07159 0.618683i −0.142975 0.989726i \(-0.545667\pi\)
−0.928616 + 0.371043i \(0.879000\pi\)
\(920\) 27.1564 15.6788i 0.895320 0.516913i
\(921\) 11.8995 + 20.6105i 0.392102 + 0.679140i
\(922\) −13.4174 23.2396i −0.441878 0.765354i
\(923\) 0 0
\(924\) 0 0
\(925\) 7.94282i 0.261158i
\(926\) 10.9706 6.33386i 0.360515 0.208143i
\(927\) −1.00400 1.73897i −0.0329756 0.0571154i
\(928\) −21.9411 12.6677i −0.720253 0.415838i
\(929\) −19.3162 11.1522i −0.633744 0.365892i 0.148457 0.988919i \(-0.452569\pi\)
−0.782201 + 0.623027i \(0.785903\pi\)
\(930\) 11.2485 + 6.49435i 0.368854 + 0.212958i
\(931\) 0 0
\(932\) 11.7574 + 20.3643i 0.385125 + 0.667056i
\(933\) −10.5442 6.08767i −0.345200 0.199301i
\(934\) 51.9999i 1.70149i
\(935\) −10.2426 + 5.91359i −0.334970 + 0.193395i
\(936\) 15.1313 26.2082i 0.494582 0.856641i
\(937\) 51.4202i 1.67983i 0.542721 + 0.839913i \(0.317394\pi\)
−0.542721 + 0.839913i \(0.682606\pi\)
\(938\) 0 0
\(939\) −16.3431 −0.533338
\(940\) −33.9411 −1.10704
\(941\) 6.12627 + 10.6110i 0.199711 + 0.345909i 0.948435 0.316973i \(-0.102666\pi\)
−0.748724 + 0.662882i \(0.769333\pi\)
\(942\) 19.2478i 0.627126i
\(943\) 1.32565 2.29610i 0.0431692 0.0747713i
\(944\) 3.74952 + 2.16478i 0.122036 + 0.0704577i
\(945\) 0 0
\(946\) −4.48528 + 7.76874i −0.145829 + 0.252583i
\(947\) −0.272078 + 0.471253i −0.00884135 + 0.0153137i −0.870412 0.492324i \(-0.836148\pi\)
0.861571 + 0.507637i \(0.169481\pi\)
\(948\) 2.19642 3.80430i 0.0713363 0.123558i
\(949\) −35.8492 + 20.6976i −1.16372 + 0.671872i
\(950\) 16.4570 9.50143i 0.533934 0.308267i
\(951\) −25.6033 −0.830244
\(952\) 0 0
\(953\) −18.6863 −0.605308 −0.302654 0.953100i \(-0.597873\pi\)
−0.302654 + 0.953100i \(0.597873\pi\)
\(954\) −7.75736 + 4.47871i −0.251154 + 0.145004i
\(955\) 2.32965 1.34502i 0.0753857 0.0435240i
\(956\) 10.9706 + 6.33386i 0.354813 + 0.204852i
\(957\) 4.84772 8.39651i 0.156705 0.271420i
\(958\) −7.17738 + 12.4316i −0.231890 + 0.401646i
\(959\) 0 0
\(960\) 11.4790i 0.370484i
\(961\) −4.98528 + 8.63476i −0.160816 + 0.278541i
\(962\) 20.2710i 0.653562i
\(963\) −7.75736 13.4361i −0.249977 0.432974i
\(964\) 33.6311i 1.08318i
\(965\) −18.7476 −0.603506
\(966\) 0 0
\(967\) 27.9590i 0.899101i 0.893255 + 0.449550i \(0.148416\pi\)
−0.893255 + 0.449550i \(0.851584\pi\)
\(968\) 9.89949 17.1464i 0.318182 0.551107i
\(969\) 17.3277 10.0042i 0.556646 0.321380i
\(970\) 17.3205i 0.556128i
\(971\) 7.01655 + 4.05101i 0.225172 + 0.130003i 0.608343 0.793675i \(-0.291835\pi\)
−0.383171 + 0.923677i \(0.625168\pi\)
\(972\) −26.8347 + 15.4930i −0.860725 + 0.496940i
\(973\) 0 0
\(974\) −17.6985 10.2182i −0.567096 0.327413i
\(975\) 17.7868 + 10.2692i 0.569633 + 0.328878i
\(976\) −38.4050 −1.22931
\(977\) 2.60660 + 4.51477i 0.0833926 + 0.144440i 0.904705 0.426038i \(-0.140091\pi\)
−0.821313 + 0.570478i \(0.806758\pi\)
\(978\) 26.7015 15.4161i 0.853820 0.492953i
\(979\) 25.4972i 0.814894i
\(980\) 0 0
\(981\) 26.1039i 0.833432i
\(982\) −5.51472 9.55177i −0.175982 0.304809i
\(983\) −13.3508 23.1242i −0.425823 0.737547i 0.570674 0.821177i \(-0.306682\pi\)
−0.996497 + 0.0836298i \(0.973349\pi\)
\(984\) 0.485281 + 0.840532i 0.0154702 + 0.0267952i
\(985\) −14.5432 8.39651i −0.463384 0.267535i
\(986\) −14.1273 + 24.4692i −0.449905 + 0.779258i
\(987\) 0 0
\(988\) 42.0000 24.2487i 1.33620 0.771454i
\(989\) −22.9706 13.2621i −0.730421 0.421709i
\(990\) 6.85572 0.217889
\(991\) 39.9411 23.0600i 1.26877 0.732526i 0.294016 0.955800i \(-0.405008\pi\)
0.974756 + 0.223275i \(0.0716747\pi\)
\(992\) −36.2085 −1.14962
\(993\) 16.4216i 0.521123i
\(994\) 0 0
\(995\) 8.48528 0.269002
\(996\) −12.2843 −0.389242
\(997\) 16.1158 + 27.9134i 0.510392 + 0.884025i 0.999927 + 0.0120416i \(0.00383305\pi\)
−0.489535 + 0.871983i \(0.662834\pi\)
\(998\) 12.0000 0.379853
\(999\) −6.40083 + 11.0866i −0.202513 + 0.350763i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.2.m.c.19.1 8
4.3 odd 2 1568.2.q.c.1391.3 8
7.2 even 3 392.2.e.c.195.3 yes 8
7.3 odd 6 392.2.m.e.227.3 8
7.4 even 3 392.2.m.e.227.4 8
7.5 odd 6 392.2.e.c.195.4 yes 8
7.6 odd 2 inner 392.2.m.c.19.2 8
8.3 odd 2 392.2.m.e.19.3 8
8.5 even 2 1568.2.q.d.1391.3 8
28.3 even 6 1568.2.q.d.815.3 8
28.11 odd 6 1568.2.q.d.815.2 8
28.19 even 6 1568.2.e.c.783.4 8
28.23 odd 6 1568.2.e.c.783.5 8
28.27 even 2 1568.2.q.c.1391.2 8
56.3 even 6 inner 392.2.m.c.227.1 8
56.5 odd 6 1568.2.e.c.783.3 8
56.11 odd 6 inner 392.2.m.c.227.2 8
56.13 odd 2 1568.2.q.d.1391.2 8
56.19 even 6 392.2.e.c.195.2 yes 8
56.27 even 2 392.2.m.e.19.4 8
56.37 even 6 1568.2.e.c.783.6 8
56.45 odd 6 1568.2.q.c.815.3 8
56.51 odd 6 392.2.e.c.195.1 8
56.53 even 6 1568.2.q.c.815.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
392.2.e.c.195.1 8 56.51 odd 6
392.2.e.c.195.2 yes 8 56.19 even 6
392.2.e.c.195.3 yes 8 7.2 even 3
392.2.e.c.195.4 yes 8 7.5 odd 6
392.2.m.c.19.1 8 1.1 even 1 trivial
392.2.m.c.19.2 8 7.6 odd 2 inner
392.2.m.c.227.1 8 56.3 even 6 inner
392.2.m.c.227.2 8 56.11 odd 6 inner
392.2.m.e.19.3 8 8.3 odd 2
392.2.m.e.19.4 8 56.27 even 2
392.2.m.e.227.3 8 7.3 odd 6
392.2.m.e.227.4 8 7.4 even 3
1568.2.e.c.783.3 8 56.5 odd 6
1568.2.e.c.783.4 8 28.19 even 6
1568.2.e.c.783.5 8 28.23 odd 6
1568.2.e.c.783.6 8 56.37 even 6
1568.2.q.c.815.2 8 56.53 even 6
1568.2.q.c.815.3 8 56.45 odd 6
1568.2.q.c.1391.2 8 28.27 even 2
1568.2.q.c.1391.3 8 4.3 odd 2
1568.2.q.d.815.2 8 28.11 odd 6
1568.2.q.d.815.3 8 28.3 even 6
1568.2.q.d.1391.2 8 56.13 odd 2
1568.2.q.d.1391.3 8 8.5 even 2