Properties

Label 1134.3.b.c.323.21
Level $1134$
Weight $3$
Character 1134.323
Analytic conductor $30.899$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,3,Mod(323,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.323"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1134.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.8992619785\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.21
Character \(\chi\) \(=\) 1134.323
Dual form 1134.3.b.c.323.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} +4.16679i q^{5} +2.64575 q^{7} -2.82843i q^{8} -5.89274 q^{10} -6.47398i q^{11} -14.7202 q^{13} +3.74166i q^{14} +4.00000 q^{16} -18.6466i q^{17} +15.6987 q^{19} -8.33359i q^{20} +9.15559 q^{22} -19.7621i q^{23} +7.63784 q^{25} -20.8175i q^{26} -5.29150 q^{28} -10.7471i q^{29} -22.3015 q^{31} +5.65685i q^{32} +26.3702 q^{34} +11.0243i q^{35} +70.8586 q^{37} +22.2013i q^{38} +11.7855 q^{40} +8.41935i q^{41} -49.8973 q^{43} +12.9480i q^{44} +27.9479 q^{46} -72.1830i q^{47} +7.00000 q^{49} +10.8015i q^{50} +29.4404 q^{52} -80.3093i q^{53} +26.9757 q^{55} -7.48331i q^{56} +15.1987 q^{58} +26.4245i q^{59} -65.5805 q^{61} -31.5391i q^{62} -8.00000 q^{64} -61.3360i q^{65} +23.8077 q^{67} +37.2931i q^{68} -15.5907 q^{70} +111.926i q^{71} +13.3109 q^{73} +100.209i q^{74} -31.3973 q^{76} -17.1285i q^{77} +119.751 q^{79} +16.6672i q^{80} -11.9068 q^{82} +11.6297i q^{83} +77.6964 q^{85} -70.5654i q^{86} -18.3112 q^{88} -83.5516i q^{89} -38.9460 q^{91} +39.5242i q^{92} +102.082 q^{94} +65.4131i q^{95} +168.123 q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 48 q^{4} + 96 q^{16} + 24 q^{19} - 48 q^{22} - 144 q^{25} + 120 q^{31} + 96 q^{34} - 168 q^{37} - 120 q^{43} + 168 q^{49} + 264 q^{55} - 192 q^{64} - 144 q^{67} + 24 q^{73} - 48 q^{76} - 24 q^{79}+ \cdots - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 4.16679i 0.833359i 0.909054 + 0.416679i \(0.136806\pi\)
−0.909054 + 0.416679i \(0.863194\pi\)
\(6\) 0 0
\(7\) 2.64575 0.377964
\(8\) − 2.82843i − 0.353553i
\(9\) 0 0
\(10\) −5.89274 −0.589274
\(11\) − 6.47398i − 0.588544i −0.955722 0.294272i \(-0.904923\pi\)
0.955722 0.294272i \(-0.0950771\pi\)
\(12\) 0 0
\(13\) −14.7202 −1.13232 −0.566162 0.824294i \(-0.691572\pi\)
−0.566162 + 0.824294i \(0.691572\pi\)
\(14\) 3.74166i 0.267261i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) − 18.6466i − 1.09686i −0.836197 0.548428i \(-0.815226\pi\)
0.836197 0.548428i \(-0.184774\pi\)
\(18\) 0 0
\(19\) 15.6987 0.826245 0.413123 0.910675i \(-0.364438\pi\)
0.413123 + 0.910675i \(0.364438\pi\)
\(20\) − 8.33359i − 0.416679i
\(21\) 0 0
\(22\) 9.15559 0.416163
\(23\) − 19.7621i − 0.859223i −0.903014 0.429611i \(-0.858651\pi\)
0.903014 0.429611i \(-0.141349\pi\)
\(24\) 0 0
\(25\) 7.63784 0.305513
\(26\) − 20.8175i − 0.800674i
\(27\) 0 0
\(28\) −5.29150 −0.188982
\(29\) − 10.7471i − 0.370589i −0.982683 0.185294i \(-0.940676\pi\)
0.982683 0.185294i \(-0.0593239\pi\)
\(30\) 0 0
\(31\) −22.3015 −0.719403 −0.359702 0.933067i \(-0.617122\pi\)
−0.359702 + 0.933067i \(0.617122\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 26.3702 0.775595
\(35\) 11.0243i 0.314980i
\(36\) 0 0
\(37\) 70.8586 1.91510 0.957548 0.288273i \(-0.0930810\pi\)
0.957548 + 0.288273i \(0.0930810\pi\)
\(38\) 22.2013i 0.584244i
\(39\) 0 0
\(40\) 11.7855 0.294637
\(41\) 8.41935i 0.205350i 0.994715 + 0.102675i \(0.0327402\pi\)
−0.994715 + 0.102675i \(0.967260\pi\)
\(42\) 0 0
\(43\) −49.8973 −1.16040 −0.580201 0.814474i \(-0.697026\pi\)
−0.580201 + 0.814474i \(0.697026\pi\)
\(44\) 12.9480i 0.294272i
\(45\) 0 0
\(46\) 27.9479 0.607562
\(47\) − 72.1830i − 1.53581i −0.640564 0.767904i \(-0.721300\pi\)
0.640564 0.767904i \(-0.278700\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 10.8015i 0.216031i
\(51\) 0 0
\(52\) 29.4404 0.566162
\(53\) − 80.3093i − 1.51527i −0.652679 0.757635i \(-0.726355\pi\)
0.652679 0.757635i \(-0.273645\pi\)
\(54\) 0 0
\(55\) 26.9757 0.490468
\(56\) − 7.48331i − 0.133631i
\(57\) 0 0
\(58\) 15.1987 0.262046
\(59\) 26.4245i 0.447872i 0.974604 + 0.223936i \(0.0718907\pi\)
−0.974604 + 0.223936i \(0.928109\pi\)
\(60\) 0 0
\(61\) −65.5805 −1.07509 −0.537545 0.843235i \(-0.680648\pi\)
−0.537545 + 0.843235i \(0.680648\pi\)
\(62\) − 31.5391i − 0.508695i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) − 61.3360i − 0.943631i
\(66\) 0 0
\(67\) 23.8077 0.355338 0.177669 0.984090i \(-0.443144\pi\)
0.177669 + 0.984090i \(0.443144\pi\)
\(68\) 37.2931i 0.548428i
\(69\) 0 0
\(70\) −15.5907 −0.222724
\(71\) 111.926i 1.57643i 0.615403 + 0.788213i \(0.288993\pi\)
−0.615403 + 0.788213i \(0.711007\pi\)
\(72\) 0 0
\(73\) 13.3109 0.182342 0.0911709 0.995835i \(-0.470939\pi\)
0.0911709 + 0.995835i \(0.470939\pi\)
\(74\) 100.209i 1.35418i
\(75\) 0 0
\(76\) −31.3973 −0.413123
\(77\) − 17.1285i − 0.222449i
\(78\) 0 0
\(79\) 119.751 1.51583 0.757917 0.652351i \(-0.226217\pi\)
0.757917 + 0.652351i \(0.226217\pi\)
\(80\) 16.6672i 0.208340i
\(81\) 0 0
\(82\) −11.9068 −0.145204
\(83\) 11.6297i 0.140117i 0.997543 + 0.0700586i \(0.0223186\pi\)
−0.997543 + 0.0700586i \(0.977681\pi\)
\(84\) 0 0
\(85\) 77.6964 0.914075
\(86\) − 70.5654i − 0.820528i
\(87\) 0 0
\(88\) −18.3112 −0.208082
\(89\) − 83.5516i − 0.938782i −0.882990 0.469391i \(-0.844473\pi\)
0.882990 0.469391i \(-0.155527\pi\)
\(90\) 0 0
\(91\) −38.9460 −0.427978
\(92\) 39.5242i 0.429611i
\(93\) 0 0
\(94\) 102.082 1.08598
\(95\) 65.4131i 0.688559i
\(96\) 0 0
\(97\) 168.123 1.73323 0.866613 0.498981i \(-0.166292\pi\)
0.866613 + 0.498981i \(0.166292\pi\)
\(98\) 9.89949i 0.101015i
\(99\) 0 0
\(100\) −15.2757 −0.152757
\(101\) − 22.0497i − 0.218313i −0.994025 0.109157i \(-0.965185\pi\)
0.994025 0.109157i \(-0.0348150\pi\)
\(102\) 0 0
\(103\) 126.512 1.22828 0.614138 0.789199i \(-0.289504\pi\)
0.614138 + 0.789199i \(0.289504\pi\)
\(104\) 41.6350i 0.400337i
\(105\) 0 0
\(106\) 113.574 1.07146
\(107\) 39.7026i 0.371053i 0.982639 + 0.185526i \(0.0593990\pi\)
−0.982639 + 0.185526i \(0.940601\pi\)
\(108\) 0 0
\(109\) 93.2221 0.855249 0.427624 0.903957i \(-0.359351\pi\)
0.427624 + 0.903957i \(0.359351\pi\)
\(110\) 38.1495i 0.346813i
\(111\) 0 0
\(112\) 10.5830 0.0944911
\(113\) − 80.4321i − 0.711788i −0.934526 0.355894i \(-0.884176\pi\)
0.934526 0.355894i \(-0.115824\pi\)
\(114\) 0 0
\(115\) 82.3447 0.716041
\(116\) 21.4941i 0.185294i
\(117\) 0 0
\(118\) −37.3698 −0.316693
\(119\) − 49.3342i − 0.414573i
\(120\) 0 0
\(121\) 79.0876 0.653616
\(122\) − 92.7448i − 0.760203i
\(123\) 0 0
\(124\) 44.6030 0.359702
\(125\) 135.995i 1.08796i
\(126\) 0 0
\(127\) −22.5391 −0.177473 −0.0887367 0.996055i \(-0.528283\pi\)
−0.0887367 + 0.996055i \(0.528283\pi\)
\(128\) − 11.3137i − 0.0883883i
\(129\) 0 0
\(130\) 86.7423 0.667248
\(131\) − 237.078i − 1.80976i −0.425672 0.904878i \(-0.639962\pi\)
0.425672 0.904878i \(-0.360038\pi\)
\(132\) 0 0
\(133\) 41.5348 0.312291
\(134\) 33.6691i 0.251262i
\(135\) 0 0
\(136\) −52.7405 −0.387798
\(137\) 193.993i 1.41601i 0.706209 + 0.708004i \(0.250404\pi\)
−0.706209 + 0.708004i \(0.749596\pi\)
\(138\) 0 0
\(139\) −158.923 −1.14333 −0.571667 0.820486i \(-0.693703\pi\)
−0.571667 + 0.820486i \(0.693703\pi\)
\(140\) − 22.0486i − 0.157490i
\(141\) 0 0
\(142\) −158.288 −1.11470
\(143\) 95.2983i 0.666422i
\(144\) 0 0
\(145\) 44.7808 0.308833
\(146\) 18.8245i 0.128935i
\(147\) 0 0
\(148\) −141.717 −0.957548
\(149\) − 101.858i − 0.683612i −0.939770 0.341806i \(-0.888961\pi\)
0.939770 0.341806i \(-0.111039\pi\)
\(150\) 0 0
\(151\) −140.462 −0.930213 −0.465106 0.885255i \(-0.653984\pi\)
−0.465106 + 0.885255i \(0.653984\pi\)
\(152\) − 44.4025i − 0.292122i
\(153\) 0 0
\(154\) 24.2234 0.157295
\(155\) − 92.9257i − 0.599521i
\(156\) 0 0
\(157\) 248.908 1.58540 0.792700 0.609612i \(-0.208675\pi\)
0.792700 + 0.609612i \(0.208675\pi\)
\(158\) 169.353i 1.07186i
\(159\) 0 0
\(160\) −23.5709 −0.147318
\(161\) − 52.2857i − 0.324756i
\(162\) 0 0
\(163\) 168.569 1.03417 0.517083 0.855935i \(-0.327018\pi\)
0.517083 + 0.855935i \(0.327018\pi\)
\(164\) − 16.8387i − 0.102675i
\(165\) 0 0
\(166\) −16.4469 −0.0990778
\(167\) − 291.087i − 1.74304i −0.490362 0.871519i \(-0.663135\pi\)
0.490362 0.871519i \(-0.336865\pi\)
\(168\) 0 0
\(169\) 47.6844 0.282156
\(170\) 109.879i 0.646349i
\(171\) 0 0
\(172\) 99.7945 0.580201
\(173\) 138.322i 0.799552i 0.916613 + 0.399776i \(0.130912\pi\)
−0.916613 + 0.399776i \(0.869088\pi\)
\(174\) 0 0
\(175\) 20.2078 0.115473
\(176\) − 25.8959i − 0.147136i
\(177\) 0 0
\(178\) 118.160 0.663819
\(179\) − 304.532i − 1.70130i −0.525735 0.850649i \(-0.676210\pi\)
0.525735 0.850649i \(-0.323790\pi\)
\(180\) 0 0
\(181\) −260.720 −1.44044 −0.720221 0.693745i \(-0.755960\pi\)
−0.720221 + 0.693745i \(0.755960\pi\)
\(182\) − 55.0780i − 0.302626i
\(183\) 0 0
\(184\) −55.8957 −0.303781
\(185\) 295.253i 1.59596i
\(186\) 0 0
\(187\) −120.718 −0.645548
\(188\) 144.366i 0.767904i
\(189\) 0 0
\(190\) −92.5081 −0.486885
\(191\) 57.7251i 0.302226i 0.988517 + 0.151113i \(0.0482857\pi\)
−0.988517 + 0.151113i \(0.951714\pi\)
\(192\) 0 0
\(193\) 89.5108 0.463786 0.231893 0.972741i \(-0.425508\pi\)
0.231893 + 0.972741i \(0.425508\pi\)
\(194\) 237.762i 1.22558i
\(195\) 0 0
\(196\) −14.0000 −0.0714286
\(197\) 1.87709i 0.00952838i 0.999989 + 0.00476419i \(0.00151650\pi\)
−0.999989 + 0.00476419i \(0.998484\pi\)
\(198\) 0 0
\(199\) −80.1938 −0.402984 −0.201492 0.979490i \(-0.564579\pi\)
−0.201492 + 0.979490i \(0.564579\pi\)
\(200\) − 21.6031i − 0.108015i
\(201\) 0 0
\(202\) 31.1829 0.154371
\(203\) − 28.4341i − 0.140069i
\(204\) 0 0
\(205\) −35.0817 −0.171130
\(206\) 178.916i 0.868523i
\(207\) 0 0
\(208\) −58.8808 −0.283081
\(209\) − 101.633i − 0.486282i
\(210\) 0 0
\(211\) −161.110 −0.763556 −0.381778 0.924254i \(-0.624688\pi\)
−0.381778 + 0.924254i \(0.624688\pi\)
\(212\) 160.619i 0.757635i
\(213\) 0 0
\(214\) −56.1480 −0.262374
\(215\) − 207.912i − 0.967031i
\(216\) 0 0
\(217\) −59.0042 −0.271909
\(218\) 131.836i 0.604752i
\(219\) 0 0
\(220\) −53.9515 −0.245234
\(221\) 274.481i 1.24200i
\(222\) 0 0
\(223\) −20.4977 −0.0919180 −0.0459590 0.998943i \(-0.514634\pi\)
−0.0459590 + 0.998943i \(0.514634\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) 0 0
\(226\) 113.748 0.503310
\(227\) − 150.821i − 0.664411i −0.943207 0.332206i \(-0.892207\pi\)
0.943207 0.332206i \(-0.107793\pi\)
\(228\) 0 0
\(229\) −297.761 −1.30027 −0.650133 0.759821i \(-0.725287\pi\)
−0.650133 + 0.759821i \(0.725287\pi\)
\(230\) 116.453i 0.506317i
\(231\) 0 0
\(232\) −30.3973 −0.131023
\(233\) − 386.415i − 1.65843i −0.558928 0.829216i \(-0.688787\pi\)
0.558928 0.829216i \(-0.311213\pi\)
\(234\) 0 0
\(235\) 300.772 1.27988
\(236\) − 52.8489i − 0.223936i
\(237\) 0 0
\(238\) 69.7691 0.293147
\(239\) 207.987i 0.870239i 0.900373 + 0.435119i \(0.143294\pi\)
−0.900373 + 0.435119i \(0.856706\pi\)
\(240\) 0 0
\(241\) 323.466 1.34218 0.671092 0.741374i \(-0.265826\pi\)
0.671092 + 0.741374i \(0.265826\pi\)
\(242\) 111.847i 0.462176i
\(243\) 0 0
\(244\) 131.161 0.537545
\(245\) 29.1676i 0.119051i
\(246\) 0 0
\(247\) −231.088 −0.935577
\(248\) 63.0782i 0.254347i
\(249\) 0 0
\(250\) −192.326 −0.769304
\(251\) 288.081i 1.14773i 0.818948 + 0.573867i \(0.194558\pi\)
−0.818948 + 0.573867i \(0.805442\pi\)
\(252\) 0 0
\(253\) −127.940 −0.505690
\(254\) − 31.8751i − 0.125493i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 128.960i 0.501789i 0.968014 + 0.250895i \(0.0807248\pi\)
−0.968014 + 0.250895i \(0.919275\pi\)
\(258\) 0 0
\(259\) 187.474 0.723838
\(260\) 122.672i 0.471816i
\(261\) 0 0
\(262\) 335.279 1.27969
\(263\) − 31.6833i − 0.120469i −0.998184 0.0602344i \(-0.980815\pi\)
0.998184 0.0602344i \(-0.0191848\pi\)
\(264\) 0 0
\(265\) 334.632 1.26276
\(266\) 58.7390i 0.220823i
\(267\) 0 0
\(268\) −47.6154 −0.177669
\(269\) 154.678i 0.575011i 0.957779 + 0.287505i \(0.0928260\pi\)
−0.957779 + 0.287505i \(0.907174\pi\)
\(270\) 0 0
\(271\) −170.350 −0.628598 −0.314299 0.949324i \(-0.601769\pi\)
−0.314299 + 0.949324i \(0.601769\pi\)
\(272\) − 74.5863i − 0.274214i
\(273\) 0 0
\(274\) −274.348 −1.00127
\(275\) − 49.4472i − 0.179808i
\(276\) 0 0
\(277\) −527.777 −1.90533 −0.952665 0.304021i \(-0.901671\pi\)
−0.952665 + 0.304021i \(0.901671\pi\)
\(278\) − 224.752i − 0.808459i
\(279\) 0 0
\(280\) 31.1814 0.111362
\(281\) − 403.617i − 1.43636i −0.695859 0.718179i \(-0.744976\pi\)
0.695859 0.718179i \(-0.255024\pi\)
\(282\) 0 0
\(283\) −221.962 −0.784317 −0.392158 0.919898i \(-0.628272\pi\)
−0.392158 + 0.919898i \(0.628272\pi\)
\(284\) − 223.852i − 0.788213i
\(285\) 0 0
\(286\) −134.772 −0.471231
\(287\) 22.2755i 0.0776150i
\(288\) 0 0
\(289\) −58.6945 −0.203095
\(290\) 63.3297i 0.218378i
\(291\) 0 0
\(292\) −26.6219 −0.0911709
\(293\) 261.631i 0.892937i 0.894799 + 0.446469i \(0.147319\pi\)
−0.894799 + 0.446469i \(0.852681\pi\)
\(294\) 0 0
\(295\) −110.105 −0.373238
\(296\) − 200.418i − 0.677089i
\(297\) 0 0
\(298\) 144.049 0.483387
\(299\) 290.902i 0.972918i
\(300\) 0 0
\(301\) −132.016 −0.438591
\(302\) − 198.643i − 0.657760i
\(303\) 0 0
\(304\) 62.7947 0.206561
\(305\) − 273.260i − 0.895935i
\(306\) 0 0
\(307\) −137.772 −0.448769 −0.224384 0.974501i \(-0.572037\pi\)
−0.224384 + 0.974501i \(0.572037\pi\)
\(308\) 34.2571i 0.111224i
\(309\) 0 0
\(310\) 131.417 0.423925
\(311\) − 342.939i − 1.10270i −0.834275 0.551349i \(-0.814113\pi\)
0.834275 0.551349i \(-0.185887\pi\)
\(312\) 0 0
\(313\) −352.257 −1.12542 −0.562711 0.826654i \(-0.690242\pi\)
−0.562711 + 0.826654i \(0.690242\pi\)
\(314\) 352.009i 1.12105i
\(315\) 0 0
\(316\) −239.502 −0.757917
\(317\) 147.888i 0.466522i 0.972414 + 0.233261i \(0.0749397\pi\)
−0.972414 + 0.233261i \(0.925060\pi\)
\(318\) 0 0
\(319\) −69.5764 −0.218108
\(320\) − 33.3343i − 0.104170i
\(321\) 0 0
\(322\) 73.9431 0.229637
\(323\) − 292.726i − 0.906273i
\(324\) 0 0
\(325\) −112.430 −0.345940
\(326\) 238.393i 0.731266i
\(327\) 0 0
\(328\) 23.8135 0.0726022
\(329\) − 190.978i − 0.580481i
\(330\) 0 0
\(331\) 560.056 1.69201 0.846006 0.533173i \(-0.179001\pi\)
0.846006 + 0.533173i \(0.179001\pi\)
\(332\) − 23.2594i − 0.0700586i
\(333\) 0 0
\(334\) 411.660 1.23251
\(335\) 99.2017i 0.296124i
\(336\) 0 0
\(337\) −23.9200 −0.0709794 −0.0354897 0.999370i \(-0.511299\pi\)
−0.0354897 + 0.999370i \(0.511299\pi\)
\(338\) 67.4359i 0.199515i
\(339\) 0 0
\(340\) −155.393 −0.457038
\(341\) 144.380i 0.423400i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) 141.131i 0.410264i
\(345\) 0 0
\(346\) −195.617 −0.565368
\(347\) − 242.058i − 0.697572i −0.937202 0.348786i \(-0.886594\pi\)
0.937202 0.348786i \(-0.113406\pi\)
\(348\) 0 0
\(349\) 35.9525 0.103016 0.0515079 0.998673i \(-0.483597\pi\)
0.0515079 + 0.998673i \(0.483597\pi\)
\(350\) 28.5782i 0.0816519i
\(351\) 0 0
\(352\) 36.6224 0.104041
\(353\) 307.258i 0.870420i 0.900329 + 0.435210i \(0.143326\pi\)
−0.900329 + 0.435210i \(0.856674\pi\)
\(354\) 0 0
\(355\) −466.373 −1.31373
\(356\) 167.103i 0.469391i
\(357\) 0 0
\(358\) 430.674 1.20300
\(359\) − 529.049i − 1.47368i −0.676070 0.736838i \(-0.736318\pi\)
0.676070 0.736838i \(-0.263682\pi\)
\(360\) 0 0
\(361\) −114.552 −0.317318
\(362\) − 368.714i − 1.01855i
\(363\) 0 0
\(364\) 77.8920 0.213989
\(365\) 55.4640i 0.151956i
\(366\) 0 0
\(367\) −339.069 −0.923893 −0.461946 0.886908i \(-0.652849\pi\)
−0.461946 + 0.886908i \(0.652849\pi\)
\(368\) − 79.0485i − 0.214806i
\(369\) 0 0
\(370\) −417.551 −1.12852
\(371\) − 212.478i − 0.572718i
\(372\) 0 0
\(373\) 494.789 1.32651 0.663255 0.748393i \(-0.269174\pi\)
0.663255 + 0.748393i \(0.269174\pi\)
\(374\) − 170.720i − 0.456472i
\(375\) 0 0
\(376\) −204.164 −0.542990
\(377\) 158.199i 0.419626i
\(378\) 0 0
\(379\) −14.4703 −0.0381802 −0.0190901 0.999818i \(-0.506077\pi\)
−0.0190901 + 0.999818i \(0.506077\pi\)
\(380\) − 130.826i − 0.344279i
\(381\) 0 0
\(382\) −81.6356 −0.213706
\(383\) − 298.793i − 0.780138i −0.920786 0.390069i \(-0.872451\pi\)
0.920786 0.390069i \(-0.127549\pi\)
\(384\) 0 0
\(385\) 71.3711 0.185380
\(386\) 126.587i 0.327947i
\(387\) 0 0
\(388\) −336.246 −0.866613
\(389\) − 88.9149i − 0.228573i −0.993448 0.114287i \(-0.963542\pi\)
0.993448 0.114287i \(-0.0364582\pi\)
\(390\) 0 0
\(391\) −368.496 −0.942444
\(392\) − 19.7990i − 0.0505076i
\(393\) 0 0
\(394\) −2.65461 −0.00673758
\(395\) 498.977i 1.26323i
\(396\) 0 0
\(397\) −537.580 −1.35411 −0.677053 0.735935i \(-0.736743\pi\)
−0.677053 + 0.735935i \(0.736743\pi\)
\(398\) − 113.411i − 0.284953i
\(399\) 0 0
\(400\) 30.5513 0.0763784
\(401\) − 174.661i − 0.435563i −0.975998 0.217782i \(-0.930118\pi\)
0.975998 0.217782i \(-0.0698820\pi\)
\(402\) 0 0
\(403\) 328.283 0.814597
\(404\) 44.0993i 0.109157i
\(405\) 0 0
\(406\) 40.2119 0.0990440
\(407\) − 458.737i − 1.12712i
\(408\) 0 0
\(409\) 215.263 0.526315 0.263158 0.964753i \(-0.415236\pi\)
0.263158 + 0.964753i \(0.415236\pi\)
\(410\) − 49.6130i − 0.121007i
\(411\) 0 0
\(412\) −253.025 −0.614138
\(413\) 69.9125i 0.169280i
\(414\) 0 0
\(415\) −48.4587 −0.116768
\(416\) − 83.2700i − 0.200168i
\(417\) 0 0
\(418\) 143.731 0.343853
\(419\) − 233.582i − 0.557475i −0.960367 0.278738i \(-0.910084\pi\)
0.960367 0.278738i \(-0.0899160\pi\)
\(420\) 0 0
\(421\) −814.328 −1.93427 −0.967136 0.254261i \(-0.918168\pi\)
−0.967136 + 0.254261i \(0.918168\pi\)
\(422\) − 227.844i − 0.539915i
\(423\) 0 0
\(424\) −227.149 −0.535729
\(425\) − 142.419i − 0.335105i
\(426\) 0 0
\(427\) −173.510 −0.406346
\(428\) − 79.4052i − 0.185526i
\(429\) 0 0
\(430\) 294.031 0.683794
\(431\) 317.979i 0.737770i 0.929475 + 0.368885i \(0.120260\pi\)
−0.929475 + 0.368885i \(0.879740\pi\)
\(432\) 0 0
\(433\) −344.299 −0.795148 −0.397574 0.917570i \(-0.630148\pi\)
−0.397574 + 0.917570i \(0.630148\pi\)
\(434\) − 83.4446i − 0.192269i
\(435\) 0 0
\(436\) −186.444 −0.427624
\(437\) − 310.239i − 0.709929i
\(438\) 0 0
\(439\) −271.364 −0.618141 −0.309071 0.951039i \(-0.600018\pi\)
−0.309071 + 0.951039i \(0.600018\pi\)
\(440\) − 76.2989i − 0.173407i
\(441\) 0 0
\(442\) −388.175 −0.878224
\(443\) − 189.796i − 0.428433i −0.976786 0.214217i \(-0.931280\pi\)
0.976786 0.214217i \(-0.0687199\pi\)
\(444\) 0 0
\(445\) 348.142 0.782342
\(446\) − 28.9881i − 0.0649958i
\(447\) 0 0
\(448\) −21.1660 −0.0472456
\(449\) − 601.830i − 1.34038i −0.742190 0.670190i \(-0.766213\pi\)
0.742190 0.670190i \(-0.233787\pi\)
\(450\) 0 0
\(451\) 54.5067 0.120858
\(452\) 160.864i 0.355894i
\(453\) 0 0
\(454\) 213.294 0.469810
\(455\) − 162.280i − 0.356659i
\(456\) 0 0
\(457\) −177.083 −0.387490 −0.193745 0.981052i \(-0.562063\pi\)
−0.193745 + 0.981052i \(0.562063\pi\)
\(458\) − 421.097i − 0.919426i
\(459\) 0 0
\(460\) −164.689 −0.358020
\(461\) 200.233i 0.434345i 0.976133 + 0.217173i \(0.0696834\pi\)
−0.976133 + 0.217173i \(0.930317\pi\)
\(462\) 0 0
\(463\) 474.507 1.02485 0.512427 0.858731i \(-0.328747\pi\)
0.512427 + 0.858731i \(0.328747\pi\)
\(464\) − 42.9883i − 0.0926472i
\(465\) 0 0
\(466\) 546.473 1.17269
\(467\) − 253.035i − 0.541832i −0.962603 0.270916i \(-0.912673\pi\)
0.962603 0.270916i \(-0.0873265\pi\)
\(468\) 0 0
\(469\) 62.9892 0.134305
\(470\) 425.355i 0.905012i
\(471\) 0 0
\(472\) 74.7396 0.158347
\(473\) 323.034i 0.682947i
\(474\) 0 0
\(475\) 119.904 0.252429
\(476\) 98.6684i 0.207286i
\(477\) 0 0
\(478\) −294.138 −0.615352
\(479\) − 731.000i − 1.52610i −0.646342 0.763048i \(-0.723702\pi\)
0.646342 0.763048i \(-0.276298\pi\)
\(480\) 0 0
\(481\) −1043.05 −2.16851
\(482\) 457.450i 0.949067i
\(483\) 0 0
\(484\) −158.175 −0.326808
\(485\) 700.533i 1.44440i
\(486\) 0 0
\(487\) 638.705 1.31151 0.655754 0.754974i \(-0.272351\pi\)
0.655754 + 0.754974i \(0.272351\pi\)
\(488\) 185.490i 0.380102i
\(489\) 0 0
\(490\) −41.2491 −0.0841819
\(491\) − 562.708i − 1.14604i −0.819540 0.573022i \(-0.805771\pi\)
0.819540 0.573022i \(-0.194229\pi\)
\(492\) 0 0
\(493\) −200.396 −0.406483
\(494\) − 326.807i − 0.661553i
\(495\) 0 0
\(496\) −89.2060 −0.179851
\(497\) 296.129i 0.595833i
\(498\) 0 0
\(499\) 758.182 1.51940 0.759701 0.650272i \(-0.225345\pi\)
0.759701 + 0.650272i \(0.225345\pi\)
\(500\) − 271.990i − 0.543980i
\(501\) 0 0
\(502\) −407.409 −0.811571
\(503\) 367.332i 0.730283i 0.930952 + 0.365142i \(0.118979\pi\)
−0.930952 + 0.365142i \(0.881021\pi\)
\(504\) 0 0
\(505\) 91.8764 0.181933
\(506\) − 180.934i − 0.357577i
\(507\) 0 0
\(508\) 45.0782 0.0887367
\(509\) 294.338i 0.578267i 0.957289 + 0.289134i \(0.0933672\pi\)
−0.957289 + 0.289134i \(0.906633\pi\)
\(510\) 0 0
\(511\) 35.2175 0.0689187
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −182.377 −0.354819
\(515\) 527.151i 1.02359i
\(516\) 0 0
\(517\) −467.312 −0.903891
\(518\) 265.129i 0.511831i
\(519\) 0 0
\(520\) −173.485 −0.333624
\(521\) 53.1458i 0.102007i 0.998698 + 0.0510037i \(0.0162420\pi\)
−0.998698 + 0.0510037i \(0.983758\pi\)
\(522\) 0 0
\(523\) −776.112 −1.48396 −0.741981 0.670421i \(-0.766113\pi\)
−0.741981 + 0.670421i \(0.766113\pi\)
\(524\) 474.156i 0.904878i
\(525\) 0 0
\(526\) 44.8070 0.0851843
\(527\) 415.846i 0.789083i
\(528\) 0 0
\(529\) 138.459 0.261736
\(530\) 473.241i 0.892908i
\(531\) 0 0
\(532\) −83.0695 −0.156146
\(533\) − 123.935i − 0.232523i
\(534\) 0 0
\(535\) −165.433 −0.309220
\(536\) − 67.3383i − 0.125631i
\(537\) 0 0
\(538\) −218.748 −0.406594
\(539\) − 45.3179i − 0.0840777i
\(540\) 0 0
\(541\) 414.383 0.765958 0.382979 0.923757i \(-0.374898\pi\)
0.382979 + 0.923757i \(0.374898\pi\)
\(542\) − 240.911i − 0.444486i
\(543\) 0 0
\(544\) 105.481 0.193899
\(545\) 388.437i 0.712729i
\(546\) 0 0
\(547\) −389.189 −0.711498 −0.355749 0.934582i \(-0.615774\pi\)
−0.355749 + 0.934582i \(0.615774\pi\)
\(548\) − 387.986i − 0.708004i
\(549\) 0 0
\(550\) 69.9289 0.127143
\(551\) − 168.715i − 0.306197i
\(552\) 0 0
\(553\) 316.831 0.572932
\(554\) − 746.389i − 1.34727i
\(555\) 0 0
\(556\) 317.847 0.571667
\(557\) 752.828i 1.35158i 0.737096 + 0.675788i \(0.236197\pi\)
−0.737096 + 0.675788i \(0.763803\pi\)
\(558\) 0 0
\(559\) 734.498 1.31395
\(560\) 44.0972i 0.0787450i
\(561\) 0 0
\(562\) 570.800 1.01566
\(563\) 663.796i 1.17903i 0.807756 + 0.589517i \(0.200682\pi\)
−0.807756 + 0.589517i \(0.799318\pi\)
\(564\) 0 0
\(565\) 335.144 0.593175
\(566\) − 313.901i − 0.554596i
\(567\) 0 0
\(568\) 316.575 0.557351
\(569\) 572.869i 1.00680i 0.864054 + 0.503400i \(0.167918\pi\)
−0.864054 + 0.503400i \(0.832082\pi\)
\(570\) 0 0
\(571\) 359.195 0.629063 0.314531 0.949247i \(-0.398153\pi\)
0.314531 + 0.949247i \(0.398153\pi\)
\(572\) − 190.597i − 0.333211i
\(573\) 0 0
\(574\) −31.5023 −0.0548821
\(575\) − 150.940i − 0.262504i
\(576\) 0 0
\(577\) 327.352 0.567334 0.283667 0.958923i \(-0.408449\pi\)
0.283667 + 0.958923i \(0.408449\pi\)
\(578\) − 83.0066i − 0.143610i
\(579\) 0 0
\(580\) −89.5617 −0.154417
\(581\) 30.7694i 0.0529593i
\(582\) 0 0
\(583\) −519.921 −0.891803
\(584\) − 37.6490i − 0.0644675i
\(585\) 0 0
\(586\) −370.002 −0.631402
\(587\) 811.391i 1.38227i 0.722727 + 0.691134i \(0.242888\pi\)
−0.722727 + 0.691134i \(0.757112\pi\)
\(588\) 0 0
\(589\) −350.104 −0.594404
\(590\) − 155.712i − 0.263919i
\(591\) 0 0
\(592\) 283.434 0.478774
\(593\) 1078.74i 1.81912i 0.415576 + 0.909559i \(0.363580\pi\)
−0.415576 + 0.909559i \(0.636420\pi\)
\(594\) 0 0
\(595\) 205.565 0.345488
\(596\) 203.716i 0.341806i
\(597\) 0 0
\(598\) −411.398 −0.687957
\(599\) − 109.727i − 0.183184i −0.995797 0.0915918i \(-0.970805\pi\)
0.995797 0.0915918i \(-0.0291955\pi\)
\(600\) 0 0
\(601\) 804.332 1.33832 0.669161 0.743117i \(-0.266654\pi\)
0.669161 + 0.743117i \(0.266654\pi\)
\(602\) − 186.698i − 0.310130i
\(603\) 0 0
\(604\) 280.924 0.465106
\(605\) 329.541i 0.544697i
\(606\) 0 0
\(607\) −219.091 −0.360940 −0.180470 0.983580i \(-0.557762\pi\)
−0.180470 + 0.983580i \(0.557762\pi\)
\(608\) 88.8051i 0.146061i
\(609\) 0 0
\(610\) 386.448 0.633522
\(611\) 1062.55i 1.73903i
\(612\) 0 0
\(613\) 897.371 1.46390 0.731951 0.681358i \(-0.238610\pi\)
0.731951 + 0.681358i \(0.238610\pi\)
\(614\) − 194.839i − 0.317327i
\(615\) 0 0
\(616\) −48.4468 −0.0786475
\(617\) 713.146i 1.15583i 0.816097 + 0.577915i \(0.196133\pi\)
−0.816097 + 0.577915i \(0.803867\pi\)
\(618\) 0 0
\(619\) −421.950 −0.681664 −0.340832 0.940124i \(-0.610709\pi\)
−0.340832 + 0.940124i \(0.610709\pi\)
\(620\) 185.851i 0.299760i
\(621\) 0 0
\(622\) 484.989 0.779725
\(623\) − 221.057i − 0.354826i
\(624\) 0 0
\(625\) −375.718 −0.601148
\(626\) − 498.167i − 0.795794i
\(627\) 0 0
\(628\) −497.815 −0.792700
\(629\) − 1321.27i − 2.10059i
\(630\) 0 0
\(631\) −601.037 −0.952515 −0.476257 0.879306i \(-0.658007\pi\)
−0.476257 + 0.879306i \(0.658007\pi\)
\(632\) − 338.707i − 0.535928i
\(633\) 0 0
\(634\) −209.145 −0.329881
\(635\) − 93.9158i − 0.147899i
\(636\) 0 0
\(637\) −103.041 −0.161760
\(638\) − 98.3958i − 0.154225i
\(639\) 0 0
\(640\) 47.1419 0.0736592
\(641\) − 934.197i − 1.45740i −0.684830 0.728702i \(-0.740124\pi\)
0.684830 0.728702i \(-0.259876\pi\)
\(642\) 0 0
\(643\) −20.0083 −0.0311172 −0.0155586 0.999879i \(-0.504953\pi\)
−0.0155586 + 0.999879i \(0.504953\pi\)
\(644\) 104.571i 0.162378i
\(645\) 0 0
\(646\) 413.977 0.640832
\(647\) − 724.799i − 1.12025i −0.828410 0.560123i \(-0.810754\pi\)
0.828410 0.560123i \(-0.189246\pi\)
\(648\) 0 0
\(649\) 171.071 0.263592
\(650\) − 159.001i − 0.244617i
\(651\) 0 0
\(652\) −337.138 −0.517083
\(653\) − 78.7248i − 0.120559i −0.998182 0.0602793i \(-0.980801\pi\)
0.998182 0.0602793i \(-0.0191991\pi\)
\(654\) 0 0
\(655\) 987.855 1.50818
\(656\) 33.6774i 0.0513375i
\(657\) 0 0
\(658\) 270.084 0.410462
\(659\) − 949.596i − 1.44097i −0.693473 0.720483i \(-0.743920\pi\)
0.693473 0.720483i \(-0.256080\pi\)
\(660\) 0 0
\(661\) 384.317 0.581418 0.290709 0.956812i \(-0.406109\pi\)
0.290709 + 0.956812i \(0.406109\pi\)
\(662\) 792.039i 1.19643i
\(663\) 0 0
\(664\) 32.8938 0.0495389
\(665\) 173.067i 0.260251i
\(666\) 0 0
\(667\) −212.385 −0.318418
\(668\) 582.175i 0.871519i
\(669\) 0 0
\(670\) −140.292 −0.209392
\(671\) 424.567i 0.632737i
\(672\) 0 0
\(673\) 199.887 0.297009 0.148505 0.988912i \(-0.452554\pi\)
0.148505 + 0.988912i \(0.452554\pi\)
\(674\) − 33.8281i − 0.0501900i
\(675\) 0 0
\(676\) −95.3688 −0.141078
\(677\) 988.989i 1.46084i 0.682998 + 0.730420i \(0.260676\pi\)
−0.682998 + 0.730420i \(0.739324\pi\)
\(678\) 0 0
\(679\) 444.811 0.655098
\(680\) − 219.759i − 0.323174i
\(681\) 0 0
\(682\) −204.183 −0.299389
\(683\) − 472.371i − 0.691612i −0.938306 0.345806i \(-0.887606\pi\)
0.938306 0.345806i \(-0.112394\pi\)
\(684\) 0 0
\(685\) −808.329 −1.18004
\(686\) 26.1916i 0.0381802i
\(687\) 0 0
\(688\) −199.589 −0.290100
\(689\) 1182.17i 1.71578i
\(690\) 0 0
\(691\) 759.183 1.09867 0.549336 0.835601i \(-0.314881\pi\)
0.549336 + 0.835601i \(0.314881\pi\)
\(692\) − 276.645i − 0.399776i
\(693\) 0 0
\(694\) 342.321 0.493258
\(695\) − 662.201i − 0.952807i
\(696\) 0 0
\(697\) 156.992 0.225240
\(698\) 50.8445i 0.0728432i
\(699\) 0 0
\(700\) −40.4156 −0.0577366
\(701\) 590.449i 0.842295i 0.906992 + 0.421147i \(0.138372\pi\)
−0.906992 + 0.421147i \(0.861628\pi\)
\(702\) 0 0
\(703\) 1112.38 1.58234
\(704\) 51.7919i 0.0735680i
\(705\) 0 0
\(706\) −434.529 −0.615480
\(707\) − 58.3379i − 0.0825147i
\(708\) 0 0
\(709\) 750.407 1.05840 0.529201 0.848496i \(-0.322492\pi\)
0.529201 + 0.848496i \(0.322492\pi\)
\(710\) − 659.552i − 0.928946i
\(711\) 0 0
\(712\) −236.320 −0.331910
\(713\) 440.725i 0.618128i
\(714\) 0 0
\(715\) −397.088 −0.555368
\(716\) 609.064i 0.850649i
\(717\) 0 0
\(718\) 748.189 1.04205
\(719\) − 528.232i − 0.734676i −0.930088 0.367338i \(-0.880269\pi\)
0.930088 0.367338i \(-0.119731\pi\)
\(720\) 0 0
\(721\) 334.721 0.464245
\(722\) − 162.001i − 0.224378i
\(723\) 0 0
\(724\) 521.440 0.720221
\(725\) − 82.0844i − 0.113220i
\(726\) 0 0
\(727\) −675.799 −0.929572 −0.464786 0.885423i \(-0.653869\pi\)
−0.464786 + 0.885423i \(0.653869\pi\)
\(728\) 110.156i 0.151313i
\(729\) 0 0
\(730\) −78.4379 −0.107449
\(731\) 930.413i 1.27279i
\(732\) 0 0
\(733\) −167.940 −0.229114 −0.114557 0.993417i \(-0.536545\pi\)
−0.114557 + 0.993417i \(0.536545\pi\)
\(734\) − 479.515i − 0.653291i
\(735\) 0 0
\(736\) 111.791 0.151891
\(737\) − 154.130i − 0.209132i
\(738\) 0 0
\(739\) −832.894 −1.12706 −0.563528 0.826097i \(-0.690556\pi\)
−0.563528 + 0.826097i \(0.690556\pi\)
\(740\) − 590.506i − 0.797981i
\(741\) 0 0
\(742\) 300.490 0.404973
\(743\) 806.883i 1.08598i 0.839739 + 0.542990i \(0.182708\pi\)
−0.839739 + 0.542990i \(0.817292\pi\)
\(744\) 0 0
\(745\) 424.422 0.569694
\(746\) 699.737i 0.937985i
\(747\) 0 0
\(748\) 241.435 0.322774
\(749\) 105.043i 0.140245i
\(750\) 0 0
\(751\) 407.737 0.542925 0.271462 0.962449i \(-0.412493\pi\)
0.271462 + 0.962449i \(0.412493\pi\)
\(752\) − 288.732i − 0.383952i
\(753\) 0 0
\(754\) −223.727 −0.296721
\(755\) − 585.277i − 0.775201i
\(756\) 0 0
\(757\) 709.798 0.937646 0.468823 0.883292i \(-0.344678\pi\)
0.468823 + 0.883292i \(0.344678\pi\)
\(758\) − 20.4641i − 0.0269975i
\(759\) 0 0
\(760\) 185.016 0.243442
\(761\) − 524.925i − 0.689784i −0.938642 0.344892i \(-0.887916\pi\)
0.938642 0.344892i \(-0.112084\pi\)
\(762\) 0 0
\(763\) 246.643 0.323254
\(764\) − 115.450i − 0.151113i
\(765\) 0 0
\(766\) 422.557 0.551641
\(767\) − 388.973i − 0.507136i
\(768\) 0 0
\(769\) −328.774 −0.427534 −0.213767 0.976885i \(-0.568573\pi\)
−0.213767 + 0.976885i \(0.568573\pi\)
\(770\) 100.934i 0.131083i
\(771\) 0 0
\(772\) −179.022 −0.231893
\(773\) 343.076i 0.443824i 0.975067 + 0.221912i \(0.0712298\pi\)
−0.975067 + 0.221912i \(0.928770\pi\)
\(774\) 0 0
\(775\) −170.335 −0.219787
\(776\) − 475.523i − 0.612788i
\(777\) 0 0
\(778\) 125.745 0.161626
\(779\) 132.173i 0.169670i
\(780\) 0 0
\(781\) 724.608 0.927796
\(782\) − 521.132i − 0.666409i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) 1037.15i 1.32121i
\(786\) 0 0
\(787\) 330.465 0.419905 0.209952 0.977712i \(-0.432669\pi\)
0.209952 + 0.977712i \(0.432669\pi\)
\(788\) − 3.75418i − 0.00476419i
\(789\) 0 0
\(790\) −705.660 −0.893241
\(791\) − 212.803i − 0.269031i
\(792\) 0 0
\(793\) 965.358 1.21735
\(794\) − 760.253i − 0.957497i
\(795\) 0 0
\(796\) 160.388 0.201492
\(797\) 230.862i 0.289664i 0.989456 + 0.144832i \(0.0462642\pi\)
−0.989456 + 0.144832i \(0.953736\pi\)
\(798\) 0 0
\(799\) −1345.97 −1.68456
\(800\) 43.2061i 0.0540077i
\(801\) 0 0
\(802\) 247.008 0.307990
\(803\) − 86.1748i − 0.107316i
\(804\) 0 0
\(805\) 217.864 0.270638
\(806\) 464.262i 0.576007i
\(807\) 0 0
\(808\) −62.3658 −0.0771855
\(809\) 1138.49i 1.40729i 0.710554 + 0.703643i \(0.248444\pi\)
−0.710554 + 0.703643i \(0.751556\pi\)
\(810\) 0 0
\(811\) 1346.08 1.65977 0.829887 0.557931i \(-0.188405\pi\)
0.829887 + 0.557931i \(0.188405\pi\)
\(812\) 56.8682i 0.0700347i
\(813\) 0 0
\(814\) 648.752 0.796993
\(815\) 702.392i 0.861831i
\(816\) 0 0
\(817\) −783.320 −0.958777
\(818\) 304.428i 0.372161i
\(819\) 0 0
\(820\) 70.1634 0.0855651
\(821\) 479.519i 0.584067i 0.956408 + 0.292034i \(0.0943320\pi\)
−0.956408 + 0.292034i \(0.905668\pi\)
\(822\) 0 0
\(823\) 1246.20 1.51422 0.757109 0.653289i \(-0.226611\pi\)
0.757109 + 0.653289i \(0.226611\pi\)
\(824\) − 357.831i − 0.434261i
\(825\) 0 0
\(826\) −98.8713 −0.119699
\(827\) − 464.446i − 0.561603i −0.959766 0.280802i \(-0.909400\pi\)
0.959766 0.280802i \(-0.0906003\pi\)
\(828\) 0 0
\(829\) 479.856 0.578837 0.289418 0.957203i \(-0.406538\pi\)
0.289418 + 0.957203i \(0.406538\pi\)
\(830\) − 68.5309i − 0.0825673i
\(831\) 0 0
\(832\) 117.762 0.141540
\(833\) − 130.526i − 0.156694i
\(834\) 0 0
\(835\) 1212.90 1.45258
\(836\) 203.266i 0.243141i
\(837\) 0 0
\(838\) 330.335 0.394195
\(839\) − 287.604i − 0.342794i −0.985202 0.171397i \(-0.945172\pi\)
0.985202 0.171397i \(-0.0548280\pi\)
\(840\) 0 0
\(841\) 725.500 0.862664
\(842\) − 1151.63i − 1.36774i
\(843\) 0 0
\(844\) 322.220 0.381778
\(845\) 198.691i 0.235137i
\(846\) 0 0
\(847\) 209.246 0.247044
\(848\) − 321.237i − 0.378817i
\(849\) 0 0
\(850\) 201.411 0.236955
\(851\) − 1400.32i − 1.64549i
\(852\) 0 0
\(853\) −679.964 −0.797144 −0.398572 0.917137i \(-0.630494\pi\)
−0.398572 + 0.917137i \(0.630494\pi\)
\(854\) − 245.380i − 0.287330i
\(855\) 0 0
\(856\) 112.296 0.131187
\(857\) 837.228i 0.976929i 0.872584 + 0.488464i \(0.162443\pi\)
−0.872584 + 0.488464i \(0.837557\pi\)
\(858\) 0 0
\(859\) 346.622 0.403518 0.201759 0.979435i \(-0.435334\pi\)
0.201759 + 0.979435i \(0.435334\pi\)
\(860\) 415.823i 0.483515i
\(861\) 0 0
\(862\) −449.690 −0.521682
\(863\) 62.3236i 0.0722174i 0.999348 + 0.0361087i \(0.0114962\pi\)
−0.999348 + 0.0361087i \(0.988504\pi\)
\(864\) 0 0
\(865\) −576.361 −0.666313
\(866\) − 486.912i − 0.562255i
\(867\) 0 0
\(868\) 118.008 0.135954
\(869\) − 775.265i − 0.892135i
\(870\) 0 0
\(871\) −350.454 −0.402358
\(872\) − 263.672i − 0.302376i
\(873\) 0 0
\(874\) 438.744 0.501995
\(875\) 359.809i 0.411211i
\(876\) 0 0
\(877\) −1690.15 −1.92720 −0.963598 0.267354i \(-0.913851\pi\)
−0.963598 + 0.267354i \(0.913851\pi\)
\(878\) − 383.767i − 0.437092i
\(879\) 0 0
\(880\) 107.903 0.122617
\(881\) 1480.43i 1.68040i 0.542280 + 0.840198i \(0.317561\pi\)
−0.542280 + 0.840198i \(0.682439\pi\)
\(882\) 0 0
\(883\) −688.171 −0.779356 −0.389678 0.920951i \(-0.627414\pi\)
−0.389678 + 0.920951i \(0.627414\pi\)
\(884\) − 548.963i − 0.620998i
\(885\) 0 0
\(886\) 268.412 0.302948
\(887\) 625.526i 0.705216i 0.935771 + 0.352608i \(0.114705\pi\)
−0.935771 + 0.352608i \(0.885295\pi\)
\(888\) 0 0
\(889\) −59.6329 −0.0670786
\(890\) 492.347i 0.553199i
\(891\) 0 0
\(892\) 40.9954 0.0459590
\(893\) − 1133.18i − 1.26896i
\(894\) 0 0
\(895\) 1268.92 1.41779
\(896\) − 29.9333i − 0.0334077i
\(897\) 0 0
\(898\) 851.116 0.947791
\(899\) 239.676i 0.266603i
\(900\) 0 0
\(901\) −1497.49 −1.66203
\(902\) 77.0842i 0.0854592i
\(903\) 0 0
\(904\) −227.496 −0.251655
\(905\) − 1086.37i − 1.20041i
\(906\) 0 0
\(907\) 1007.97 1.11133 0.555664 0.831407i \(-0.312464\pi\)
0.555664 + 0.831407i \(0.312464\pi\)
\(908\) 301.643i 0.332206i
\(909\) 0 0
\(910\) 229.498 0.252196
\(911\) − 383.228i − 0.420668i −0.977630 0.210334i \(-0.932545\pi\)
0.977630 0.210334i \(-0.0674551\pi\)
\(912\) 0 0
\(913\) 75.2906 0.0824651
\(914\) − 250.433i − 0.273997i
\(915\) 0 0
\(916\) 595.521 0.650133
\(917\) − 627.249i − 0.684023i
\(918\) 0 0
\(919\) −769.956 −0.837819 −0.418910 0.908028i \(-0.637588\pi\)
−0.418910 + 0.908028i \(0.637588\pi\)
\(920\) − 232.906i − 0.253159i
\(921\) 0 0
\(922\) −283.172 −0.307128
\(923\) − 1647.58i − 1.78502i
\(924\) 0 0
\(925\) 541.206 0.585088
\(926\) 671.055i 0.724681i
\(927\) 0 0
\(928\) 60.7946 0.0655115
\(929\) − 373.067i − 0.401579i −0.979634 0.200789i \(-0.935649\pi\)
0.979634 0.200789i \(-0.0643507\pi\)
\(930\) 0 0
\(931\) 109.891 0.118035
\(932\) 772.829i 0.829216i
\(933\) 0 0
\(934\) 357.846 0.383133
\(935\) − 503.005i − 0.537973i
\(936\) 0 0
\(937\) −987.512 −1.05391 −0.526954 0.849894i \(-0.676666\pi\)
−0.526954 + 0.849894i \(0.676666\pi\)
\(938\) 89.0802i 0.0949682i
\(939\) 0 0
\(940\) −601.543 −0.639940
\(941\) 1360.67i 1.44598i 0.690857 + 0.722991i \(0.257233\pi\)
−0.690857 + 0.722991i \(0.742767\pi\)
\(942\) 0 0
\(943\) 166.384 0.176441
\(944\) 105.698i 0.111968i
\(945\) 0 0
\(946\) −456.839 −0.482917
\(947\) 1552.86i 1.63977i 0.572529 + 0.819884i \(0.305962\pi\)
−0.572529 + 0.819884i \(0.694038\pi\)
\(948\) 0 0
\(949\) −195.940 −0.206470
\(950\) 169.570i 0.178494i
\(951\) 0 0
\(952\) −139.538 −0.146574
\(953\) − 756.704i − 0.794023i −0.917814 0.397012i \(-0.870047\pi\)
0.917814 0.397012i \(-0.129953\pi\)
\(954\) 0 0
\(955\) −240.529 −0.251862
\(956\) − 415.974i − 0.435119i
\(957\) 0 0
\(958\) 1033.79 1.07911
\(959\) 513.257i 0.535200i
\(960\) 0 0
\(961\) −463.643 −0.482459
\(962\) − 1475.10i − 1.53337i
\(963\) 0 0
\(964\) −646.932 −0.671092
\(965\) 372.973i 0.386500i
\(966\) 0 0
\(967\) −99.3994 −0.102792 −0.0513958 0.998678i \(-0.516367\pi\)
−0.0513958 + 0.998678i \(0.516367\pi\)
\(968\) − 223.693i − 0.231088i
\(969\) 0 0
\(970\) −990.704 −1.02134
\(971\) − 24.0392i − 0.0247571i −0.999923 0.0123786i \(-0.996060\pi\)
0.999923 0.0123786i \(-0.00394032\pi\)
\(972\) 0 0
\(973\) −420.472 −0.432140
\(974\) 903.265i 0.927377i
\(975\) 0 0
\(976\) −262.322 −0.268772
\(977\) − 1271.78i − 1.30172i −0.759199 0.650859i \(-0.774409\pi\)
0.759199 0.650859i \(-0.225591\pi\)
\(978\) 0 0
\(979\) −540.912 −0.552514
\(980\) − 58.3351i − 0.0595256i
\(981\) 0 0
\(982\) 795.789 0.810376
\(983\) 1017.31i 1.03490i 0.855712 + 0.517452i \(0.173119\pi\)
−0.855712 + 0.517452i \(0.826881\pi\)
\(984\) 0 0
\(985\) −7.82145 −0.00794056
\(986\) − 283.403i − 0.287427i
\(987\) 0 0
\(988\) 462.175 0.467789
\(989\) 986.076i 0.997043i
\(990\) 0 0
\(991\) −1748.26 −1.76414 −0.882070 0.471118i \(-0.843851\pi\)
−0.882070 + 0.471118i \(0.843851\pi\)
\(992\) − 126.156i − 0.127174i
\(993\) 0 0
\(994\) −418.790 −0.421317
\(995\) − 334.151i − 0.335830i
\(996\) 0 0
\(997\) 247.516 0.248260 0.124130 0.992266i \(-0.460386\pi\)
0.124130 + 0.992266i \(0.460386\pi\)
\(998\) 1072.23i 1.07438i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.3.b.c.323.21 24
3.2 odd 2 inner 1134.3.b.c.323.4 24
9.2 odd 6 378.3.q.a.71.5 24
9.4 even 3 378.3.q.a.197.5 24
9.5 odd 6 126.3.q.a.29.8 24
9.7 even 3 126.3.q.a.113.8 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.8 24 9.5 odd 6
126.3.q.a.113.8 yes 24 9.7 even 3
378.3.q.a.71.5 24 9.2 odd 6
378.3.q.a.197.5 24 9.4 even 3
1134.3.b.c.323.4 24 3.2 odd 2 inner
1134.3.b.c.323.21 24 1.1 even 1 trivial