Properties

Label 378.3.q.a.197.5
Level $378$
Weight $3$
Character 378.197
Analytic conductor $10.300$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(71,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.71"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 197.5
Character \(\chi\) \(=\) 378.197
Dual form 378.3.q.a.71.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 - 0.707107i) q^{2} +(1.00000 + 1.73205i) q^{4} +(3.60855 - 2.08340i) q^{5} +(-1.32288 + 2.29129i) q^{7} -2.82843i q^{8} -5.89274 q^{10} +(5.60663 + 3.23699i) q^{11} +(7.36010 + 12.7481i) q^{13} +(3.24037 - 1.87083i) q^{14} +(-2.00000 + 3.46410i) q^{16} -18.6466i q^{17} +15.6987 q^{19} +(7.21710 + 4.16679i) q^{20} +(-4.57780 - 7.92898i) q^{22} +(-17.1145 + 9.88106i) q^{23} +(-3.81892 + 6.61456i) q^{25} -20.8175i q^{26} -5.29150 q^{28} +(9.30724 + 5.37354i) q^{29} +(11.1508 + 19.3137i) q^{31} +(4.89898 - 2.82843i) q^{32} +(-13.1851 + 22.8373i) q^{34} +11.0243i q^{35} +70.8586 q^{37} +(-19.2269 - 11.1006i) q^{38} +(-5.89274 - 10.2065i) q^{40} +(7.29137 - 4.20968i) q^{41} +(24.9486 - 43.2123i) q^{43} +12.9480i q^{44} +27.9479 q^{46} +(62.5123 + 36.0915i) q^{47} +(-3.50000 - 6.06218i) q^{49} +(9.35440 - 5.40077i) q^{50} +(-14.7202 + 25.4961i) q^{52} -80.3093i q^{53} +26.9757 q^{55} +(6.48074 + 3.74166i) q^{56} +(-7.59933 - 13.1624i) q^{58} +(22.8843 - 13.2122i) q^{59} +(32.7902 - 56.7944i) q^{61} -31.5391i q^{62} -8.00000 q^{64} +(53.1186 + 30.6680i) q^{65} +(-11.9038 - 20.6181i) q^{67} +(32.2968 - 18.6466i) q^{68} +(7.79536 - 13.5020i) q^{70} +111.926i q^{71} +13.3109 q^{73} +(-86.7837 - 50.1046i) q^{74} +(15.6987 + 27.1909i) q^{76} +(-14.8338 + 8.56427i) q^{77} +(-59.8755 + 103.707i) q^{79} +16.6672i q^{80} -11.9068 q^{82} +(-10.0716 - 5.81486i) q^{83} +(-38.8482 - 67.2871i) q^{85} +(-61.1114 + 35.2827i) q^{86} +(9.15559 - 15.8580i) q^{88} -83.5516i q^{89} -38.9460 q^{91} +(-34.2290 - 19.7621i) q^{92} +(-51.0411 - 88.4058i) q^{94} +(56.6494 - 32.7065i) q^{95} +(-84.0615 + 145.599i) q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} - 36 q^{5} - 48 q^{16} + 24 q^{19} - 72 q^{20} + 24 q^{22} + 72 q^{23} + 72 q^{25} + 108 q^{29} - 60 q^{31} - 48 q^{34} - 168 q^{37} - 144 q^{38} - 108 q^{41} + 60 q^{43} + 324 q^{47} - 84 q^{49}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 0.707107i −0.612372 0.353553i
\(3\) 0 0
\(4\) 1.00000 + 1.73205i 0.250000 + 0.433013i
\(5\) 3.60855 2.08340i 0.721710 0.416679i −0.0936719 0.995603i \(-0.529860\pi\)
0.815382 + 0.578924i \(0.196527\pi\)
\(6\) 0 0
\(7\) −1.32288 + 2.29129i −0.188982 + 0.327327i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −5.89274 −0.589274
\(11\) 5.60663 + 3.23699i 0.509694 + 0.294272i 0.732708 0.680543i \(-0.238256\pi\)
−0.223014 + 0.974815i \(0.571590\pi\)
\(12\) 0 0
\(13\) 7.36010 + 12.7481i 0.566162 + 0.980621i 0.996941 + 0.0781633i \(0.0249056\pi\)
−0.430779 + 0.902458i \(0.641761\pi\)
\(14\) 3.24037 1.87083i 0.231455 0.133631i
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 18.6466i 1.09686i −0.836197 0.548428i \(-0.815226\pi\)
0.836197 0.548428i \(-0.184774\pi\)
\(18\) 0 0
\(19\) 15.6987 0.826245 0.413123 0.910675i \(-0.364438\pi\)
0.413123 + 0.910675i \(0.364438\pi\)
\(20\) 7.21710 + 4.16679i 0.360855 + 0.208340i
\(21\) 0 0
\(22\) −4.57780 7.92898i −0.208082 0.360408i
\(23\) −17.1145 + 9.88106i −0.744109 + 0.429611i −0.823561 0.567227i \(-0.808016\pi\)
0.0794526 + 0.996839i \(0.474683\pi\)
\(24\) 0 0
\(25\) −3.81892 + 6.61456i −0.152757 + 0.264582i
\(26\) 20.8175i 0.800674i
\(27\) 0 0
\(28\) −5.29150 −0.188982
\(29\) 9.30724 + 5.37354i 0.320939 + 0.185294i 0.651811 0.758381i \(-0.274009\pi\)
−0.330872 + 0.943676i \(0.607343\pi\)
\(30\) 0 0
\(31\) 11.1508 + 19.3137i 0.359702 + 0.623022i 0.987911 0.155023i \(-0.0495451\pi\)
−0.628209 + 0.778044i \(0.716212\pi\)
\(32\) 4.89898 2.82843i 0.153093 0.0883883i
\(33\) 0 0
\(34\) −13.1851 + 22.8373i −0.387798 + 0.671685i
\(35\) 11.0243i 0.314980i
\(36\) 0 0
\(37\) 70.8586 1.91510 0.957548 0.288273i \(-0.0930810\pi\)
0.957548 + 0.288273i \(0.0930810\pi\)
\(38\) −19.2269 11.1006i −0.505970 0.292122i
\(39\) 0 0
\(40\) −5.89274 10.2065i −0.147318 0.255163i
\(41\) 7.29137 4.20968i 0.177838 0.102675i −0.408438 0.912786i \(-0.633926\pi\)
0.586277 + 0.810111i \(0.300593\pi\)
\(42\) 0 0
\(43\) 24.9486 43.2123i 0.580201 1.00494i −0.415254 0.909705i \(-0.636307\pi\)
0.995455 0.0952318i \(-0.0303592\pi\)
\(44\) 12.9480i 0.294272i
\(45\) 0 0
\(46\) 27.9479 0.607562
\(47\) 62.5123 + 36.0915i 1.33005 + 0.767904i 0.985307 0.170793i \(-0.0546329\pi\)
0.344743 + 0.938697i \(0.387966\pi\)
\(48\) 0 0
\(49\) −3.50000 6.06218i −0.0714286 0.123718i
\(50\) 9.35440 5.40077i 0.187088 0.108015i
\(51\) 0 0
\(52\) −14.7202 + 25.4961i −0.283081 + 0.490310i
\(53\) 80.3093i 1.51527i −0.652679 0.757635i \(-0.726355\pi\)
0.652679 0.757635i \(-0.273645\pi\)
\(54\) 0 0
\(55\) 26.9757 0.490468
\(56\) 6.48074 + 3.74166i 0.115728 + 0.0668153i
\(57\) 0 0
\(58\) −7.59933 13.1624i −0.131023 0.226938i
\(59\) 22.8843 13.2122i 0.387869 0.223936i −0.293368 0.956000i \(-0.594776\pi\)
0.681236 + 0.732064i \(0.261443\pi\)
\(60\) 0 0
\(61\) 32.7902 56.7944i 0.537545 0.931055i −0.461491 0.887145i \(-0.652685\pi\)
0.999035 0.0439099i \(-0.0139815\pi\)
\(62\) 31.5391i 0.508695i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 53.1186 + 30.6680i 0.817209 + 0.471816i
\(66\) 0 0
\(67\) −11.9038 20.6181i −0.177669 0.307732i 0.763413 0.645911i \(-0.223522\pi\)
−0.941082 + 0.338179i \(0.890189\pi\)
\(68\) 32.2968 18.6466i 0.474953 0.274214i
\(69\) 0 0
\(70\) 7.79536 13.5020i 0.111362 0.192885i
\(71\) 111.926i 1.57643i 0.615403 + 0.788213i \(0.288993\pi\)
−0.615403 + 0.788213i \(0.711007\pi\)
\(72\) 0 0
\(73\) 13.3109 0.182342 0.0911709 0.995835i \(-0.470939\pi\)
0.0911709 + 0.995835i \(0.470939\pi\)
\(74\) −86.7837 50.1046i −1.17275 0.677089i
\(75\) 0 0
\(76\) 15.6987 + 27.1909i 0.206561 + 0.357775i
\(77\) −14.8338 + 8.56427i −0.192646 + 0.111224i
\(78\) 0 0
\(79\) −59.8755 + 103.707i −0.757917 + 1.31275i 0.185994 + 0.982551i \(0.440450\pi\)
−0.943911 + 0.330200i \(0.892884\pi\)
\(80\) 16.6672i 0.208340i
\(81\) 0 0
\(82\) −11.9068 −0.145204
\(83\) −10.0716 5.81486i −0.121345 0.0700586i 0.438099 0.898927i \(-0.355652\pi\)
−0.559444 + 0.828868i \(0.688985\pi\)
\(84\) 0 0
\(85\) −38.8482 67.2871i −0.457038 0.791612i
\(86\) −61.1114 + 35.2827i −0.710598 + 0.410264i
\(87\) 0 0
\(88\) 9.15559 15.8580i 0.104041 0.180204i
\(89\) 83.5516i 0.938782i −0.882990 0.469391i \(-0.844473\pi\)
0.882990 0.469391i \(-0.155527\pi\)
\(90\) 0 0
\(91\) −38.9460 −0.427978
\(92\) −34.2290 19.7621i −0.372054 0.214806i
\(93\) 0 0
\(94\) −51.0411 88.4058i −0.542990 0.940487i
\(95\) 56.6494 32.7065i 0.596309 0.344279i
\(96\) 0 0
\(97\) −84.0615 + 145.599i −0.866613 + 1.50102i −0.00117642 + 0.999999i \(0.500374\pi\)
−0.865437 + 0.501018i \(0.832959\pi\)
\(98\) 9.89949i 0.101015i
\(99\) 0 0
\(100\) −15.2757 −0.152757
\(101\) 19.0956 + 11.0248i 0.189065 + 0.109157i 0.591545 0.806272i \(-0.298518\pi\)
−0.402480 + 0.915429i \(0.631852\pi\)
\(102\) 0 0
\(103\) −63.2562 109.563i −0.614138 1.06372i −0.990535 0.137260i \(-0.956170\pi\)
0.376397 0.926459i \(-0.377163\pi\)
\(104\) 36.0570 20.8175i 0.346702 0.200168i
\(105\) 0 0
\(106\) −56.7872 + 98.3584i −0.535729 + 0.927909i
\(107\) 39.7026i 0.371053i 0.982639 + 0.185526i \(0.0593990\pi\)
−0.982639 + 0.185526i \(0.940601\pi\)
\(108\) 0 0
\(109\) 93.2221 0.855249 0.427624 0.903957i \(-0.359351\pi\)
0.427624 + 0.903957i \(0.359351\pi\)
\(110\) −33.0384 19.0747i −0.300349 0.173407i
\(111\) 0 0
\(112\) −5.29150 9.16515i −0.0472456 0.0818317i
\(113\) −69.6562 + 40.2160i −0.616427 + 0.355894i −0.775476 0.631376i \(-0.782490\pi\)
0.159050 + 0.987271i \(0.449157\pi\)
\(114\) 0 0
\(115\) −41.1723 + 71.3126i −0.358020 + 0.620109i
\(116\) 21.4941i 0.185294i
\(117\) 0 0
\(118\) −37.3698 −0.316693
\(119\) 42.7247 + 24.6671i 0.359031 + 0.207286i
\(120\) 0 0
\(121\) −39.5438 68.4918i −0.326808 0.566048i
\(122\) −80.3193 + 46.3724i −0.658355 + 0.380102i
\(123\) 0 0
\(124\) −22.3015 + 38.6273i −0.179851 + 0.311511i
\(125\) 135.995i 1.08796i
\(126\) 0 0
\(127\) −22.5391 −0.177473 −0.0887367 0.996055i \(-0.528283\pi\)
−0.0887367 + 0.996055i \(0.528283\pi\)
\(128\) 9.79796 + 5.65685i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −43.3711 75.1210i −0.333624 0.577854i
\(131\) −205.316 + 118.539i −1.56729 + 0.904878i −0.570811 + 0.821081i \(0.693371\pi\)
−0.996483 + 0.0837963i \(0.973296\pi\)
\(132\) 0 0
\(133\) −20.7674 + 35.9702i −0.156146 + 0.270452i
\(134\) 33.6691i 0.251262i
\(135\) 0 0
\(136\) −52.7405 −0.387798
\(137\) −168.003 96.9965i −1.22630 0.708004i −0.260045 0.965597i \(-0.583737\pi\)
−0.966254 + 0.257593i \(0.917071\pi\)
\(138\) 0 0
\(139\) 79.4617 + 137.632i 0.571667 + 0.990156i 0.996395 + 0.0848352i \(0.0270364\pi\)
−0.424728 + 0.905321i \(0.639630\pi\)
\(140\) −19.0946 + 11.0243i −0.136390 + 0.0787450i
\(141\) 0 0
\(142\) 79.1438 137.081i 0.557351 0.965360i
\(143\) 95.2983i 0.666422i
\(144\) 0 0
\(145\) 44.7808 0.308833
\(146\) −16.3025 9.41226i −0.111661 0.0644675i
\(147\) 0 0
\(148\) 70.8586 + 122.731i 0.478774 + 0.829261i
\(149\) −88.2118 + 50.9291i −0.592026 + 0.341806i −0.765898 0.642962i \(-0.777705\pi\)
0.173872 + 0.984768i \(0.444372\pi\)
\(150\) 0 0
\(151\) 70.2311 121.644i 0.465106 0.805588i −0.534100 0.845421i \(-0.679349\pi\)
0.999206 + 0.0398334i \(0.0126827\pi\)
\(152\) 44.4025i 0.292122i
\(153\) 0 0
\(154\) 24.2234 0.157295
\(155\) 80.4761 + 46.4629i 0.519200 + 0.299760i
\(156\) 0 0
\(157\) −124.454 215.560i −0.792700 1.37300i −0.924290 0.381692i \(-0.875342\pi\)
0.131590 0.991304i \(-0.457992\pi\)
\(158\) 146.664 84.6767i 0.928255 0.535928i
\(159\) 0 0
\(160\) 11.7855 20.4130i 0.0736592 0.127581i
\(161\) 52.2857i 0.324756i
\(162\) 0 0
\(163\) 168.569 1.03417 0.517083 0.855935i \(-0.327018\pi\)
0.517083 + 0.855935i \(0.327018\pi\)
\(164\) 14.5827 + 8.41935i 0.0889192 + 0.0513375i
\(165\) 0 0
\(166\) 8.22346 + 14.2434i 0.0495389 + 0.0858039i
\(167\) −252.089 + 145.544i −1.50952 + 0.871519i −0.509577 + 0.860425i \(0.670198\pi\)
−0.999938 + 0.0110940i \(0.996469\pi\)
\(168\) 0 0
\(169\) −23.8422 + 41.2959i −0.141078 + 0.244354i
\(170\) 109.879i 0.646349i
\(171\) 0 0
\(172\) 99.7945 0.580201
\(173\) −119.791 69.1612i −0.692432 0.399776i 0.112091 0.993698i \(-0.464245\pi\)
−0.804522 + 0.593922i \(0.797579\pi\)
\(174\) 0 0
\(175\) −10.1039 17.5005i −0.0577366 0.100003i
\(176\) −22.4265 + 12.9480i −0.127423 + 0.0735680i
\(177\) 0 0
\(178\) −59.0799 + 102.329i −0.331910 + 0.574884i
\(179\) 304.532i 1.70130i −0.525735 0.850649i \(-0.676210\pi\)
0.525735 0.850649i \(-0.323790\pi\)
\(180\) 0 0
\(181\) −260.720 −1.44044 −0.720221 0.693745i \(-0.755960\pi\)
−0.720221 + 0.693745i \(0.755960\pi\)
\(182\) 47.6989 + 27.5390i 0.262082 + 0.151313i
\(183\) 0 0
\(184\) 27.9479 + 48.4071i 0.151891 + 0.263082i
\(185\) 255.697 147.627i 1.38214 0.797981i
\(186\) 0 0
\(187\) 60.3588 104.544i 0.322774 0.559061i
\(188\) 144.366i 0.767904i
\(189\) 0 0
\(190\) −92.5081 −0.486885
\(191\) −49.9914 28.8626i −0.261735 0.151113i 0.363391 0.931637i \(-0.381619\pi\)
−0.625126 + 0.780524i \(0.714952\pi\)
\(192\) 0 0
\(193\) −44.7554 77.5186i −0.231893 0.401651i 0.726472 0.687196i \(-0.241159\pi\)
−0.958365 + 0.285545i \(0.907825\pi\)
\(194\) 205.908 118.881i 1.06138 0.612788i
\(195\) 0 0
\(196\) 7.00000 12.1244i 0.0357143 0.0618590i
\(197\) 1.87709i 0.00952838i 0.999989 + 0.00476419i \(0.00151650\pi\)
−0.999989 + 0.00476419i \(0.998484\pi\)
\(198\) 0 0
\(199\) −80.1938 −0.402984 −0.201492 0.979490i \(-0.564579\pi\)
−0.201492 + 0.979490i \(0.564579\pi\)
\(200\) 18.7088 + 10.8015i 0.0935440 + 0.0540077i
\(201\) 0 0
\(202\) −15.5915 27.0052i −0.0771855 0.133689i
\(203\) −24.6246 + 14.2170i −0.121304 + 0.0700347i
\(204\) 0 0
\(205\) 17.5409 30.3816i 0.0855651 0.148203i
\(206\) 178.916i 0.868523i
\(207\) 0 0
\(208\) −58.8808 −0.283081
\(209\) 88.0166 + 50.8164i 0.421132 + 0.243141i
\(210\) 0 0
\(211\) 80.5551 + 139.526i 0.381778 + 0.661259i 0.991316 0.131498i \(-0.0419786\pi\)
−0.609539 + 0.792756i \(0.708645\pi\)
\(212\) 139.100 80.3093i 0.656131 0.378817i
\(213\) 0 0
\(214\) 28.0740 48.6256i 0.131187 0.227222i
\(215\) 207.912i 0.967031i
\(216\) 0 0
\(217\) −59.0042 −0.271909
\(218\) −114.173 65.9180i −0.523731 0.302376i
\(219\) 0 0
\(220\) 26.9757 + 46.7234i 0.122617 + 0.212379i
\(221\) 237.708 137.241i 1.07560 0.620998i
\(222\) 0 0
\(223\) 10.2489 17.7515i 0.0459590 0.0796033i −0.842131 0.539273i \(-0.818699\pi\)
0.888090 + 0.459670i \(0.152032\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) 0 0
\(226\) 113.748 0.503310
\(227\) 130.615 + 75.4107i 0.575397 + 0.332206i 0.759302 0.650738i \(-0.225541\pi\)
−0.183905 + 0.982944i \(0.558874\pi\)
\(228\) 0 0
\(229\) 148.880 + 257.868i 0.650133 + 1.12606i 0.983090 + 0.183121i \(0.0586200\pi\)
−0.332958 + 0.942942i \(0.608047\pi\)
\(230\) 100.851 58.2265i 0.438484 0.253159i
\(231\) 0 0
\(232\) 15.1987 26.3248i 0.0655115 0.113469i
\(233\) 386.415i 1.65843i −0.558928 0.829216i \(-0.688787\pi\)
0.558928 0.829216i \(-0.311213\pi\)
\(234\) 0 0
\(235\) 300.772 1.27988
\(236\) 45.7685 + 26.4245i 0.193934 + 0.111968i
\(237\) 0 0
\(238\) −34.8845 60.4218i −0.146574 0.253873i
\(239\) 180.122 103.994i 0.753649 0.435119i −0.0733620 0.997305i \(-0.523373\pi\)
0.827011 + 0.562186i \(0.190040\pi\)
\(240\) 0 0
\(241\) −161.733 + 280.130i −0.671092 + 1.16236i 0.306503 + 0.951870i \(0.400841\pi\)
−0.977595 + 0.210495i \(0.932492\pi\)
\(242\) 111.847i 0.462176i
\(243\) 0 0
\(244\) 131.161 0.537545
\(245\) −25.2598 14.5838i −0.103101 0.0595256i
\(246\) 0 0
\(247\) 115.544 + 200.128i 0.467789 + 0.810234i
\(248\) 54.6273 31.5391i 0.220271 0.127174i
\(249\) 0 0
\(250\) 96.1631 166.559i 0.384652 0.666237i
\(251\) 288.081i 1.14773i 0.818948 + 0.573867i \(0.194558\pi\)
−0.818948 + 0.573867i \(0.805442\pi\)
\(252\) 0 0
\(253\) −127.940 −0.505690
\(254\) 27.6047 + 15.9376i 0.108680 + 0.0627463i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 111.683 64.4799i 0.434562 0.250895i −0.266726 0.963772i \(-0.585942\pi\)
0.701288 + 0.712878i \(0.252609\pi\)
\(258\) 0 0
\(259\) −93.7371 + 162.357i −0.361919 + 0.626863i
\(260\) 122.672i 0.471816i
\(261\) 0 0
\(262\) 335.279 1.27969
\(263\) 27.4385 + 15.8417i 0.104329 + 0.0602344i 0.551257 0.834336i \(-0.314149\pi\)
−0.446928 + 0.894570i \(0.647482\pi\)
\(264\) 0 0
\(265\) −167.316 289.800i −0.631381 1.09358i
\(266\) 50.8695 29.3695i 0.191239 0.110412i
\(267\) 0 0
\(268\) 23.8077 41.2361i 0.0888346 0.153866i
\(269\) 154.678i 0.575011i 0.957779 + 0.287505i \(0.0928260\pi\)
−0.957779 + 0.287505i \(0.907174\pi\)
\(270\) 0 0
\(271\) −170.350 −0.628598 −0.314299 0.949324i \(-0.601769\pi\)
−0.314299 + 0.949324i \(0.601769\pi\)
\(272\) 64.5936 + 37.2931i 0.237477 + 0.137107i
\(273\) 0 0
\(274\) 137.174 + 237.592i 0.500634 + 0.867124i
\(275\) −42.8225 + 24.7236i −0.155718 + 0.0899040i
\(276\) 0 0
\(277\) 263.888 457.068i 0.952665 1.65007i 0.213043 0.977043i \(-0.431662\pi\)
0.739622 0.673022i \(-0.235004\pi\)
\(278\) 224.752i 0.808459i
\(279\) 0 0
\(280\) 31.1814 0.111362
\(281\) 349.542 + 201.808i 1.24392 + 0.718179i 0.969890 0.243542i \(-0.0783093\pi\)
0.274032 + 0.961721i \(0.411643\pi\)
\(282\) 0 0
\(283\) 110.981 + 192.224i 0.392158 + 0.679238i 0.992734 0.120330i \(-0.0383951\pi\)
−0.600576 + 0.799568i \(0.705062\pi\)
\(284\) −193.862 + 111.926i −0.682612 + 0.394106i
\(285\) 0 0
\(286\) 67.3861 116.716i 0.235616 0.408098i
\(287\) 22.2755i 0.0776150i
\(288\) 0 0
\(289\) −58.6945 −0.203095
\(290\) −54.8451 31.6648i −0.189121 0.109189i
\(291\) 0 0
\(292\) 13.3109 + 23.0552i 0.0455854 + 0.0789563i
\(293\) 226.579 130.815i 0.773306 0.446469i −0.0607464 0.998153i \(-0.519348\pi\)
0.834053 + 0.551685i \(0.186015\pi\)
\(294\) 0 0
\(295\) 55.0526 95.3539i 0.186619 0.323234i
\(296\) 200.418i 0.677089i
\(297\) 0 0
\(298\) 144.049 0.483387
\(299\) −251.929 145.451i −0.842572 0.486459i
\(300\) 0 0
\(301\) 66.0079 + 114.329i 0.219295 + 0.379831i
\(302\) −172.030 + 99.3217i −0.569637 + 0.328880i
\(303\) 0 0
\(304\) −31.3973 + 54.3818i −0.103281 + 0.178887i
\(305\) 273.260i 0.895935i
\(306\) 0 0
\(307\) −137.772 −0.448769 −0.224384 0.974501i \(-0.572037\pi\)
−0.224384 + 0.974501i \(0.572037\pi\)
\(308\) −29.6675 17.1285i −0.0963231 0.0556122i
\(309\) 0 0
\(310\) −65.7084 113.810i −0.211963 0.367130i
\(311\) −296.994 + 171.469i −0.954964 + 0.551349i −0.894619 0.446829i \(-0.852553\pi\)
−0.0603446 + 0.998178i \(0.519220\pi\)
\(312\) 0 0
\(313\) 176.129 305.064i 0.562711 0.974644i −0.434548 0.900649i \(-0.643092\pi\)
0.997259 0.0739953i \(-0.0235750\pi\)
\(314\) 352.009i 1.12105i
\(315\) 0 0
\(316\) −239.502 −0.757917
\(317\) −128.074 73.9438i −0.404020 0.233261i 0.284197 0.958766i \(-0.408273\pi\)
−0.688217 + 0.725505i \(0.741606\pi\)
\(318\) 0 0
\(319\) 34.7882 + 60.2549i 0.109054 + 0.188887i
\(320\) −28.8684 + 16.6672i −0.0902137 + 0.0520849i
\(321\) 0 0
\(322\) −36.9715 + 64.0366i −0.114818 + 0.198871i
\(323\) 292.726i 0.906273i
\(324\) 0 0
\(325\) −112.430 −0.345940
\(326\) −206.454 119.196i −0.633295 0.365633i
\(327\) 0 0
\(328\) −11.9068 20.6231i −0.0363011 0.0628754i
\(329\) −165.392 + 95.4892i −0.502711 + 0.290241i
\(330\) 0 0
\(331\) −280.028 + 485.023i −0.846006 + 1.46533i 0.0387387 + 0.999249i \(0.487666\pi\)
−0.884745 + 0.466076i \(0.845667\pi\)
\(332\) 23.2594i 0.0700586i
\(333\) 0 0
\(334\) 411.660 1.23251
\(335\) −85.9112 49.6008i −0.256451 0.148062i
\(336\) 0 0
\(337\) 11.9600 + 20.7154i 0.0354897 + 0.0614699i 0.883225 0.468950i \(-0.155368\pi\)
−0.847735 + 0.530420i \(0.822034\pi\)
\(338\) 58.4012 33.7180i 0.172785 0.0997573i
\(339\) 0 0
\(340\) 77.6964 134.574i 0.228519 0.395806i
\(341\) 144.380i 0.423400i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) −122.223 70.5654i −0.355299 0.205132i
\(345\) 0 0
\(346\) 97.8087 + 169.410i 0.282684 + 0.489623i
\(347\) −209.628 + 121.029i −0.604115 + 0.348786i −0.770659 0.637248i \(-0.780073\pi\)
0.166544 + 0.986034i \(0.446739\pi\)
\(348\) 0 0
\(349\) −17.9763 + 31.1358i −0.0515079 + 0.0892143i −0.890630 0.454729i \(-0.849736\pi\)
0.839122 + 0.543943i \(0.183069\pi\)
\(350\) 28.5782i 0.0816519i
\(351\) 0 0
\(352\) 36.6224 0.104041
\(353\) −266.093 153.629i −0.753806 0.435210i 0.0732617 0.997313i \(-0.476659\pi\)
−0.827067 + 0.562103i \(0.809992\pi\)
\(354\) 0 0
\(355\) 233.187 + 403.891i 0.656864 + 1.13772i
\(356\) 144.716 83.5516i 0.406505 0.234695i
\(357\) 0 0
\(358\) −215.337 + 372.974i −0.601499 + 1.04183i
\(359\) 529.049i 1.47368i −0.676070 0.736838i \(-0.736318\pi\)
0.676070 0.736838i \(-0.263682\pi\)
\(360\) 0 0
\(361\) −114.552 −0.317318
\(362\) 319.316 + 184.357i 0.882087 + 0.509273i
\(363\) 0 0
\(364\) −38.9460 67.4564i −0.106995 0.185320i
\(365\) 48.0332 27.7320i 0.131598 0.0759780i
\(366\) 0 0
\(367\) 169.534 293.642i 0.461946 0.800115i −0.537112 0.843511i \(-0.680485\pi\)
0.999058 + 0.0433966i \(0.0138179\pi\)
\(368\) 79.0485i 0.214806i
\(369\) 0 0
\(370\) −417.551 −1.12852
\(371\) 184.012 + 106.239i 0.495988 + 0.286359i
\(372\) 0 0
\(373\) −247.394 428.499i −0.663255 1.14879i −0.979755 0.200199i \(-0.935841\pi\)
0.316500 0.948593i \(-0.397492\pi\)
\(374\) −147.848 + 85.3602i −0.395316 + 0.228236i
\(375\) 0 0
\(376\) 102.082 176.812i 0.271495 0.470244i
\(377\) 158.199i 0.419626i
\(378\) 0 0
\(379\) −14.4703 −0.0381802 −0.0190901 0.999818i \(-0.506077\pi\)
−0.0190901 + 0.999818i \(0.506077\pi\)
\(380\) 113.299 + 65.4131i 0.298155 + 0.172140i
\(381\) 0 0
\(382\) 40.8178 + 70.6985i 0.106853 + 0.185075i
\(383\) −258.762 + 149.397i −0.675620 + 0.390069i −0.798203 0.602389i \(-0.794216\pi\)
0.122583 + 0.992458i \(0.460882\pi\)
\(384\) 0 0
\(385\) −35.6856 + 61.8092i −0.0926898 + 0.160543i
\(386\) 126.587i 0.327947i
\(387\) 0 0
\(388\) −336.246 −0.866613
\(389\) 77.0026 + 44.4575i 0.197950 + 0.114287i 0.595699 0.803208i \(-0.296875\pi\)
−0.397749 + 0.917494i \(0.630208\pi\)
\(390\) 0 0
\(391\) 184.248 + 319.127i 0.471222 + 0.816181i
\(392\) −17.1464 + 9.89949i −0.0437409 + 0.0252538i
\(393\) 0 0
\(394\) 1.32730 2.29896i 0.00336879 0.00583492i
\(395\) 498.977i 1.26323i
\(396\) 0 0
\(397\) −537.580 −1.35411 −0.677053 0.735935i \(-0.736743\pi\)
−0.677053 + 0.735935i \(0.736743\pi\)
\(398\) 98.2169 + 56.7056i 0.246776 + 0.142476i
\(399\) 0 0
\(400\) −15.2757 26.4582i −0.0381892 0.0661456i
\(401\) −151.261 + 87.3304i −0.377209 + 0.217782i −0.676603 0.736348i \(-0.736549\pi\)
0.299394 + 0.954129i \(0.403215\pi\)
\(402\) 0 0
\(403\) −164.141 + 284.301i −0.407299 + 0.705462i
\(404\) 44.0993i 0.109157i
\(405\) 0 0
\(406\) 40.2119 0.0990440
\(407\) 397.278 + 229.369i 0.976113 + 0.563559i
\(408\) 0 0
\(409\) −107.632 186.423i −0.263158 0.455803i 0.703922 0.710278i \(-0.251431\pi\)
−0.967079 + 0.254475i \(0.918097\pi\)
\(410\) −42.9661 + 24.8065i −0.104795 + 0.0605037i
\(411\) 0 0
\(412\) 126.512 219.126i 0.307069 0.531859i
\(413\) 69.9125i 0.169280i
\(414\) 0 0
\(415\) −48.4587 −0.116768
\(416\) 72.1140 + 41.6350i 0.173351 + 0.100084i
\(417\) 0 0
\(418\) −71.8653 124.474i −0.171927 0.297785i
\(419\) −202.288 + 116.791i −0.482788 + 0.278738i −0.721578 0.692334i \(-0.756583\pi\)
0.238790 + 0.971071i \(0.423249\pi\)
\(420\) 0 0
\(421\) 407.164 705.229i 0.967136 1.67513i 0.263372 0.964694i \(-0.415165\pi\)
0.703764 0.710434i \(-0.251501\pi\)
\(422\) 227.844i 0.539915i
\(423\) 0 0
\(424\) −227.149 −0.535729
\(425\) 123.339 + 71.2097i 0.290209 + 0.167552i
\(426\) 0 0
\(427\) 86.7548 + 150.264i 0.203173 + 0.351906i
\(428\) −68.7670 + 39.7026i −0.160670 + 0.0927631i
\(429\) 0 0
\(430\) −147.016 + 254.639i −0.341897 + 0.592183i
\(431\) 317.979i 0.737770i 0.929475 + 0.368885i \(0.120260\pi\)
−0.929475 + 0.368885i \(0.879740\pi\)
\(432\) 0 0
\(433\) −344.299 −0.795148 −0.397574 0.917570i \(-0.630148\pi\)
−0.397574 + 0.917570i \(0.630148\pi\)
\(434\) 72.2651 + 41.7223i 0.166510 + 0.0961343i
\(435\) 0 0
\(436\) 93.2221 + 161.465i 0.213812 + 0.370334i
\(437\) −268.675 + 155.119i −0.614816 + 0.354964i
\(438\) 0 0
\(439\) 135.682 235.008i 0.309071 0.535326i −0.669089 0.743183i \(-0.733315\pi\)
0.978159 + 0.207856i \(0.0666487\pi\)
\(440\) 76.2989i 0.173407i
\(441\) 0 0
\(442\) −388.175 −0.878224
\(443\) 164.368 + 94.8980i 0.371034 + 0.214217i 0.673910 0.738813i \(-0.264613\pi\)
−0.302876 + 0.953030i \(0.597947\pi\)
\(444\) 0 0
\(445\) −174.071 301.500i −0.391171 0.677528i
\(446\) −25.1045 + 14.4941i −0.0562881 + 0.0324979i
\(447\) 0 0
\(448\) 10.5830 18.3303i 0.0236228 0.0409159i
\(449\) 601.830i 1.34038i −0.742190 0.670190i \(-0.766213\pi\)
0.742190 0.670190i \(-0.233787\pi\)
\(450\) 0 0
\(451\) 54.5067 0.120858
\(452\) −139.312 80.4321i −0.308213 0.177947i
\(453\) 0 0
\(454\) −106.647 184.718i −0.234905 0.406867i
\(455\) −140.539 + 81.1400i −0.308876 + 0.178330i
\(456\) 0 0
\(457\) 88.5414 153.358i 0.193745 0.335576i −0.752743 0.658314i \(-0.771270\pi\)
0.946488 + 0.322738i \(0.104603\pi\)
\(458\) 421.097i 0.919426i
\(459\) 0 0
\(460\) −164.689 −0.358020
\(461\) −173.407 100.117i −0.376154 0.217173i 0.299990 0.953942i \(-0.403017\pi\)
−0.676144 + 0.736770i \(0.736350\pi\)
\(462\) 0 0
\(463\) −237.254 410.935i −0.512427 0.887549i −0.999896 0.0144092i \(-0.995413\pi\)
0.487469 0.873140i \(-0.337920\pi\)
\(464\) −37.2290 + 21.4941i −0.0802348 + 0.0463236i
\(465\) 0 0
\(466\) −273.236 + 473.259i −0.586344 + 1.01558i
\(467\) 253.035i 0.541832i −0.962603 0.270916i \(-0.912673\pi\)
0.962603 0.270916i \(-0.0873265\pi\)
\(468\) 0 0
\(469\) 62.9892 0.134305
\(470\) −368.369 212.678i −0.783763 0.452506i
\(471\) 0 0
\(472\) −37.3698 64.7264i −0.0791734 0.137132i
\(473\) 279.756 161.517i 0.591450 0.341474i
\(474\) 0 0
\(475\) −59.9519 + 103.840i −0.126215 + 0.218610i
\(476\) 98.6684i 0.207286i
\(477\) 0 0
\(478\) −294.138 −0.615352
\(479\) 633.064 + 365.500i 1.32164 + 0.763048i 0.983990 0.178225i \(-0.0570355\pi\)
0.337648 + 0.941273i \(0.390369\pi\)
\(480\) 0 0
\(481\) 521.526 + 903.310i 1.08425 + 1.87798i
\(482\) 396.164 228.725i 0.821916 0.474533i
\(483\) 0 0
\(484\) 79.0876 136.984i 0.163404 0.283024i
\(485\) 700.533i 1.44440i
\(486\) 0 0
\(487\) 638.705 1.31151 0.655754 0.754974i \(-0.272351\pi\)
0.655754 + 0.754974i \(0.272351\pi\)
\(488\) −160.639 92.7448i −0.329178 0.190051i
\(489\) 0 0
\(490\) 20.6246 + 35.7228i 0.0420910 + 0.0729037i
\(491\) −487.319 + 281.354i −0.992504 + 0.573022i −0.906022 0.423231i \(-0.860896\pi\)
−0.0864820 + 0.996253i \(0.527563\pi\)
\(492\) 0 0
\(493\) 100.198 173.548i 0.203241 0.352024i
\(494\) 326.807i 0.661553i
\(495\) 0 0
\(496\) −89.2060 −0.179851
\(497\) −256.455 148.064i −0.516006 0.297916i
\(498\) 0 0
\(499\) −379.091 656.605i −0.759701 1.31584i −0.943003 0.332785i \(-0.892012\pi\)
0.183302 0.983057i \(-0.441322\pi\)
\(500\) −235.550 + 135.995i −0.471101 + 0.271990i
\(501\) 0 0
\(502\) 203.704 352.826i 0.405786 0.702841i
\(503\) 367.332i 0.730283i 0.930952 + 0.365142i \(0.118979\pi\)
−0.930952 + 0.365142i \(0.881021\pi\)
\(504\) 0 0
\(505\) 91.8764 0.181933
\(506\) 156.693 + 90.4670i 0.309671 + 0.178788i
\(507\) 0 0
\(508\) −22.5391 39.0389i −0.0443683 0.0768482i
\(509\) 254.904 147.169i 0.500794 0.289134i −0.228247 0.973603i \(-0.573299\pi\)
0.729042 + 0.684469i \(0.239966\pi\)
\(510\) 0 0
\(511\) −17.6087 + 30.4992i −0.0344593 + 0.0596853i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −182.377 −0.354819
\(515\) −456.526 263.576i −0.886459 0.511797i
\(516\) 0 0
\(517\) 233.656 + 404.704i 0.451945 + 0.782792i
\(518\) 229.608 132.564i 0.443259 0.255916i
\(519\) 0 0
\(520\) 86.7423 150.242i 0.166812 0.288927i
\(521\) 53.1458i 0.102007i 0.998698 + 0.0510037i \(0.0162420\pi\)
−0.998698 + 0.0510037i \(0.983758\pi\)
\(522\) 0 0
\(523\) −776.112 −1.48396 −0.741981 0.670421i \(-0.766113\pi\)
−0.741981 + 0.670421i \(0.766113\pi\)
\(524\) −410.631 237.078i −0.783647 0.452439i
\(525\) 0 0
\(526\) −22.4035 38.8040i −0.0425922 0.0737718i
\(527\) 360.134 207.923i 0.683365 0.394541i
\(528\) 0 0
\(529\) −69.2293 + 119.909i −0.130868 + 0.226670i
\(530\) 473.241i 0.892908i
\(531\) 0 0
\(532\) −83.0695 −0.156146
\(533\) 107.331 + 61.9673i 0.201371 + 0.116261i
\(534\) 0 0
\(535\) 82.7163 + 143.269i 0.154610 + 0.267792i
\(536\) −58.3167 + 33.6691i −0.108800 + 0.0628156i
\(537\) 0 0
\(538\) 109.374 189.441i 0.203297 0.352121i
\(539\) 45.3179i 0.0840777i
\(540\) 0 0
\(541\) 414.383 0.765958 0.382979 0.923757i \(-0.374898\pi\)
0.382979 + 0.923757i \(0.374898\pi\)
\(542\) 208.635 + 120.456i 0.384936 + 0.222243i
\(543\) 0 0
\(544\) −52.7405 91.3492i −0.0969494 0.167921i
\(545\) 336.397 194.219i 0.617241 0.356364i
\(546\) 0 0
\(547\) 194.595 337.048i 0.355749 0.616175i −0.631497 0.775378i \(-0.717559\pi\)
0.987246 + 0.159203i \(0.0508925\pi\)
\(548\) 387.986i 0.708004i
\(549\) 0 0
\(550\) 69.9289 0.127143
\(551\) 146.111 + 84.3574i 0.265175 + 0.153099i
\(552\) 0 0
\(553\) −158.416 274.384i −0.286466 0.496173i
\(554\) −646.392 + 373.194i −1.16677 + 0.673636i
\(555\) 0 0
\(556\) −158.923 + 275.263i −0.285833 + 0.495078i
\(557\) 752.828i 1.35158i 0.737096 + 0.675788i \(0.236197\pi\)
−0.737096 + 0.675788i \(0.763803\pi\)
\(558\) 0 0
\(559\) 734.498 1.31395
\(560\) −38.1893 22.0486i −0.0681952 0.0393725i
\(561\) 0 0
\(562\) −285.400 494.327i −0.507829 0.879586i
\(563\) 574.864 331.898i 1.02107 0.589517i 0.106659 0.994296i \(-0.465985\pi\)
0.914415 + 0.404779i \(0.132651\pi\)
\(564\) 0 0
\(565\) −167.572 + 290.243i −0.296587 + 0.513704i
\(566\) 313.901i 0.554596i
\(567\) 0 0
\(568\) 316.575 0.557351
\(569\) −496.119 286.435i −0.871914 0.503400i −0.00393041 0.999992i \(-0.501251\pi\)
−0.867984 + 0.496592i \(0.834584\pi\)
\(570\) 0 0
\(571\) −179.597 311.072i −0.314531 0.544784i 0.664806 0.747016i \(-0.268514\pi\)
−0.979338 + 0.202231i \(0.935181\pi\)
\(572\) −165.062 + 95.2983i −0.288569 + 0.166605i
\(573\) 0 0
\(574\) 15.7512 27.2818i 0.0274411 0.0475293i
\(575\) 150.940i 0.262504i
\(576\) 0 0
\(577\) 327.352 0.567334 0.283667 0.958923i \(-0.408449\pi\)
0.283667 + 0.958923i \(0.408449\pi\)
\(578\) 71.8858 + 41.5033i 0.124370 + 0.0718050i
\(579\) 0 0
\(580\) 44.7808 + 77.5627i 0.0772083 + 0.133729i
\(581\) 26.6470 15.3847i 0.0458641 0.0264797i
\(582\) 0 0
\(583\) 259.960 450.265i 0.445901 0.772324i
\(584\) 37.6490i 0.0644675i
\(585\) 0 0
\(586\) −370.002 −0.631402
\(587\) −702.685 405.696i −1.19708 0.691134i −0.237176 0.971467i \(-0.576222\pi\)
−0.959903 + 0.280333i \(0.909555\pi\)
\(588\) 0 0
\(589\) 175.052 + 303.199i 0.297202 + 0.514769i
\(590\) −134.851 + 77.8562i −0.228561 + 0.131960i
\(591\) 0 0
\(592\) −141.717 + 245.461i −0.239387 + 0.414631i
\(593\) 1078.74i 1.81912i 0.415576 + 0.909559i \(0.363580\pi\)
−0.415576 + 0.909559i \(0.636420\pi\)
\(594\) 0 0
\(595\) 205.565 0.345488
\(596\) −176.424 101.858i −0.296013 0.170903i
\(597\) 0 0
\(598\) 205.699 + 356.281i 0.343978 + 0.595788i
\(599\) −95.0263 + 54.8635i −0.158642 + 0.0915918i −0.577219 0.816589i \(-0.695862\pi\)
0.418578 + 0.908181i \(0.362529\pi\)
\(600\) 0 0
\(601\) −402.166 + 696.572i −0.669161 + 1.15902i 0.308978 + 0.951069i \(0.400013\pi\)
−0.978139 + 0.207952i \(0.933320\pi\)
\(602\) 186.698i 0.310130i
\(603\) 0 0
\(604\) 280.924 0.465106
\(605\) −285.391 164.771i −0.471721 0.272348i
\(606\) 0 0
\(607\) 109.545 + 189.738i 0.180470 + 0.312584i 0.942041 0.335498i \(-0.108905\pi\)
−0.761571 + 0.648082i \(0.775571\pi\)
\(608\) 76.9074 44.4025i 0.126492 0.0730305i
\(609\) 0 0
\(610\) −193.224 + 334.674i −0.316761 + 0.548646i
\(611\) 1062.55i 1.73903i
\(612\) 0 0
\(613\) 897.371 1.46390 0.731951 0.681358i \(-0.238610\pi\)
0.731951 + 0.681358i \(0.238610\pi\)
\(614\) 168.736 + 97.4195i 0.274814 + 0.158664i
\(615\) 0 0
\(616\) 24.2234 + 41.9562i 0.0393237 + 0.0681107i
\(617\) 617.603 356.573i 1.00098 0.577915i 0.0924400 0.995718i \(-0.470533\pi\)
0.908537 + 0.417804i \(0.137200\pi\)
\(618\) 0 0
\(619\) 210.975 365.420i 0.340832 0.590339i −0.643755 0.765231i \(-0.722625\pi\)
0.984588 + 0.174893i \(0.0559579\pi\)
\(620\) 185.851i 0.299760i
\(621\) 0 0
\(622\) 484.989 0.779725
\(623\) 191.441 + 110.528i 0.307289 + 0.177413i
\(624\) 0 0
\(625\) 187.859 + 325.381i 0.300574 + 0.520610i
\(626\) −431.425 + 249.083i −0.689177 + 0.397897i
\(627\) 0 0
\(628\) 248.908 431.121i 0.396350 0.686498i
\(629\) 1321.27i 2.10059i
\(630\) 0 0
\(631\) −601.037 −0.952515 −0.476257 0.879306i \(-0.658007\pi\)
−0.476257 + 0.879306i \(0.658007\pi\)
\(632\) 293.329 + 169.353i 0.464128 + 0.267964i
\(633\) 0 0
\(634\) 104.572 + 181.125i 0.164941 + 0.285685i
\(635\) −81.3335 + 46.9579i −0.128084 + 0.0739495i
\(636\) 0 0
\(637\) 51.5207 89.2365i 0.0808802 0.140089i
\(638\) 98.3958i 0.154225i
\(639\) 0 0
\(640\) 47.1419 0.0736592
\(641\) 809.038 + 467.098i 1.26215 + 0.728702i 0.973490 0.228729i \(-0.0734571\pi\)
0.288660 + 0.957432i \(0.406790\pi\)
\(642\) 0 0
\(643\) 10.0042 + 17.3277i 0.0155586 + 0.0269482i 0.873700 0.486465i \(-0.161714\pi\)
−0.858141 + 0.513414i \(0.828381\pi\)
\(644\) 90.5614 52.2857i 0.140623 0.0811889i
\(645\) 0 0
\(646\) −206.989 + 358.515i −0.320416 + 0.554977i
\(647\) 724.799i 1.12025i −0.828410 0.560123i \(-0.810754\pi\)
0.828410 0.560123i \(-0.189246\pi\)
\(648\) 0 0
\(649\) 171.071 0.263592
\(650\) 137.699 + 79.5004i 0.211844 + 0.122308i
\(651\) 0 0
\(652\) 168.569 + 291.970i 0.258541 + 0.447807i
\(653\) −68.1776 + 39.3624i −0.104407 + 0.0602793i −0.551294 0.834311i \(-0.685866\pi\)
0.446887 + 0.894590i \(0.352532\pi\)
\(654\) 0 0
\(655\) −493.927 + 855.507i −0.754088 + 1.30612i
\(656\) 33.6774i 0.0513375i
\(657\) 0 0
\(658\) 270.084 0.410462
\(659\) 822.374 + 474.798i 1.24791 + 0.720483i 0.970693 0.240324i \(-0.0772536\pi\)
0.277220 + 0.960806i \(0.410587\pi\)
\(660\) 0 0
\(661\) −192.159 332.828i −0.290709 0.503523i 0.683269 0.730167i \(-0.260558\pi\)
−0.973978 + 0.226644i \(0.927224\pi\)
\(662\) 685.926 396.019i 1.03614 0.598217i
\(663\) 0 0
\(664\) −16.4469 + 28.4869i −0.0247694 + 0.0429019i
\(665\) 173.067i 0.260251i
\(666\) 0 0
\(667\) −212.385 −0.318418
\(668\) −504.178 291.087i −0.754758 0.435760i
\(669\) 0 0
\(670\) 70.1462 + 121.497i 0.104696 + 0.181338i
\(671\) 367.686 212.283i 0.547967 0.316369i
\(672\) 0 0
\(673\) −99.9437 + 173.108i −0.148505 + 0.257218i −0.930675 0.365847i \(-0.880779\pi\)
0.782170 + 0.623065i \(0.214113\pi\)
\(674\) 33.8281i 0.0501900i
\(675\) 0 0
\(676\) −95.3688 −0.141078
\(677\) −856.490 494.495i −1.26513 0.730420i −0.291064 0.956704i \(-0.594009\pi\)
−0.974062 + 0.226283i \(0.927342\pi\)
\(678\) 0 0
\(679\) −222.406 385.218i −0.327549 0.567331i
\(680\) −190.317 + 109.879i −0.279877 + 0.161587i
\(681\) 0 0
\(682\) 102.092 176.828i 0.149695 0.259279i
\(683\) 472.371i 0.691612i −0.938306 0.345806i \(-0.887606\pi\)
0.938306 0.345806i \(-0.112394\pi\)
\(684\) 0 0
\(685\) −808.329 −1.18004
\(686\) −22.6826 13.0958i −0.0330650 0.0190901i
\(687\) 0 0
\(688\) 99.7945 + 172.849i 0.145050 + 0.251234i
\(689\) 1023.79 591.085i 1.48590 0.857888i
\(690\) 0 0
\(691\) −379.591 + 657.471i −0.549336 + 0.951478i 0.448984 + 0.893540i \(0.351786\pi\)
−0.998320 + 0.0579384i \(0.981547\pi\)
\(692\) 276.645i 0.399776i
\(693\) 0 0
\(694\) 342.321 0.493258
\(695\) 573.483 + 331.100i 0.825155 + 0.476404i
\(696\) 0 0
\(697\) −78.4960 135.959i −0.112620 0.195063i
\(698\) 44.0326 25.4223i 0.0630840 0.0364216i
\(699\) 0 0
\(700\) 20.2078 35.0010i 0.0288683 0.0500014i
\(701\) 590.449i 0.842295i 0.906992 + 0.421147i \(0.138372\pi\)
−0.906992 + 0.421147i \(0.861628\pi\)
\(702\) 0 0
\(703\) 1112.38 1.58234
\(704\) −44.8531 25.8959i −0.0637117 0.0367840i
\(705\) 0 0
\(706\) 217.264 + 376.313i 0.307740 + 0.533021i
\(707\) −50.5221 + 29.1690i −0.0714598 + 0.0412574i
\(708\) 0 0
\(709\) −375.204 + 649.872i −0.529201 + 0.916603i 0.470219 + 0.882550i \(0.344175\pi\)
−0.999420 + 0.0340534i \(0.989158\pi\)
\(710\) 659.552i 0.928946i
\(711\) 0 0
\(712\) −236.320 −0.331910
\(713\) −381.679 220.362i −0.535314 0.309064i
\(714\) 0 0
\(715\) 198.544 + 343.889i 0.277684 + 0.480963i
\(716\) 527.465 304.532i 0.736683 0.425324i
\(717\) 0 0
\(718\) −374.094 + 647.951i −0.521023 + 0.902438i
\(719\) 528.232i 0.734676i −0.930088 0.367338i \(-0.880269\pi\)
0.930088 0.367338i \(-0.119731\pi\)
\(720\) 0 0
\(721\) 334.721 0.464245
\(722\) 140.297 + 81.0005i 0.194317 + 0.112189i
\(723\) 0 0
\(724\) −260.720 451.580i −0.360111 0.623730i
\(725\) −71.0872 + 41.0422i −0.0980513 + 0.0566099i
\(726\) 0 0
\(727\) 337.899 585.259i 0.464786 0.805033i −0.534406 0.845228i \(-0.679465\pi\)
0.999192 + 0.0401952i \(0.0127980\pi\)
\(728\) 110.156i 0.151313i
\(729\) 0 0
\(730\) −78.4379 −0.107449
\(731\) −805.761 465.206i −1.10227 0.636397i
\(732\) 0 0
\(733\) 83.9702 + 145.441i 0.114557 + 0.198418i 0.917603 0.397499i \(-0.130122\pi\)
−0.803046 + 0.595918i \(0.796789\pi\)
\(734\) −415.273 + 239.758i −0.565766 + 0.326645i
\(735\) 0 0
\(736\) −55.8957 + 96.8142i −0.0759453 + 0.131541i
\(737\) 154.130i 0.209132i
\(738\) 0 0
\(739\) −832.894 −1.12706 −0.563528 0.826097i \(-0.690556\pi\)
−0.563528 + 0.826097i \(0.690556\pi\)
\(740\) 511.393 + 295.253i 0.691072 + 0.398991i
\(741\) 0 0
\(742\) −150.245 260.232i −0.202486 0.350717i
\(743\) 698.782 403.442i 0.940487 0.542990i 0.0503738 0.998730i \(-0.483959\pi\)
0.890113 + 0.455740i \(0.150625\pi\)
\(744\) 0 0
\(745\) −212.211 + 367.560i −0.284847 + 0.493370i
\(746\) 699.737i 0.937985i
\(747\) 0 0
\(748\) 241.435 0.322774
\(749\) −90.9701 52.5216i −0.121455 0.0701223i
\(750\) 0 0
\(751\) −203.868 353.110i −0.271462 0.470187i 0.697774 0.716318i \(-0.254174\pi\)
−0.969237 + 0.246131i \(0.920841\pi\)
\(752\) −250.049 + 144.366i −0.332512 + 0.191976i
\(753\) 0 0
\(754\) 111.864 193.754i 0.148360 0.256968i
\(755\) 585.277i 0.775201i
\(756\) 0 0
\(757\) 709.798 0.937646 0.468823 0.883292i \(-0.344678\pi\)
0.468823 + 0.883292i \(0.344678\pi\)
\(758\) 17.7224 + 10.2321i 0.0233805 + 0.0134988i
\(759\) 0 0
\(760\) −92.5081 160.229i −0.121721 0.210827i
\(761\) −454.599 + 262.463i −0.597370 + 0.344892i −0.768006 0.640442i \(-0.778751\pi\)
0.170636 + 0.985334i \(0.445418\pi\)
\(762\) 0 0
\(763\) −123.321 + 213.599i −0.161627 + 0.279946i
\(764\) 115.450i 0.151113i
\(765\) 0 0
\(766\) 422.557 0.551641
\(767\) 336.861 + 194.487i 0.439193 + 0.253568i
\(768\) 0 0
\(769\) 164.387 + 284.726i 0.213767 + 0.370255i 0.952890 0.303315i \(-0.0980933\pi\)
−0.739123 + 0.673570i \(0.764760\pi\)
\(770\) 87.4114 50.4670i 0.113521 0.0655416i
\(771\) 0 0
\(772\) 89.5108 155.037i 0.115947 0.200825i
\(773\) 343.076i 0.443824i 0.975067 + 0.221912i \(0.0712298\pi\)
−0.975067 + 0.221912i \(0.928770\pi\)
\(774\) 0 0
\(775\) −170.335 −0.219787
\(776\) 411.815 + 237.762i 0.530690 + 0.306394i
\(777\) 0 0
\(778\) −62.8723 108.898i −0.0808128 0.139972i
\(779\) 114.465 66.0863i 0.146938 0.0848348i
\(780\) 0 0
\(781\) −362.304 + 627.529i −0.463898 + 0.803495i
\(782\) 521.132i 0.666409i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) −898.195 518.573i −1.14420 0.660603i
\(786\) 0 0
\(787\) −165.233 286.191i −0.209952 0.363648i 0.741747 0.670680i \(-0.233998\pi\)
−0.951699 + 0.307032i \(0.900664\pi\)
\(788\) −3.25122 + 1.87709i −0.00412591 + 0.00238210i
\(789\) 0 0
\(790\) 352.830 611.120i 0.446621 0.773570i
\(791\) 212.803i 0.269031i
\(792\) 0 0
\(793\) 965.358 1.21735
\(794\) 658.398 + 380.126i 0.829217 + 0.478749i
\(795\) 0 0
\(796\) −80.1938 138.900i −0.100746 0.174497i
\(797\) 199.933 115.431i 0.250856 0.144832i −0.369300 0.929310i \(-0.620402\pi\)
0.620156 + 0.784478i \(0.287069\pi\)
\(798\) 0 0
\(799\) 672.983 1165.64i 0.842281 1.45887i
\(800\) 43.2061i 0.0540077i
\(801\) 0 0
\(802\) 247.008 0.307990
\(803\) 74.6296 + 43.0874i 0.0929385 + 0.0536581i
\(804\) 0 0
\(805\) −108.932 188.675i −0.135319 0.234379i
\(806\) 402.062 232.131i 0.498837 0.288004i
\(807\) 0 0
\(808\) 31.1829 54.0104i 0.0385927 0.0668446i
\(809\) 1138.49i 1.40729i 0.710554 + 0.703643i \(0.248444\pi\)
−0.710554 + 0.703643i \(0.751556\pi\)
\(810\) 0 0
\(811\) 1346.08 1.65977 0.829887 0.557931i \(-0.188405\pi\)
0.829887 + 0.557931i \(0.188405\pi\)
\(812\) −49.2493 28.4341i −0.0606518 0.0350173i
\(813\) 0 0
\(814\) −324.376 561.836i −0.398496 0.690216i
\(815\) 608.289 351.196i 0.746367 0.430915i
\(816\) 0 0
\(817\) 391.660 678.375i 0.479388 0.830325i
\(818\) 304.428i 0.372161i
\(819\) 0 0
\(820\) 70.1634 0.0855651
\(821\) −415.276 239.760i −0.505817 0.292034i 0.225295 0.974291i \(-0.427665\pi\)
−0.731113 + 0.682257i \(0.760999\pi\)
\(822\) 0 0
\(823\) −623.100 1079.24i −0.757109 1.31135i −0.944319 0.329031i \(-0.893278\pi\)
0.187210 0.982320i \(-0.440055\pi\)
\(824\) −309.891 + 178.916i −0.376081 + 0.217131i
\(825\) 0 0
\(826\) 49.4356 85.6250i 0.0598494 0.103662i
\(827\) 464.446i 0.561603i −0.959766 0.280802i \(-0.909400\pi\)
0.959766 0.280802i \(-0.0906003\pi\)
\(828\) 0 0
\(829\) 479.856 0.578837 0.289418 0.957203i \(-0.406538\pi\)
0.289418 + 0.957203i \(0.406538\pi\)
\(830\) 59.3495 + 34.2654i 0.0715054 + 0.0412837i
\(831\) 0 0
\(832\) −58.8808 101.985i −0.0707702 0.122578i
\(833\) −113.039 + 65.2630i −0.135701 + 0.0783469i
\(834\) 0 0
\(835\) −606.450 + 1050.40i −0.726288 + 1.25797i
\(836\) 203.266i 0.243141i
\(837\) 0 0
\(838\) 330.335 0.394195
\(839\) 249.072 + 143.802i 0.296868 + 0.171397i 0.641035 0.767512i \(-0.278505\pi\)
−0.344167 + 0.938908i \(0.611839\pi\)
\(840\) 0 0
\(841\) −362.750 628.302i −0.431332 0.747089i
\(842\) −997.344 + 575.817i −1.18449 + 0.683868i
\(843\) 0 0
\(844\) −161.110 + 279.051i −0.190889 + 0.330629i
\(845\) 198.691i 0.235137i
\(846\) 0 0
\(847\) 209.246 0.247044
\(848\) 278.200 + 160.619i 0.328065 + 0.189409i
\(849\) 0 0
\(850\) −100.706 174.427i −0.118477 0.205209i
\(851\) −1212.71 + 700.158i −1.42504 + 0.822747i
\(852\) 0 0
\(853\) 339.982 588.866i 0.398572 0.690347i −0.594978 0.803742i \(-0.702839\pi\)
0.993550 + 0.113395i \(0.0361725\pi\)
\(854\) 245.380i 0.287330i
\(855\) 0 0
\(856\) 112.296 0.131187
\(857\) −725.061 418.614i −0.846045 0.488464i 0.0132695 0.999912i \(-0.495776\pi\)
−0.859314 + 0.511448i \(0.829109\pi\)
\(858\) 0 0
\(859\) −173.311 300.184i −0.201759 0.349457i 0.747336 0.664446i \(-0.231332\pi\)
−0.949095 + 0.314989i \(0.897999\pi\)
\(860\) 360.113 207.912i 0.418737 0.241758i
\(861\) 0 0
\(862\) 224.845 389.443i 0.260841 0.451790i
\(863\) 62.3236i 0.0722174i 0.999348 + 0.0361087i \(0.0114962\pi\)
−0.999348 + 0.0361087i \(0.988504\pi\)
\(864\) 0 0
\(865\) −576.361 −0.666313
\(866\) 421.679 + 243.456i 0.486927 + 0.281127i
\(867\) 0 0
\(868\) −59.0042 102.198i −0.0679772 0.117740i
\(869\) −671.399 + 387.633i −0.772612 + 0.446068i
\(870\) 0 0
\(871\) 175.227 303.502i 0.201179 0.348452i
\(872\) 263.672i 0.302376i
\(873\) 0 0
\(874\) 438.744 0.501995
\(875\) −311.604 179.905i −0.356119 0.205605i
\(876\) 0 0
\(877\) 845.076 + 1463.71i 0.963598 + 1.66900i 0.713334 + 0.700824i \(0.247184\pi\)
0.250264 + 0.968178i \(0.419483\pi\)
\(878\) −332.352 + 191.883i −0.378533 + 0.218546i
\(879\) 0 0
\(880\) −53.9515 + 93.4467i −0.0613085 + 0.106189i
\(881\) 1480.43i 1.68040i 0.542280 + 0.840198i \(0.317561\pi\)
−0.542280 + 0.840198i \(0.682439\pi\)
\(882\) 0 0
\(883\) −688.171 −0.779356 −0.389678 0.920951i \(-0.627414\pi\)
−0.389678 + 0.920951i \(0.627414\pi\)
\(884\) 475.416 + 274.481i 0.537800 + 0.310499i
\(885\) 0 0
\(886\) −134.206 232.452i −0.151474 0.262361i
\(887\) 541.722 312.763i 0.610735 0.352608i −0.162518 0.986706i \(-0.551962\pi\)
0.773253 + 0.634098i \(0.218628\pi\)
\(888\) 0 0
\(889\) 29.8164 51.6436i 0.0335393 0.0580918i
\(890\) 492.347i 0.553199i
\(891\) 0 0
\(892\) 40.9954 0.0459590
\(893\) 981.360 + 566.589i 1.09895 + 0.634478i
\(894\) 0 0
\(895\) −634.461 1098.92i −0.708895 1.22784i
\(896\) −25.9230 + 14.9666i −0.0289319 + 0.0167038i
\(897\) 0 0
\(898\) −425.558 + 737.088i −0.473896 + 0.820811i
\(899\) 239.676i 0.266603i
\(900\) 0 0
\(901\) −1497.49 −1.66203
\(902\) −66.7569 38.5421i −0.0740098 0.0427296i
\(903\) 0 0
\(904\) 113.748 + 197.018i 0.125828 + 0.217940i
\(905\) −940.821 + 543.183i −1.03958 + 0.600203i
\(906\) 0 0
\(907\) −503.987 + 872.931i −0.555664 + 0.962438i 0.442188 + 0.896922i \(0.354202\pi\)
−0.997852 + 0.0655154i \(0.979131\pi\)
\(908\) 301.643i 0.332206i
\(909\) 0 0
\(910\) 229.498 0.252196
\(911\) 331.886 + 191.614i 0.364309 + 0.210334i 0.670969 0.741485i \(-0.265878\pi\)
−0.306660 + 0.951819i \(0.599212\pi\)
\(912\) 0 0
\(913\) −37.6453 65.2036i −0.0412325 0.0714169i
\(914\) −216.881 + 125.217i −0.237288 + 0.136998i
\(915\) 0 0
\(916\) −297.761 + 515.737i −0.325066 + 0.563031i
\(917\) 627.249i 0.684023i
\(918\) 0 0
\(919\) −769.956 −0.837819 −0.418910 0.908028i \(-0.637588\pi\)
−0.418910 + 0.908028i \(0.637588\pi\)
\(920\) 201.702 + 116.453i 0.219242 + 0.126579i
\(921\) 0 0
\(922\) 141.586 + 245.234i 0.153564 + 0.265981i
\(923\) −1426.84 + 823.788i −1.54588 + 0.892512i
\(924\) 0 0
\(925\) −270.603 + 468.698i −0.292544 + 0.506701i
\(926\) 671.055i 0.724681i
\(927\) 0 0
\(928\) 60.7946 0.0655115
\(929\) 323.085 + 186.533i 0.347778 + 0.200789i 0.663706 0.747994i \(-0.268983\pi\)
−0.315928 + 0.948783i \(0.602316\pi\)
\(930\) 0 0
\(931\) −54.9453 95.1681i −0.0590175 0.102221i
\(932\) 669.290 386.415i 0.718122 0.414608i
\(933\) 0 0
\(934\) −178.923 + 309.904i −0.191566 + 0.331803i
\(935\) 503.005i 0.537973i
\(936\) 0 0
\(937\) −987.512 −1.05391 −0.526954 0.849894i \(-0.676666\pi\)
−0.526954 + 0.849894i \(0.676666\pi\)
\(938\) −77.1457 44.5401i −0.0822449 0.0474841i
\(939\) 0 0
\(940\) 300.772 + 520.952i 0.319970 + 0.554204i
\(941\) 1178.37 680.335i 1.25226 0.722991i 0.280700 0.959795i \(-0.409433\pi\)
0.971557 + 0.236804i \(0.0761000\pi\)
\(942\) 0 0
\(943\) −83.1921 + 144.093i −0.0882207 + 0.152803i
\(944\) 105.698i 0.111968i
\(945\) 0 0
\(946\) −456.839 −0.482917
\(947\) −1344.82 776.431i −1.42008 0.819884i −0.423776 0.905767i \(-0.639296\pi\)
−0.996305 + 0.0858826i \(0.972629\pi\)
\(948\) 0 0
\(949\) 97.9699 + 169.689i 0.103235 + 0.178808i
\(950\) 146.852 84.7848i 0.154581 0.0892472i
\(951\) 0 0
\(952\) 69.7691 120.844i 0.0732868 0.126937i
\(953\) 756.704i 0.794023i −0.917814 0.397012i \(-0.870047\pi\)
0.917814 0.397012i \(-0.129953\pi\)
\(954\) 0 0
\(955\) −240.529 −0.251862
\(956\) 360.244 + 207.987i 0.376824 + 0.217560i
\(957\) 0 0
\(958\) −516.895 895.288i −0.539556 0.934539i
\(959\) 444.494 256.629i 0.463497 0.267600i
\(960\) 0 0
\(961\) 231.822 401.527i 0.241229 0.417822i
\(962\) 1475.10i 1.53337i
\(963\) 0 0
\(964\) −646.932 −0.671092
\(965\) −323.004 186.486i −0.334719 0.193250i
\(966\) 0 0
\(967\) 49.6997 + 86.0824i 0.0513958 + 0.0890201i 0.890579 0.454829i \(-0.150300\pi\)
−0.839183 + 0.543849i \(0.816966\pi\)
\(968\) −193.724 + 111.847i −0.200128 + 0.115544i
\(969\) 0 0
\(970\) 495.352 857.975i 0.510672 0.884510i
\(971\) 24.0392i 0.0247571i −0.999923 0.0123786i \(-0.996060\pi\)
0.999923 0.0123786i \(-0.00394032\pi\)
\(972\) 0 0
\(973\) −420.472 −0.432140
\(974\) −782.250 451.632i −0.803132 0.463688i
\(975\) 0 0
\(976\) 131.161 + 227.177i 0.134386 + 0.232764i
\(977\) −1101.39 + 635.889i −1.12732 + 0.650859i −0.943260 0.332056i \(-0.892258\pi\)
−0.184061 + 0.982915i \(0.558924\pi\)
\(978\) 0 0
\(979\) 270.456 468.443i 0.276257 0.478491i
\(980\) 58.3351i 0.0595256i
\(981\) 0 0
\(982\) 795.789 0.810376
\(983\) −881.017 508.656i −0.896254 0.517452i −0.0202708 0.999795i \(-0.506453\pi\)
−0.875983 + 0.482342i \(0.839786\pi\)
\(984\) 0 0
\(985\) 3.91073 + 6.77358i 0.00397028 + 0.00687673i
\(986\) −245.434 + 141.701i −0.248919 + 0.143713i
\(987\) 0 0
\(988\) −231.088 + 400.255i −0.233894 + 0.405117i
\(989\) 986.076i 0.997043i
\(990\) 0 0
\(991\) −1748.26 −1.76414 −0.882070 0.471118i \(-0.843851\pi\)
−0.882070 + 0.471118i \(0.843851\pi\)
\(992\) 109.255 + 63.0782i 0.110136 + 0.0635869i
\(993\) 0 0
\(994\) 209.395 + 362.682i 0.210659 + 0.364872i
\(995\) −289.383 + 167.075i −0.290837 + 0.167915i
\(996\) 0 0
\(997\) −123.758 + 214.355i −0.124130 + 0.215000i −0.921393 0.388633i \(-0.872947\pi\)
0.797262 + 0.603633i \(0.206281\pi\)
\(998\) 1072.23i 1.07438i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.q.a.197.5 24
3.2 odd 2 126.3.q.a.29.8 24
9.2 odd 6 1134.3.b.c.323.4 24
9.4 even 3 126.3.q.a.113.8 yes 24
9.5 odd 6 inner 378.3.q.a.71.5 24
9.7 even 3 1134.3.b.c.323.21 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.8 24 3.2 odd 2
126.3.q.a.113.8 yes 24 9.4 even 3
378.3.q.a.71.5 24 9.5 odd 6 inner
378.3.q.a.197.5 24 1.1 even 1 trivial
1134.3.b.c.323.4 24 9.2 odd 6
1134.3.b.c.323.21 24 9.7 even 3