L(s) = 1 | + (−0.707 − 1.22i)2-s + (−0.937 + 0.541i)3-s + (−0.999 + 1.73i)4-s + (0.662 − 1.14i)5-s + (1.32 + 0.765i)6-s + 2.82·8-s + (−0.914 + 1.58i)9-s − 1.87·10-s + (1 + 1.73i)11-s − 2.16i·12-s − 5.85·13-s + 1.43i·15-s + (−2.00 − 3.46i)16-s + (−3.86 + 2.23i)17-s + 2.58·18-s + (3.58 + 2.07i)19-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.866i)2-s + (−0.541 + 0.312i)3-s + (−0.499 + 0.866i)4-s + (0.296 − 0.513i)5-s + (0.541 + 0.312i)6-s + 0.999·8-s + (−0.304 + 0.527i)9-s − 0.592·10-s + (0.301 + 0.522i)11-s − 0.624i·12-s − 1.62·13-s + 0.370i·15-s + (−0.500 − 0.866i)16-s + (−0.936 + 0.540i)17-s + 0.609·18-s + (0.823 + 0.475i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.580 - 0.814i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.580 - 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.540531 + 0.278451i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.540531 + 0.278451i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 1.22i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.937 - 0.541i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.662 + 1.14i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 5.85T + 13T^{2} \) |
| 17 | \( 1 + (3.86 - 2.23i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.58 - 2.07i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-7.24 - 4.18i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 4.47iT - 29T^{2} \) |
| 31 | \( 1 + (-3.20 - 5.54i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.12 + 1.22i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 0.317iT - 41T^{2} \) |
| 43 | \( 1 + 3.17T + 43T^{2} \) |
| 47 | \( 1 + (6.40 - 11.0i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3 - 1.73i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.937 - 0.541i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.80 + 8.31i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6 + 10.3i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (-6.12 + 3.53i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.75 - 1.01i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 5.67iT - 83T^{2} \) |
| 89 | \( 1 + (11.0 + 6.37i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 9.23iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.30861090793544080040441313625, −10.59774726274171689556595130442, −9.645847735720077567133108712994, −9.075573397929948425154297662504, −7.893368407710514401996533018573, −6.92456925611846108728504423270, −5.13885795630265937721859480868, −4.73846363882754766337796961162, −3.07058775315708753709272116459, −1.63764318702709672350522757386,
0.51352975735602340360992150858, 2.66886328101910351944450285616, 4.65486833401976767578009016432, 5.58911188112068512624391147059, 6.79452639647464664321256250470, 6.94885328241975888245318590775, 8.377218182833869003968340988732, 9.321016735617053918300075479981, 10.04782532548197344977726305619, 11.15467609281663647669317373192