Properties

Label 126.3.q.a.29.8
Level $126$
Weight $3$
Character 126.29
Analytic conductor $3.433$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(29,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.29"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.8
Character \(\chi\) \(=\) 126.29
Dual form 126.3.q.a.113.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 + 0.707107i) q^{2} +(-1.41155 + 2.64717i) q^{3} +(1.00000 + 1.73205i) q^{4} +(-3.60855 + 2.08340i) q^{5} +(-3.60062 + 2.24400i) q^{6} +(-1.32288 + 2.29129i) q^{7} +2.82843i q^{8} +(-5.01506 - 7.47323i) q^{9} -5.89274 q^{10} +(-5.60663 - 3.23699i) q^{11} +(-5.99659 + 0.202301i) q^{12} +(7.36010 + 12.7481i) q^{13} +(-3.24037 + 1.87083i) q^{14} +(-0.421473 - 12.4933i) q^{15} +(-2.00000 + 3.46410i) q^{16} +18.6466i q^{17} +(-0.857802 - 12.6990i) q^{18} +15.6987 q^{19} +(-7.21710 - 4.16679i) q^{20} +(-4.19814 - 6.73615i) q^{21} +(-4.57780 - 7.92898i) q^{22} +(17.1145 - 9.88106i) q^{23} +(-7.48734 - 3.99246i) q^{24} +(-3.81892 + 6.61456i) q^{25} +20.8175i q^{26} +(26.8619 - 2.72692i) q^{27} -5.29150 q^{28} +(-9.30724 - 5.37354i) q^{29} +(8.31788 - 15.5991i) q^{30} +(11.1508 + 19.3137i) q^{31} +(-4.89898 + 2.82843i) q^{32} +(16.4829 - 10.2726i) q^{33} +(-13.1851 + 22.8373i) q^{34} -11.0243i q^{35} +(7.92895 - 16.1596i) q^{36} +70.8586 q^{37} +(19.2269 + 11.1006i) q^{38} +(-44.1355 + 1.48896i) q^{39} +(-5.89274 - 10.2065i) q^{40} +(-7.29137 + 4.20968i) q^{41} +(-0.378470 - 11.2186i) q^{42} +(24.9486 - 43.2123i) q^{43} -12.9480i q^{44} +(33.6668 + 16.5191i) q^{45} +27.9479 q^{46} +(-62.5123 - 36.0915i) q^{47} +(-6.34698 - 10.1841i) q^{48} +(-3.50000 - 6.06218i) q^{49} +(-9.35440 + 5.40077i) q^{50} +(-49.3607 - 26.3205i) q^{51} +(-14.7202 + 25.4961i) q^{52} +80.3093i q^{53} +(34.8273 + 15.6545i) q^{54} +26.9757 q^{55} +(-6.48074 - 3.74166i) q^{56} +(-22.1594 + 41.5571i) q^{57} +(-7.59933 - 13.1624i) q^{58} +(-22.8843 + 13.2122i) q^{59} +(21.2175 - 13.2233i) q^{60} +(32.7902 - 56.7944i) q^{61} +31.5391i q^{62} +(23.7576 - 1.60480i) q^{63} -8.00000 q^{64} +(-53.1186 - 30.6680i) q^{65} +(27.4512 - 0.926092i) q^{66} +(-11.9038 - 20.6181i) q^{67} +(-32.2968 + 18.6466i) q^{68} +(1.99895 + 59.2527i) q^{69} +(7.79536 - 13.5020i) q^{70} -111.926i q^{71} +(21.1375 - 14.1847i) q^{72} +13.3109 q^{73} +(86.7837 + 50.1046i) q^{74} +(-12.1193 - 19.4461i) q^{75} +(15.6987 + 27.1909i) q^{76} +(14.8338 - 8.56427i) q^{77} +(-55.1076 - 29.3849i) q^{78} +(-59.8755 + 103.707i) q^{79} -16.6672i q^{80} +(-30.6983 + 74.9574i) q^{81} -11.9068 q^{82} +(10.0716 + 5.81486i) q^{83} +(7.46921 - 14.0075i) q^{84} +(-38.8482 - 67.2871i) q^{85} +(61.1114 - 35.2827i) q^{86} +(27.3623 - 17.0529i) q^{87} +(9.15559 - 15.8580i) q^{88} +83.5516i q^{89} +(29.5524 + 44.0378i) q^{90} -38.9460 q^{91} +(34.2290 + 19.7621i) q^{92} +(-66.8665 + 2.25581i) q^{93} +(-51.0411 - 88.4058i) q^{94} +(-56.6494 + 32.7065i) q^{95} +(-0.572193 - 16.9609i) q^{96} +(-84.0615 + 145.599i) q^{97} -9.89949i q^{98} +(3.92684 + 58.1334i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 36 q^{5} + 8 q^{6} - 32 q^{9} - 24 q^{12} - 44 q^{15} - 48 q^{16} + 48 q^{18} + 24 q^{19} + 72 q^{20} + 28 q^{21} + 24 q^{22} - 72 q^{23} - 16 q^{24} + 72 q^{25} - 108 q^{29} - 56 q^{30}+ \cdots - 440 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 + 0.707107i 0.612372 + 0.353553i
\(3\) −1.41155 + 2.64717i −0.470516 + 0.882391i
\(4\) 1.00000 + 1.73205i 0.250000 + 0.433013i
\(5\) −3.60855 + 2.08340i −0.721710 + 0.416679i −0.815382 0.578924i \(-0.803473\pi\)
0.0936719 + 0.995603i \(0.470140\pi\)
\(6\) −3.60062 + 2.24400i −0.600104 + 0.374000i
\(7\) −1.32288 + 2.29129i −0.188982 + 0.327327i
\(8\) 2.82843i 0.353553i
\(9\) −5.01506 7.47323i −0.557229 0.830359i
\(10\) −5.89274 −0.589274
\(11\) −5.60663 3.23699i −0.509694 0.294272i 0.223014 0.974815i \(-0.428410\pi\)
−0.732708 + 0.680543i \(0.761744\pi\)
\(12\) −5.99659 + 0.202301i −0.499716 + 0.0168584i
\(13\) 7.36010 + 12.7481i 0.566162 + 0.980621i 0.996941 + 0.0781633i \(0.0249056\pi\)
−0.430779 + 0.902458i \(0.641761\pi\)
\(14\) −3.24037 + 1.87083i −0.231455 + 0.133631i
\(15\) −0.421473 12.4933i −0.0280982 0.832885i
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 18.6466i 1.09686i 0.836197 + 0.548428i \(0.184774\pi\)
−0.836197 + 0.548428i \(0.815226\pi\)
\(18\) −0.857802 12.6990i −0.0476557 0.705499i
\(19\) 15.6987 0.826245 0.413123 0.910675i \(-0.364438\pi\)
0.413123 + 0.910675i \(0.364438\pi\)
\(20\) −7.21710 4.16679i −0.360855 0.208340i
\(21\) −4.19814 6.73615i −0.199911 0.320769i
\(22\) −4.57780 7.92898i −0.208082 0.360408i
\(23\) 17.1145 9.88106i 0.744109 0.429611i −0.0794526 0.996839i \(-0.525317\pi\)
0.823561 + 0.567227i \(0.191984\pi\)
\(24\) −7.48734 3.99246i −0.311972 0.166353i
\(25\) −3.81892 + 6.61456i −0.152757 + 0.264582i
\(26\) 20.8175i 0.800674i
\(27\) 26.8619 2.72692i 0.994887 0.100997i
\(28\) −5.29150 −0.188982
\(29\) −9.30724 5.37354i −0.320939 0.185294i 0.330872 0.943676i \(-0.392657\pi\)
−0.651811 + 0.758381i \(0.725991\pi\)
\(30\) 8.31788 15.5991i 0.277263 0.519970i
\(31\) 11.1508 + 19.3137i 0.359702 + 0.623022i 0.987911 0.155023i \(-0.0495451\pi\)
−0.628209 + 0.778044i \(0.716212\pi\)
\(32\) −4.89898 + 2.82843i −0.153093 + 0.0883883i
\(33\) 16.4829 10.2726i 0.499482 0.311290i
\(34\) −13.1851 + 22.8373i −0.387798 + 0.671685i
\(35\) 11.0243i 0.314980i
\(36\) 7.92895 16.1596i 0.220249 0.448877i
\(37\) 70.8586 1.91510 0.957548 0.288273i \(-0.0930810\pi\)
0.957548 + 0.288273i \(0.0930810\pi\)
\(38\) 19.2269 + 11.1006i 0.505970 + 0.292122i
\(39\) −44.1355 + 1.48896i −1.13168 + 0.0381783i
\(40\) −5.89274 10.2065i −0.147318 0.255163i
\(41\) −7.29137 + 4.20968i −0.177838 + 0.102675i −0.586277 0.810111i \(-0.699407\pi\)
0.408438 + 0.912786i \(0.366074\pi\)
\(42\) −0.378470 11.2186i −0.00901120 0.267109i
\(43\) 24.9486 43.2123i 0.580201 1.00494i −0.415254 0.909705i \(-0.636307\pi\)
0.995455 0.0952318i \(-0.0303592\pi\)
\(44\) 12.9480i 0.294272i
\(45\) 33.6668 + 16.5191i 0.748151 + 0.367092i
\(46\) 27.9479 0.607562
\(47\) −62.5123 36.0915i −1.33005 0.767904i −0.344743 0.938697i \(-0.612034\pi\)
−0.985307 + 0.170793i \(0.945367\pi\)
\(48\) −6.34698 10.1841i −0.132229 0.212169i
\(49\) −3.50000 6.06218i −0.0714286 0.123718i
\(50\) −9.35440 + 5.40077i −0.187088 + 0.108015i
\(51\) −49.3607 26.3205i −0.967857 0.516089i
\(52\) −14.7202 + 25.4961i −0.283081 + 0.490310i
\(53\) 80.3093i 1.51527i 0.652679 + 0.757635i \(0.273645\pi\)
−0.652679 + 0.757635i \(0.726355\pi\)
\(54\) 34.8273 + 15.6545i 0.644949 + 0.289898i
\(55\) 26.9757 0.490468
\(56\) −6.48074 3.74166i −0.115728 0.0668153i
\(57\) −22.1594 + 41.5571i −0.388762 + 0.729072i
\(58\) −7.59933 13.1624i −0.131023 0.226938i
\(59\) −22.8843 + 13.2122i −0.387869 + 0.223936i −0.681236 0.732064i \(-0.738557\pi\)
0.293368 + 0.956000i \(0.405224\pi\)
\(60\) 21.2175 13.2233i 0.353625 0.220388i
\(61\) 32.7902 56.7944i 0.537545 0.931055i −0.461491 0.887145i \(-0.652685\pi\)
0.999035 0.0439099i \(-0.0139815\pi\)
\(62\) 31.5391i 0.508695i
\(63\) 23.7576 1.60480i 0.377105 0.0254730i
\(64\) −8.00000 −0.125000
\(65\) −53.1186 30.6680i −0.817209 0.471816i
\(66\) 27.4512 0.926092i 0.415927 0.0140317i
\(67\) −11.9038 20.6181i −0.177669 0.307732i 0.763413 0.645911i \(-0.223522\pi\)
−0.941082 + 0.338179i \(0.890189\pi\)
\(68\) −32.2968 + 18.6466i −0.474953 + 0.274214i
\(69\) 1.99895 + 59.2527i 0.0289702 + 0.858734i
\(70\) 7.79536 13.5020i 0.111362 0.192885i
\(71\) 111.926i 1.57643i −0.615403 0.788213i \(-0.711007\pi\)
0.615403 0.788213i \(-0.288993\pi\)
\(72\) 21.1375 14.1847i 0.293576 0.197010i
\(73\) 13.3109 0.182342 0.0911709 0.995835i \(-0.470939\pi\)
0.0911709 + 0.995835i \(0.470939\pi\)
\(74\) 86.7837 + 50.1046i 1.17275 + 0.677089i
\(75\) −12.1193 19.4461i −0.161591 0.259281i
\(76\) 15.6987 + 27.1909i 0.206561 + 0.357775i
\(77\) 14.8338 8.56427i 0.192646 0.111224i
\(78\) −55.1076 29.3849i −0.706507 0.376730i
\(79\) −59.8755 + 103.707i −0.757917 + 1.31275i 0.185994 + 0.982551i \(0.440450\pi\)
−0.943911 + 0.330200i \(0.892884\pi\)
\(80\) 16.6672i 0.208340i
\(81\) −30.6983 + 74.9574i −0.378991 + 0.925400i
\(82\) −11.9068 −0.145204
\(83\) 10.0716 + 5.81486i 0.121345 + 0.0700586i 0.559444 0.828868i \(-0.311015\pi\)
−0.438099 + 0.898927i \(0.644348\pi\)
\(84\) 7.46921 14.0075i 0.0889192 0.166756i
\(85\) −38.8482 67.2871i −0.457038 0.791612i
\(86\) 61.1114 35.2827i 0.710598 0.410264i
\(87\) 27.3623 17.0529i 0.314509 0.196010i
\(88\) 9.15559 15.8580i 0.104041 0.180204i
\(89\) 83.5516i 0.938782i 0.882990 + 0.469391i \(0.155527\pi\)
−0.882990 + 0.469391i \(0.844473\pi\)
\(90\) 29.5524 + 44.0378i 0.328360 + 0.489308i
\(91\) −38.9460 −0.427978
\(92\) 34.2290 + 19.7621i 0.372054 + 0.214806i
\(93\) −66.8665 + 2.25581i −0.718994 + 0.0242560i
\(94\) −51.0411 88.4058i −0.542990 0.940487i
\(95\) −56.6494 + 32.7065i −0.596309 + 0.344279i
\(96\) −0.572193 16.9609i −0.00596035 0.176676i
\(97\) −84.0615 + 145.599i −0.866613 + 1.50102i −0.00117642 + 0.999999i \(0.500374\pi\)
−0.865437 + 0.501018i \(0.832959\pi\)
\(98\) 9.89949i 0.101015i
\(99\) 3.92684 + 58.1334i 0.0396651 + 0.587206i
\(100\) −15.2757 −0.152757
\(101\) −19.0956 11.0248i −0.189065 0.109157i 0.402480 0.915429i \(-0.368148\pi\)
−0.591545 + 0.806272i \(0.701482\pi\)
\(102\) −41.8429 67.1392i −0.410224 0.658228i
\(103\) −63.2562 109.563i −0.614138 1.06372i −0.990535 0.137260i \(-0.956170\pi\)
0.376397 0.926459i \(-0.377163\pi\)
\(104\) −36.0570 + 20.8175i −0.346702 + 0.200168i
\(105\) 29.1832 + 15.5613i 0.277936 + 0.148203i
\(106\) −56.7872 + 98.3584i −0.535729 + 0.927909i
\(107\) 39.7026i 0.371053i −0.982639 0.185526i \(-0.940601\pi\)
0.982639 0.185526i \(-0.0593990\pi\)
\(108\) 31.5851 + 43.7993i 0.292455 + 0.405549i
\(109\) 93.2221 0.855249 0.427624 0.903957i \(-0.359351\pi\)
0.427624 + 0.903957i \(0.359351\pi\)
\(110\) 33.0384 + 19.0747i 0.300349 + 0.173407i
\(111\) −100.020 + 187.575i −0.901084 + 1.68986i
\(112\) −5.29150 9.16515i −0.0472456 0.0818317i
\(113\) 69.6562 40.2160i 0.616427 0.355894i −0.159050 0.987271i \(-0.550843\pi\)
0.775476 + 0.631376i \(0.217510\pi\)
\(114\) −56.5249 + 35.2278i −0.495833 + 0.309015i
\(115\) −41.1723 + 71.3126i −0.358020 + 0.620109i
\(116\) 21.4941i 0.185294i
\(117\) 58.3579 118.936i 0.498785 1.01655i
\(118\) −37.3698 −0.316693
\(119\) −42.7247 24.6671i −0.359031 0.207286i
\(120\) 35.3363 1.19211i 0.294469 0.00993421i
\(121\) −39.5438 68.4918i −0.326808 0.566048i
\(122\) 80.3193 46.3724i 0.658355 0.380102i
\(123\) −0.851621 25.2437i −0.00692375 0.205233i
\(124\) −22.3015 + 38.6273i −0.179851 + 0.311511i
\(125\) 135.995i 1.08796i
\(126\) 30.2318 + 14.8337i 0.239935 + 0.117728i
\(127\) −22.5391 −0.177473 −0.0887367 0.996055i \(-0.528283\pi\)
−0.0887367 + 0.996055i \(0.528283\pi\)
\(128\) −9.79796 5.65685i −0.0765466 0.0441942i
\(129\) 79.1743 + 127.040i 0.613754 + 0.984803i
\(130\) −43.3711 75.1210i −0.333624 0.577854i
\(131\) 205.316 118.539i 1.56729 0.904878i 0.570811 0.821081i \(-0.306629\pi\)
0.996483 0.0837963i \(-0.0267045\pi\)
\(132\) 34.2755 + 18.2767i 0.259663 + 0.138460i
\(133\) −20.7674 + 35.9702i −0.156146 + 0.270452i
\(134\) 33.6691i 0.251262i
\(135\) −91.2514 + 65.8043i −0.675936 + 0.487439i
\(136\) −52.7405 −0.387798
\(137\) 168.003 + 96.9965i 1.22630 + 0.708004i 0.966254 0.257593i \(-0.0829294\pi\)
0.260045 + 0.965597i \(0.416263\pi\)
\(138\) −39.4498 + 73.9829i −0.285868 + 0.536108i
\(139\) 79.4617 + 137.632i 0.571667 + 0.990156i 0.996395 + 0.0848352i \(0.0270364\pi\)
−0.424728 + 0.905321i \(0.639630\pi\)
\(140\) 19.0946 11.0243i 0.136390 0.0787450i
\(141\) 183.780 114.536i 1.30340 0.812313i
\(142\) 79.1438 137.081i 0.557351 0.965360i
\(143\) 95.2983i 0.666422i
\(144\) 35.9181 2.42623i 0.249432 0.0168488i
\(145\) 44.7808 0.308833
\(146\) 16.3025 + 9.41226i 0.111661 + 0.0644675i
\(147\) 20.9881 0.708053i 0.142776 0.00481669i
\(148\) 70.8586 + 122.731i 0.478774 + 0.829261i
\(149\) 88.2118 50.9291i 0.592026 0.341806i −0.173872 0.984768i \(-0.555628\pi\)
0.765898 + 0.642962i \(0.222295\pi\)
\(150\) −1.09258 32.3862i −0.00728386 0.215908i
\(151\) 70.2311 121.644i 0.465106 0.805588i −0.534100 0.845421i \(-0.679349\pi\)
0.999206 + 0.0398334i \(0.0126827\pi\)
\(152\) 44.4025i 0.292122i
\(153\) 139.350 93.5137i 0.910785 0.611201i
\(154\) 24.2234 0.157295
\(155\) −80.4761 46.4629i −0.519200 0.299760i
\(156\) −46.7144 74.9560i −0.299452 0.480487i
\(157\) −124.454 215.560i −0.792700 1.37300i −0.924290 0.381692i \(-0.875342\pi\)
0.131590 0.991304i \(-0.457992\pi\)
\(158\) −146.664 + 84.6767i −0.928255 + 0.535928i
\(159\) −212.593 113.360i −1.33706 0.712959i
\(160\) 11.7855 20.4130i 0.0736592 0.127581i
\(161\) 52.2857i 0.324756i
\(162\) −90.6005 + 70.0967i −0.559262 + 0.432696i
\(163\) 168.569 1.03417 0.517083 0.855935i \(-0.327018\pi\)
0.517083 + 0.855935i \(0.327018\pi\)
\(164\) −14.5827 8.41935i −0.0889192 0.0513375i
\(165\) −38.0776 + 71.4095i −0.230773 + 0.432785i
\(166\) 8.22346 + 14.2434i 0.0495389 + 0.0858039i
\(167\) 252.089 145.544i 1.50952 0.871519i 0.509577 0.860425i \(-0.329802\pi\)
0.999938 0.0110940i \(-0.00353140\pi\)
\(168\) 19.0527 11.8741i 0.113409 0.0706793i
\(169\) −23.8422 + 41.2959i −0.141078 + 0.244354i
\(170\) 109.879i 0.646349i
\(171\) −78.7298 117.320i −0.460408 0.686080i
\(172\) 99.7945 0.580201
\(173\) 119.791 + 69.1612i 0.692432 + 0.399776i 0.804522 0.593922i \(-0.202421\pi\)
−0.112091 + 0.993698i \(0.535755\pi\)
\(174\) 45.5700 1.53735i 0.261897 0.00883535i
\(175\) −10.1039 17.5005i −0.0577366 0.100003i
\(176\) 22.4265 12.9480i 0.127423 0.0735680i
\(177\) −2.67285 79.2283i −0.0151008 0.447617i
\(178\) −59.0799 + 102.329i −0.331910 + 0.574884i
\(179\) 304.532i 1.70130i 0.525735 + 0.850649i \(0.323790\pi\)
−0.525735 + 0.850649i \(0.676210\pi\)
\(180\) 5.05480 + 74.8317i 0.0280822 + 0.415732i
\(181\) −260.720 −1.44044 −0.720221 0.693745i \(-0.755960\pi\)
−0.720221 + 0.693745i \(0.755960\pi\)
\(182\) −47.6989 27.5390i −0.262082 0.151313i
\(183\) 104.060 + 166.969i 0.568631 + 0.912401i
\(184\) 27.9479 + 48.4071i 0.151891 + 0.263082i
\(185\) −255.697 + 147.627i −1.38214 + 0.797981i
\(186\) −83.4895 44.5189i −0.448868 0.239349i
\(187\) 60.3588 104.544i 0.322774 0.559061i
\(188\) 144.366i 0.767904i
\(189\) −29.2868 + 65.1558i −0.154957 + 0.344740i
\(190\) −92.5081 −0.486885
\(191\) 49.9914 + 28.8626i 0.261735 + 0.151113i 0.625126 0.780524i \(-0.285048\pi\)
−0.363391 + 0.931637i \(0.618381\pi\)
\(192\) 11.2924 21.1774i 0.0588145 0.110299i
\(193\) −44.7554 77.5186i −0.231893 0.401651i 0.726472 0.687196i \(-0.241159\pi\)
−0.958365 + 0.285545i \(0.907825\pi\)
\(194\) −205.908 + 118.881i −1.06138 + 0.612788i
\(195\) 156.163 97.3247i 0.800836 0.499101i
\(196\) 7.00000 12.1244i 0.0357143 0.0618590i
\(197\) 1.87709i 0.00952838i −0.999989 0.00476419i \(-0.998484\pi\)
0.999989 0.00476419i \(-0.00151650\pi\)
\(198\) −36.2971 + 73.9752i −0.183319 + 0.373612i
\(199\) −80.1938 −0.402984 −0.201492 0.979490i \(-0.564579\pi\)
−0.201492 + 0.979490i \(0.564579\pi\)
\(200\) −18.7088 10.8015i −0.0935440 0.0540077i
\(201\) 71.3824 2.40816i 0.355136 0.0119809i
\(202\) −15.5915 27.0052i −0.0771855 0.133689i
\(203\) 24.6246 14.2170i 0.121304 0.0700347i
\(204\) −3.77222 111.816i −0.0184913 0.548117i
\(205\) 17.5409 30.3816i 0.0855651 0.148203i
\(206\) 178.916i 0.868523i
\(207\) −159.674 78.3464i −0.771371 0.378485i
\(208\) −58.8808 −0.283081
\(209\) −88.0166 50.8164i −0.421132 0.243141i
\(210\) 24.7385 + 39.6943i 0.117802 + 0.189021i
\(211\) 80.5551 + 139.526i 0.381778 + 0.661259i 0.991316 0.131498i \(-0.0419786\pi\)
−0.609539 + 0.792756i \(0.708645\pi\)
\(212\) −139.100 + 80.3093i −0.656131 + 0.378817i
\(213\) 296.288 + 157.989i 1.39102 + 0.741734i
\(214\) 28.0740 48.6256i 0.131187 0.227222i
\(215\) 207.912i 0.967031i
\(216\) 7.71290 + 75.9770i 0.0357079 + 0.351746i
\(217\) −59.0042 −0.271909
\(218\) 114.173 + 65.9180i 0.523731 + 0.302376i
\(219\) −18.7890 + 35.2364i −0.0857947 + 0.160897i
\(220\) 26.9757 + 46.7234i 0.122617 + 0.212379i
\(221\) −237.708 + 137.241i −1.07560 + 0.620998i
\(222\) −255.135 + 159.006i −1.14926 + 0.716245i
\(223\) 10.2489 17.7515i 0.0459590 0.0796033i −0.842131 0.539273i \(-0.818699\pi\)
0.888090 + 0.459670i \(0.152032\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) 68.5842 4.63279i 0.304819 0.0205902i
\(226\) 113.748 0.503310
\(227\) −130.615 75.4107i −0.575397 0.332206i 0.183905 0.982944i \(-0.441126\pi\)
−0.759302 + 0.650738i \(0.774459\pi\)
\(228\) −94.1384 + 3.17585i −0.412888 + 0.0139292i
\(229\) 148.880 + 257.868i 0.650133 + 1.12606i 0.983090 + 0.183121i \(0.0586200\pi\)
−0.332958 + 0.942942i \(0.608047\pi\)
\(230\) −100.851 + 58.2265i −0.438484 + 0.253159i
\(231\) 1.73256 + 51.3564i 0.00750026 + 0.222322i
\(232\) 15.1987 26.3248i 0.0655115 0.113469i
\(233\) 386.415i 1.65843i 0.558928 + 0.829216i \(0.311213\pi\)
−0.558928 + 0.829216i \(0.688787\pi\)
\(234\) 155.574 104.401i 0.664846 0.446159i
\(235\) 300.772 1.27988
\(236\) −45.7685 26.4245i −0.193934 0.111968i
\(237\) −190.014 304.889i −0.801748 1.28645i
\(238\) −34.8845 60.4218i −0.146574 0.253873i
\(239\) −180.122 + 103.994i −0.753649 + 0.435119i −0.827011 0.562186i \(-0.809960\pi\)
0.0733620 + 0.997305i \(0.476627\pi\)
\(240\) 44.1209 + 23.5265i 0.183837 + 0.0980272i
\(241\) −161.733 + 280.130i −0.671092 + 1.16236i 0.306503 + 0.951870i \(0.400841\pi\)
−0.977595 + 0.210495i \(0.932492\pi\)
\(242\) 111.847i 0.462176i
\(243\) −155.093 187.070i −0.638244 0.769834i
\(244\) 131.161 0.537545
\(245\) 25.2598 + 14.5838i 0.103101 + 0.0595256i
\(246\) 16.8070 31.5193i 0.0683210 0.128127i
\(247\) 115.544 + 200.128i 0.467789 + 0.810234i
\(248\) −54.6273 + 31.5391i −0.220271 + 0.127174i
\(249\) −29.6096 + 18.4534i −0.118914 + 0.0741101i
\(250\) 96.1631 166.559i 0.384652 0.666237i
\(251\) 288.081i 1.14773i −0.818948 0.573867i \(-0.805442\pi\)
0.818948 0.573867i \(-0.194558\pi\)
\(252\) 26.5372 + 39.5446i 0.105306 + 0.156923i
\(253\) −127.940 −0.505690
\(254\) −27.6047 15.9376i −0.108680 0.0627463i
\(255\) 232.957 7.85902i 0.913556 0.0308197i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −111.683 + 64.4799i −0.434562 + 0.250895i −0.701288 0.712878i \(-0.747391\pi\)
0.266726 + 0.963772i \(0.414058\pi\)
\(258\) 7.13772 + 211.576i 0.0276656 + 0.820061i
\(259\) −93.7371 + 162.357i −0.361919 + 0.626863i
\(260\) 122.672i 0.471816i
\(261\) 6.51872 + 96.5038i 0.0249759 + 0.369746i
\(262\) 335.279 1.27969
\(263\) −27.4385 15.8417i −0.104329 0.0602344i 0.446928 0.894570i \(-0.352518\pi\)
−0.551257 + 0.834336i \(0.685851\pi\)
\(264\) 29.0552 + 46.6207i 0.110058 + 0.176594i
\(265\) −167.316 289.800i −0.631381 1.09358i
\(266\) −50.8695 + 29.3695i −0.191239 + 0.110412i
\(267\) −221.176 117.937i −0.828373 0.441712i
\(268\) 23.8077 41.2361i 0.0888346 0.153866i
\(269\) 154.678i 0.575011i −0.957779 0.287505i \(-0.907174\pi\)
0.957779 0.287505i \(-0.0928260\pi\)
\(270\) −158.290 + 16.0690i −0.586260 + 0.0595149i
\(271\) −170.350 −0.628598 −0.314299 0.949324i \(-0.601769\pi\)
−0.314299 + 0.949324i \(0.601769\pi\)
\(272\) −64.5936 37.2931i −0.237477 0.137107i
\(273\) 54.9742 103.097i 0.201371 0.377644i
\(274\) 137.174 + 237.592i 0.500634 + 0.867124i
\(275\) 42.8225 24.7236i 0.155718 0.0899040i
\(276\) −100.630 + 62.7149i −0.364600 + 0.227228i
\(277\) 263.888 457.068i 0.952665 1.65007i 0.213043 0.977043i \(-0.431662\pi\)
0.739622 0.673022i \(-0.235004\pi\)
\(278\) 224.752i 0.808459i
\(279\) 88.4137 180.191i 0.316895 0.645847i
\(280\) 31.1814 0.111362
\(281\) −349.542 201.808i −1.24392 0.718179i −0.274032 0.961721i \(-0.588357\pi\)
−0.969890 + 0.243542i \(0.921691\pi\)
\(282\) 306.073 10.3257i 1.08536 0.0366158i
\(283\) 110.981 + 192.224i 0.392158 + 0.679238i 0.992734 0.120330i \(-0.0383951\pi\)
−0.600576 + 0.799568i \(0.705062\pi\)
\(284\) 193.862 111.926i 0.682612 0.394106i
\(285\) −6.61656 196.128i −0.0232160 0.688167i
\(286\) 67.3861 116.716i 0.235616 0.408098i
\(287\) 22.2755i 0.0776150i
\(288\) 45.7062 + 22.4265i 0.158702 + 0.0778696i
\(289\) −58.6945 −0.203095
\(290\) 54.8451 + 31.6648i 0.189121 + 0.109189i
\(291\) −266.768 428.045i −0.916730 1.47094i
\(292\) 13.3109 + 23.0552i 0.0455854 + 0.0789563i
\(293\) −226.579 + 130.815i −0.773306 + 0.446469i −0.834053 0.551685i \(-0.813985\pi\)
0.0607464 + 0.998153i \(0.480652\pi\)
\(294\) 26.2057 + 13.9736i 0.0891350 + 0.0475293i
\(295\) 55.0526 95.3539i 0.186619 0.323234i
\(296\) 200.418i 0.677089i
\(297\) −159.432 71.6630i −0.536808 0.241290i
\(298\) 144.049 0.483387
\(299\) 251.929 + 145.451i 0.842572 + 0.486459i
\(300\) 21.5623 40.4374i 0.0718745 0.134791i
\(301\) 66.0079 + 114.329i 0.219295 + 0.379831i
\(302\) 172.030 99.3217i 0.569637 0.328880i
\(303\) 56.1390 34.9872i 0.185277 0.115469i
\(304\) −31.3973 + 54.3818i −0.103281 + 0.178887i
\(305\) 273.260i 0.895935i
\(306\) 236.792 15.9951i 0.773832 0.0522714i
\(307\) −137.772 −0.448769 −0.224384 0.974501i \(-0.572037\pi\)
−0.224384 + 0.974501i \(0.572037\pi\)
\(308\) 29.6675 + 17.1285i 0.0963231 + 0.0556122i
\(309\) 379.322 12.7968i 1.22758 0.0414136i
\(310\) −65.7084 113.810i −0.211963 0.367130i
\(311\) 296.994 171.469i 0.954964 0.551349i 0.0603446 0.998178i \(-0.480780\pi\)
0.894619 + 0.446829i \(0.147447\pi\)
\(312\) −4.21140 124.834i −0.0134981 0.400109i
\(313\) 176.129 305.064i 0.562711 0.974644i −0.434548 0.900649i \(-0.643092\pi\)
0.997259 0.0739953i \(-0.0235750\pi\)
\(314\) 352.009i 1.12105i
\(315\) −82.3871 + 55.2875i −0.261546 + 0.175516i
\(316\) −239.502 −0.757917
\(317\) 128.074 + 73.9438i 0.404020 + 0.233261i 0.688217 0.725505i \(-0.258394\pi\)
−0.284197 + 0.958766i \(0.591727\pi\)
\(318\) −180.214 289.163i −0.566710 0.909319i
\(319\) 34.7882 + 60.2549i 0.109054 + 0.188887i
\(320\) 28.8684 16.6672i 0.0902137 0.0520849i
\(321\) 105.100 + 56.0422i 0.327414 + 0.174586i
\(322\) −36.9715 + 64.0366i −0.114818 + 0.198871i
\(323\) 292.726i 0.906273i
\(324\) −160.528 + 21.7864i −0.495458 + 0.0672420i
\(325\) −112.430 −0.345940
\(326\) 206.454 + 119.196i 0.633295 + 0.365633i
\(327\) −131.588 + 246.775i −0.402408 + 0.754664i
\(328\) −11.9068 20.6231i −0.0363011 0.0628754i
\(329\) 165.392 95.4892i 0.502711 0.290241i
\(330\) −97.1294 + 60.5335i −0.294332 + 0.183435i
\(331\) −280.028 + 485.023i −0.846006 + 1.46533i 0.0387387 + 0.999249i \(0.487666\pi\)
−0.884745 + 0.466076i \(0.845667\pi\)
\(332\) 23.2594i 0.0700586i
\(333\) −355.360 529.542i −1.06715 1.59022i
\(334\) 411.660 1.23251
\(335\) 85.9112 + 49.6008i 0.256451 + 0.148062i
\(336\) 31.7310 1.07048i 0.0944374 0.00318594i
\(337\) 11.9600 + 20.7154i 0.0354897 + 0.0614699i 0.883225 0.468950i \(-0.155368\pi\)
−0.847735 + 0.530420i \(0.822034\pi\)
\(338\) −58.4012 + 33.7180i −0.172785 + 0.0997573i
\(339\) 8.13574 + 241.159i 0.0239992 + 0.711383i
\(340\) 77.6964 134.574i 0.228519 0.395806i
\(341\) 144.380i 0.423400i
\(342\) −13.4663 199.357i −0.0393753 0.582915i
\(343\) 18.5203 0.0539949
\(344\) 122.223 + 70.5654i 0.355299 + 0.205132i
\(345\) −130.660 209.651i −0.378725 0.607685i
\(346\) 97.8087 + 169.410i 0.282684 + 0.489623i
\(347\) 209.628 121.029i 0.604115 0.348786i −0.166544 0.986034i \(-0.553261\pi\)
0.770659 + 0.637248i \(0.219927\pi\)
\(348\) 56.8988 + 30.3400i 0.163502 + 0.0871840i
\(349\) −17.9763 + 31.1358i −0.0515079 + 0.0892143i −0.890630 0.454729i \(-0.849736\pi\)
0.839122 + 0.543943i \(0.183069\pi\)
\(350\) 28.5782i 0.0816519i
\(351\) 232.470 + 322.368i 0.662307 + 0.918426i
\(352\) 36.6224 0.104041
\(353\) 266.093 + 153.629i 0.753806 + 0.435210i 0.827067 0.562103i \(-0.190008\pi\)
−0.0732617 + 0.997313i \(0.523341\pi\)
\(354\) 52.7493 98.9244i 0.149009 0.279448i
\(355\) 233.187 + 403.891i 0.656864 + 1.13772i
\(356\) −144.716 + 83.5516i −0.406505 + 0.234695i
\(357\) 125.606 78.2808i 0.351838 0.219274i
\(358\) −215.337 + 372.974i −0.601499 + 1.04183i
\(359\) 529.049i 1.47368i 0.676070 + 0.736838i \(0.263682\pi\)
−0.676070 + 0.736838i \(0.736318\pi\)
\(360\) −46.7232 + 95.2241i −0.129787 + 0.264511i
\(361\) −114.552 −0.317318
\(362\) −319.316 184.357i −0.882087 0.509273i
\(363\) 237.128 7.99974i 0.653245 0.0220379i
\(364\) −38.9460 67.4564i −0.106995 0.185320i
\(365\) −48.0332 + 27.7320i −0.131598 + 0.0759780i
\(366\) 9.38118 + 278.076i 0.0256316 + 0.759771i
\(367\) 169.534 293.642i 0.461946 0.800115i −0.537112 0.843511i \(-0.680485\pi\)
0.999058 + 0.0433966i \(0.0138179\pi\)
\(368\) 79.0485i 0.214806i
\(369\) 68.0266 + 33.3783i 0.184354 + 0.0904561i
\(370\) −417.551 −1.12852
\(371\) −184.012 106.239i −0.495988 0.286359i
\(372\) −70.7736 113.560i −0.190252 0.305270i
\(373\) −247.394 428.499i −0.663255 1.14879i −0.979755 0.200199i \(-0.935841\pi\)
0.316500 0.948593i \(-0.397492\pi\)
\(374\) 147.848 85.3602i 0.395316 0.228236i
\(375\) 360.003 + 191.964i 0.960007 + 0.511903i
\(376\) 102.082 176.812i 0.271495 0.470244i
\(377\) 158.199i 0.419626i
\(378\) −81.9410 + 59.0903i −0.216775 + 0.156324i
\(379\) −14.4703 −0.0381802 −0.0190901 0.999818i \(-0.506077\pi\)
−0.0190901 + 0.999818i \(0.506077\pi\)
\(380\) −113.299 65.4131i −0.298155 0.172140i
\(381\) 31.8150 59.6650i 0.0835041 0.156601i
\(382\) 40.8178 + 70.6985i 0.106853 + 0.185075i
\(383\) 258.762 149.397i 0.675620 0.390069i −0.122583 0.992458i \(-0.539118\pi\)
0.798203 + 0.602389i \(0.205784\pi\)
\(384\) 28.8050 17.9520i 0.0750129 0.0467500i
\(385\) −35.6856 + 61.8092i −0.0926898 + 0.160543i
\(386\) 126.587i 0.327947i
\(387\) −448.054 + 30.2656i −1.15776 + 0.0782056i
\(388\) −336.246 −0.866613
\(389\) −77.0026 44.4575i −0.197950 0.114287i 0.397749 0.917494i \(-0.369792\pi\)
−0.595699 + 0.803208i \(0.703125\pi\)
\(390\) 260.079 8.77402i 0.666869 0.0224975i
\(391\) 184.248 + 319.127i 0.471222 + 0.816181i
\(392\) 17.1464 9.89949i 0.0437409 0.0252538i
\(393\) 23.9805 + 710.829i 0.0610192 + 1.80873i
\(394\) 1.32730 2.29896i 0.00336879 0.00583492i
\(395\) 498.977i 1.26323i
\(396\) −96.7631 + 64.9349i −0.244351 + 0.163977i
\(397\) −537.580 −1.35411 −0.677053 0.735935i \(-0.736743\pi\)
−0.677053 + 0.735935i \(0.736743\pi\)
\(398\) −98.2169 56.7056i −0.246776 0.142476i
\(399\) −65.9051 105.748i −0.165176 0.265034i
\(400\) −15.2757 26.4582i −0.0381892 0.0661456i
\(401\) 151.261 87.3304i 0.377209 0.217782i −0.299394 0.954129i \(-0.596785\pi\)
0.676603 + 0.736348i \(0.263451\pi\)
\(402\) 89.1281 + 47.5256i 0.221712 + 0.118223i
\(403\) −164.141 + 284.301i −0.407299 + 0.705462i
\(404\) 44.0993i 0.109157i
\(405\) −45.3898 334.444i −0.112073 0.825788i
\(406\) 40.2119 0.0990440
\(407\) −397.278 229.369i −0.976113 0.563559i
\(408\) 74.4457 139.613i 0.182465 0.342189i
\(409\) −107.632 186.423i −0.263158 0.455803i 0.703922 0.710278i \(-0.251431\pi\)
−0.967079 + 0.254475i \(0.918097\pi\)
\(410\) 42.9661 24.8065i 0.104795 0.0605037i
\(411\) −493.911 + 307.818i −1.20173 + 0.748948i
\(412\) 126.512 219.126i 0.307069 0.531859i
\(413\) 69.9125i 0.169280i
\(414\) −140.160 208.861i −0.338551 0.504495i
\(415\) −48.4587 −0.116768
\(416\) −72.1140 41.6350i −0.173351 0.100084i
\(417\) −476.499 + 16.0752i −1.14268 + 0.0385496i
\(418\) −71.8653 124.474i −0.171927 0.297785i
\(419\) 202.288 116.791i 0.482788 0.278738i −0.238790 0.971071i \(-0.576751\pi\)
0.721578 + 0.692334i \(0.243417\pi\)
\(420\) 2.23023 + 66.1082i 0.00531006 + 0.157400i
\(421\) 407.164 705.229i 0.967136 1.67513i 0.263372 0.964694i \(-0.415165\pi\)
0.703764 0.710434i \(-0.251501\pi\)
\(422\) 227.844i 0.539915i
\(423\) 43.7832 + 648.170i 0.103506 + 1.53232i
\(424\) −227.149 −0.535729
\(425\) −123.339 71.2097i −0.290209 0.167552i
\(426\) 251.162 + 403.004i 0.589583 + 0.946019i
\(427\) 86.7548 + 150.264i 0.203173 + 0.351906i
\(428\) 68.7670 39.7026i 0.160670 0.0927631i
\(429\) 252.271 + 134.518i 0.588045 + 0.313562i
\(430\) −147.016 + 254.639i −0.341897 + 0.592183i
\(431\) 317.979i 0.737770i −0.929475 0.368885i \(-0.879740\pi\)
0.929475 0.368885i \(-0.120260\pi\)
\(432\) −44.2775 + 98.5063i −0.102494 + 0.228024i
\(433\) −344.299 −0.795148 −0.397574 0.917570i \(-0.630148\pi\)
−0.397574 + 0.917570i \(0.630148\pi\)
\(434\) −72.2651 41.7223i −0.166510 0.0961343i
\(435\) −63.2103 + 118.543i −0.145311 + 0.272512i
\(436\) 93.2221 + 161.465i 0.213812 + 0.370334i
\(437\) 268.675 155.119i 0.614816 0.354964i
\(438\) −47.9277 + 29.8697i −0.109424 + 0.0681957i
\(439\) 135.682 235.008i 0.309071 0.535326i −0.669089 0.743183i \(-0.733315\pi\)
0.978159 + 0.207856i \(0.0666487\pi\)
\(440\) 76.2989i 0.173407i
\(441\) −27.7513 + 56.5585i −0.0629282 + 0.128251i
\(442\) −388.175 −0.878224
\(443\) −164.368 94.8980i −0.371034 0.214217i 0.302876 0.953030i \(-0.402053\pi\)
−0.673910 + 0.738813i \(0.735387\pi\)
\(444\) −424.910 + 14.3348i −0.957004 + 0.0322855i
\(445\) −174.071 301.500i −0.391171 0.677528i
\(446\) 25.1045 14.4941i 0.0562881 0.0324979i
\(447\) 10.3030 + 305.401i 0.0230492 + 0.683224i
\(448\) 10.5830 18.3303i 0.0236228 0.0409159i
\(449\) 601.830i 1.34038i 0.742190 + 0.670190i \(0.233787\pi\)
−0.742190 + 0.670190i \(0.766213\pi\)
\(450\) 87.2741 + 42.8224i 0.193942 + 0.0951609i
\(451\) 54.5067 0.120858
\(452\) 139.312 + 80.4321i 0.308213 + 0.177947i
\(453\) 222.878 + 357.620i 0.492004 + 0.789448i
\(454\) −106.647 184.718i −0.234905 0.406867i
\(455\) 140.539 81.1400i 0.308876 0.178330i
\(456\) −117.541 62.6763i −0.257766 0.137448i
\(457\) 88.5414 153.358i 0.193745 0.335576i −0.752743 0.658314i \(-0.771270\pi\)
0.946488 + 0.322738i \(0.104603\pi\)
\(458\) 421.097i 0.919426i
\(459\) 50.8477 + 500.883i 0.110779 + 1.09125i
\(460\) −164.689 −0.358020
\(461\) 173.407 + 100.117i 0.376154 + 0.217173i 0.676144 0.736770i \(-0.263650\pi\)
−0.299990 + 0.953942i \(0.596983\pi\)
\(462\) −34.1925 + 64.1236i −0.0740098 + 0.138796i
\(463\) −237.254 410.935i −0.512427 0.887549i −0.999896 0.0144092i \(-0.995413\pi\)
0.487469 0.873140i \(-0.337920\pi\)
\(464\) 37.2290 21.4941i 0.0802348 0.0463236i
\(465\) 236.591 147.450i 0.508798 0.317096i
\(466\) −273.236 + 473.259i −0.586344 + 1.01558i
\(467\) 253.035i 0.541832i 0.962603 + 0.270916i \(0.0873265\pi\)
−0.962603 + 0.270916i \(0.912673\pi\)
\(468\) 264.361 17.8573i 0.564874 0.0381566i
\(469\) 62.9892 0.134305
\(470\) 368.369 + 212.678i 0.783763 + 0.452506i
\(471\) 746.298 25.1771i 1.58450 0.0534546i
\(472\) −37.3698 64.7264i −0.0791734 0.137132i
\(473\) −279.756 + 161.517i −0.591450 + 0.341474i
\(474\) −17.1302 507.771i −0.0361396 1.07125i
\(475\) −59.9519 + 103.840i −0.126215 + 0.218610i
\(476\) 98.6684i 0.207286i
\(477\) 600.170 402.756i 1.25822 0.844352i
\(478\) −294.138 −0.615352
\(479\) −633.064 365.500i −1.32164 0.763048i −0.337648 0.941273i \(-0.609631\pi\)
−0.983990 + 0.178225i \(0.942965\pi\)
\(480\) 37.4011 + 60.0122i 0.0779190 + 0.125025i
\(481\) 521.526 + 903.310i 1.08425 + 1.87798i
\(482\) −396.164 + 228.725i −0.821916 + 0.474533i
\(483\) −138.409 73.8037i −0.286562 0.152803i
\(484\) 79.0876 136.984i 0.163404 0.283024i
\(485\) 700.533i 1.44440i
\(486\) −57.6714 338.780i −0.118665 0.697079i
\(487\) 638.705 1.31151 0.655754 0.754974i \(-0.272351\pi\)
0.655754 + 0.754974i \(0.272351\pi\)
\(488\) 160.639 + 92.7448i 0.329178 + 0.190051i
\(489\) −237.943 + 446.232i −0.486592 + 0.912539i
\(490\) 20.6246 + 35.7228i 0.0420910 + 0.0729037i
\(491\) 487.319 281.354i 0.992504 0.573022i 0.0864820 0.996253i \(-0.472437\pi\)
0.906022 + 0.423231i \(0.139104\pi\)
\(492\) 42.8717 26.7188i 0.0871377 0.0543064i
\(493\) 100.198 173.548i 0.203241 0.352024i
\(494\) 326.807i 0.661553i
\(495\) −135.285 201.596i −0.273303 0.407264i
\(496\) −89.2060 −0.179851
\(497\) 256.455 + 148.064i 0.516006 + 0.297916i
\(498\) −49.3127 + 1.66361i −0.0990215 + 0.00334059i
\(499\) −379.091 656.605i −0.759701 1.31584i −0.943003 0.332785i \(-0.892012\pi\)
0.183302 0.983057i \(-0.441322\pi\)
\(500\) 235.550 135.995i 0.471101 0.271990i
\(501\) 29.4436 + 872.766i 0.0587697 + 1.74205i
\(502\) 203.704 352.826i 0.405786 0.702841i
\(503\) 367.332i 0.730283i −0.930952 0.365142i \(-0.881021\pi\)
0.930952 0.365142i \(-0.118979\pi\)
\(504\) 4.53906 + 67.1967i 0.00900607 + 0.133327i
\(505\) 91.8764 0.181933
\(506\) −156.693 90.4670i −0.309671 0.178788i
\(507\) −75.6630 121.406i −0.149237 0.239459i
\(508\) −22.5391 39.0389i −0.0443683 0.0768482i
\(509\) −254.904 + 147.169i −0.500794 + 0.289134i −0.729042 0.684469i \(-0.760034\pi\)
0.228247 + 0.973603i \(0.426701\pi\)
\(510\) 290.870 + 155.100i 0.570333 + 0.304118i
\(511\) −17.6087 + 30.4992i −0.0344593 + 0.0596853i
\(512\) 22.6274i 0.0441942i
\(513\) 421.697 42.8090i 0.822021 0.0834484i
\(514\) −182.377 −0.354819
\(515\) 456.526 + 263.576i 0.886459 + 0.511797i
\(516\) −140.865 + 264.174i −0.272994 + 0.511964i
\(517\) 233.656 + 404.704i 0.451945 + 0.782792i
\(518\) −229.608 + 132.564i −0.443259 + 0.255916i
\(519\) −352.172 + 219.483i −0.678559 + 0.422895i
\(520\) 86.7423 150.242i 0.166812 0.288927i
\(521\) 53.1458i 0.102007i −0.998698 0.0510037i \(-0.983758\pi\)
0.998698 0.0510037i \(-0.0162420\pi\)
\(522\) −60.2547 + 122.802i −0.115430 + 0.235253i
\(523\) −776.112 −1.48396 −0.741981 0.670421i \(-0.766113\pi\)
−0.741981 + 0.670421i \(0.766113\pi\)
\(524\) 410.631 + 237.078i 0.783647 + 0.452439i
\(525\) 60.5890 2.04403i 0.115408 0.00389339i
\(526\) −22.4035 38.8040i −0.0425922 0.0737718i
\(527\) −360.134 + 207.923i −0.683365 + 0.394541i
\(528\) 2.61938 + 77.6436i 0.00496096 + 0.147052i
\(529\) −69.2293 + 119.909i −0.130868 + 0.226670i
\(530\) 473.241i 0.892908i
\(531\) 213.504 + 104.759i 0.402079 + 0.197286i
\(532\) −83.0695 −0.156146
\(533\) −107.331 61.9673i −0.201371 0.116261i
\(534\) −187.490 300.838i −0.351104 0.563366i
\(535\) 82.7163 + 143.269i 0.154610 + 0.267792i
\(536\) 58.3167 33.6691i 0.108800 0.0628156i
\(537\) −806.150 429.862i −1.50121 0.800488i
\(538\) 109.374 189.441i 0.203297 0.352121i
\(539\) 45.3179i 0.0840777i
\(540\) −205.228 92.2477i −0.380051 0.170829i
\(541\) 414.383 0.765958 0.382979 0.923757i \(-0.374898\pi\)
0.382979 + 0.923757i \(0.374898\pi\)
\(542\) −208.635 120.456i −0.384936 0.222243i
\(543\) 368.019 690.171i 0.677751 1.27103i
\(544\) −52.7405 91.3492i −0.0969494 0.167921i
\(545\) −336.397 + 194.219i −0.617241 + 0.356364i
\(546\) 140.230 87.3947i 0.256831 0.160064i
\(547\) 194.595 337.048i 0.355749 0.616175i −0.631497 0.775378i \(-0.717559\pi\)
0.987246 + 0.159203i \(0.0508925\pi\)
\(548\) 387.986i 0.708004i
\(549\) −588.882 + 39.7783i −1.07265 + 0.0724560i
\(550\) 69.9289 0.127143
\(551\) −146.111 84.3574i −0.265175 0.153099i
\(552\) −167.592 + 5.65388i −0.303608 + 0.0102425i
\(553\) −158.416 274.384i −0.286466 0.496173i
\(554\) 646.392 373.194i 1.16677 0.673636i
\(555\) −29.8650 885.255i −0.0538108 1.59505i
\(556\) −158.923 + 275.263i −0.285833 + 0.495078i
\(557\) 752.828i 1.35158i −0.737096 0.675788i \(-0.763803\pi\)
0.737096 0.675788i \(-0.236197\pi\)
\(558\) 235.699 158.170i 0.422399 0.283460i
\(559\) 734.498 1.31395
\(560\) 38.1893 + 22.0486i 0.0681952 + 0.0393725i
\(561\) 191.548 + 307.350i 0.341440 + 0.547861i
\(562\) −285.400 494.327i −0.507829 0.879586i
\(563\) −574.864 + 331.898i −1.02107 + 0.589517i −0.914415 0.404779i \(-0.867349\pi\)
−0.106659 + 0.994296i \(0.534015\pi\)
\(564\) 382.162 + 203.780i 0.677592 + 0.361311i
\(565\) −167.572 + 290.243i −0.296587 + 0.513704i
\(566\) 313.901i 0.554596i
\(567\) −131.139 169.498i −0.231286 0.298938i
\(568\) 316.575 0.557351
\(569\) 496.119 + 286.435i 0.871914 + 0.503400i 0.867984 0.496592i \(-0.165416\pi\)
0.00393041 + 0.999992i \(0.498749\pi\)
\(570\) 130.580 244.885i 0.229087 0.429623i
\(571\) −179.597 311.072i −0.314531 0.544784i 0.664806 0.747016i \(-0.268514\pi\)
−0.979338 + 0.202231i \(0.935181\pi\)
\(572\) 165.062 95.2983i 0.288569 0.166605i
\(573\) −146.969 + 91.5951i −0.256491 + 0.159852i
\(574\) 15.7512 27.2818i 0.0274411 0.0475293i
\(575\) 150.940i 0.262504i
\(576\) 40.1205 + 59.7858i 0.0696537 + 0.103795i
\(577\) 327.352 0.567334 0.283667 0.958923i \(-0.408449\pi\)
0.283667 + 0.958923i \(0.408449\pi\)
\(578\) −71.8858 41.5033i −0.124370 0.0718050i
\(579\) 268.380 9.05406i 0.463523 0.0156374i
\(580\) 44.7808 + 77.5627i 0.0772083 + 0.133729i
\(581\) −26.6470 + 15.3847i −0.0458641 + 0.0264797i
\(582\) −24.0497 712.880i −0.0413225 1.22488i
\(583\) 259.960 450.265i 0.445901 0.772324i
\(584\) 37.6490i 0.0644675i
\(585\) 37.2038 + 550.769i 0.0635963 + 0.941486i
\(586\) −370.002 −0.631402
\(587\) 702.685 + 405.696i 1.19708 + 0.691134i 0.959903 0.280333i \(-0.0904449\pi\)
0.237176 + 0.971467i \(0.423778\pi\)
\(588\) 22.2144 + 35.6443i 0.0377797 + 0.0606196i
\(589\) 175.052 + 303.199i 0.297202 + 0.514769i
\(590\) 134.851 77.8562i 0.228561 0.131960i
\(591\) 4.96899 + 2.64961i 0.00840776 + 0.00448326i
\(592\) −141.717 + 245.461i −0.239387 + 0.414631i
\(593\) 1078.74i 1.81912i −0.415576 0.909559i \(-0.636420\pi\)
0.415576 0.909559i \(-0.363580\pi\)
\(594\) −144.590 200.504i −0.243418 0.337550i
\(595\) 205.565 0.345488
\(596\) 176.424 + 101.858i 0.296013 + 0.170903i
\(597\) 113.197 212.287i 0.189610 0.355589i
\(598\) 205.699 + 356.281i 0.343978 + 0.595788i
\(599\) 95.0263 54.8635i 0.158642 0.0915918i −0.418578 0.908181i \(-0.637471\pi\)
0.577219 + 0.816589i \(0.304138\pi\)
\(600\) 55.0019 34.2786i 0.0916698 0.0571309i
\(601\) −402.166 + 696.572i −0.669161 + 1.15902i 0.308978 + 0.951069i \(0.400013\pi\)
−0.978139 + 0.207952i \(0.933320\pi\)
\(602\) 186.698i 0.310130i
\(603\) −94.3849 + 192.361i −0.156526 + 0.319007i
\(604\) 280.924 0.465106
\(605\) 285.391 + 164.771i 0.471721 + 0.272348i
\(606\) 93.4956 3.15417i 0.154283 0.00520489i
\(607\) 109.545 + 189.738i 0.180470 + 0.312584i 0.942041 0.335498i \(-0.108905\pi\)
−0.761571 + 0.648082i \(0.775571\pi\)
\(608\) −76.9074 + 44.4025i −0.126492 + 0.0730305i
\(609\) 2.87612 + 85.2538i 0.00472269 + 0.139990i
\(610\) −193.224 + 334.674i −0.316761 + 0.548646i
\(611\) 1062.55i 1.73903i
\(612\) 301.321 + 147.848i 0.492354 + 0.241581i
\(613\) 897.371 1.46390 0.731951 0.681358i \(-0.238610\pi\)
0.731951 + 0.681358i \(0.238610\pi\)
\(614\) −168.736 97.4195i −0.274814 0.158664i
\(615\) 55.6658 + 89.3189i 0.0905134 + 0.145234i
\(616\) 24.2234 + 41.9562i 0.0393237 + 0.0681107i
\(617\) −617.603 + 356.573i −1.00098 + 0.577915i −0.908537 0.417804i \(-0.862800\pi\)
−0.0924400 + 0.995718i \(0.529467\pi\)
\(618\) 473.621 + 252.548i 0.766377 + 0.408654i
\(619\) 210.975 365.420i 0.340832 0.590339i −0.643755 0.765231i \(-0.722625\pi\)
0.984588 + 0.174893i \(0.0559579\pi\)
\(620\) 185.851i 0.299760i
\(621\) 432.784 312.094i 0.696914 0.502567i
\(622\) 484.989 0.779725
\(623\) −191.441 110.528i −0.307289 0.177413i
\(624\) 83.1131 155.868i 0.133194 0.249788i
\(625\) 187.859 + 325.381i 0.300574 + 0.520610i
\(626\) 431.425 249.083i 0.689177 0.397897i
\(627\) 258.760 161.266i 0.412695 0.257202i
\(628\) 248.908 431.121i 0.396350 0.686498i
\(629\) 1321.27i 2.10059i
\(630\) −139.997 + 9.45666i −0.222218 + 0.0150106i
\(631\) −601.037 −0.952515 −0.476257 0.879306i \(-0.658007\pi\)
−0.476257 + 0.879306i \(0.658007\pi\)
\(632\) −293.329 169.353i −0.464128 0.267964i
\(633\) −483.056 + 16.2964i −0.763121 + 0.0257447i
\(634\) 104.572 + 181.125i 0.164941 + 0.285685i
\(635\) 81.3335 46.9579i 0.128084 0.0739495i
\(636\) −16.2466 481.582i −0.0255450 0.757204i
\(637\) 51.5207 89.2365i 0.0808802 0.140089i
\(638\) 98.3958i 0.154225i
\(639\) −836.450 + 561.317i −1.30900 + 0.878430i
\(640\) 47.1419 0.0736592
\(641\) −809.038 467.098i −1.26215 0.728702i −0.288660 0.957432i \(-0.593210\pi\)
−0.973490 + 0.228729i \(0.926543\pi\)
\(642\) 89.0926 + 142.954i 0.138774 + 0.222670i
\(643\) 10.0042 + 17.3277i 0.0155586 + 0.0269482i 0.873700 0.486465i \(-0.161714\pi\)
−0.858141 + 0.513414i \(0.828381\pi\)
\(644\) −90.5614 + 52.2857i −0.140623 + 0.0811889i
\(645\) −550.378 293.477i −0.853299 0.455003i
\(646\) −206.989 + 358.515i −0.320416 + 0.554977i
\(647\) 724.799i 1.12025i 0.828410 + 0.560123i \(0.189246\pi\)
−0.828410 + 0.560123i \(0.810754\pi\)
\(648\) −212.012 86.8279i −0.327178 0.133994i
\(649\) 171.071 0.263592
\(650\) −137.699 79.5004i −0.211844 0.122308i
\(651\) 83.2873 156.194i 0.127938 0.239930i
\(652\) 168.569 + 291.970i 0.258541 + 0.447807i
\(653\) 68.1776 39.3624i 0.104407 0.0602793i −0.446887 0.894590i \(-0.647468\pi\)
0.551294 + 0.834311i \(0.314134\pi\)
\(654\) −335.658 + 209.190i −0.513238 + 0.319863i
\(655\) −493.927 + 855.507i −0.754088 + 1.30612i
\(656\) 33.6774i 0.0513375i
\(657\) −66.7552 99.4757i −0.101606 0.151409i
\(658\) 270.084 0.410462
\(659\) −822.374 474.798i −1.24791 0.720483i −0.277220 0.960806i \(-0.589413\pi\)
−0.970693 + 0.240324i \(0.922746\pi\)
\(660\) −161.762 + 5.45722i −0.245095 + 0.00826851i
\(661\) −192.159 332.828i −0.290709 0.503523i 0.683269 0.730167i \(-0.260558\pi\)
−0.973978 + 0.226644i \(0.927224\pi\)
\(662\) −685.926 + 396.019i −1.03614 + 0.598217i
\(663\) −27.7639 822.976i −0.0418762 1.24129i
\(664\) −16.4469 + 28.4869i −0.0247694 + 0.0429019i
\(665\) 173.067i 0.260251i
\(666\) −60.7826 899.832i −0.0912652 1.35110i
\(667\) −212.385 −0.318418
\(668\) 504.178 + 291.087i 0.754758 + 0.435760i
\(669\) 32.5247 + 52.1877i 0.0486168 + 0.0780085i
\(670\) 70.1462 + 121.497i 0.104696 + 0.181338i
\(671\) −367.686 + 212.283i −0.547967 + 0.316369i
\(672\) 39.6193 + 21.1261i 0.0589573 + 0.0314377i
\(673\) −99.9437 + 173.108i −0.148505 + 0.257218i −0.930675 0.365847i \(-0.880779\pi\)
0.782170 + 0.623065i \(0.214113\pi\)
\(674\) 33.8281i 0.0501900i
\(675\) −84.5462 + 188.094i −0.125254 + 0.278657i
\(676\) −95.3688 −0.141078
\(677\) 856.490 + 494.495i 1.26513 + 0.730420i 0.974062 0.226283i \(-0.0726575\pi\)
0.291064 + 0.956704i \(0.405991\pi\)
\(678\) −160.561 + 301.111i −0.236816 + 0.444117i
\(679\) −222.406 385.218i −0.327549 0.567331i
\(680\) 190.317 109.879i 0.279877 0.161587i
\(681\) 383.995 239.315i 0.563869 0.351417i
\(682\) 102.092 176.828i 0.149695 0.259279i
\(683\) 472.371i 0.691612i 0.938306 + 0.345806i \(0.112394\pi\)
−0.938306 + 0.345806i \(0.887606\pi\)
\(684\) 124.474 253.684i 0.181979 0.370883i
\(685\) −808.329 −1.18004
\(686\) 22.6826 + 13.0958i 0.0330650 + 0.0190901i
\(687\) −892.774 + 30.1186i −1.29953 + 0.0438408i
\(688\) 99.7945 + 172.849i 0.145050 + 0.251234i
\(689\) −1023.79 + 591.085i −1.48590 + 0.857888i
\(690\) −11.7793 349.160i −0.0170714 0.506029i
\(691\) −379.591 + 657.471i −0.549336 + 0.951478i 0.448984 + 0.893540i \(0.351786\pi\)
−0.998320 + 0.0579384i \(0.981547\pi\)
\(692\) 276.645i 0.399776i
\(693\) −138.395 67.9057i −0.199704 0.0979880i
\(694\) 342.321 0.493258
\(695\) −573.483 331.100i −0.825155 0.476404i
\(696\) 48.2328 + 77.3923i 0.0693000 + 0.111196i
\(697\) −78.4960 135.959i −0.112620 0.195063i
\(698\) −44.0326 + 25.4223i −0.0630840 + 0.0364216i
\(699\) −1022.91 545.443i −1.46339 0.780319i
\(700\) 20.2078 35.0010i 0.0288683 0.0500014i
\(701\) 590.449i 0.842295i −0.906992 0.421147i \(-0.861628\pi\)
0.906992 0.421147i \(-0.138372\pi\)
\(702\) 56.7677 + 559.199i 0.0808657 + 0.796579i
\(703\) 1112.38 1.58234
\(704\) 44.8531 + 25.8959i 0.0637117 + 0.0367840i
\(705\) −424.554 + 796.195i −0.602204 + 1.12935i
\(706\) 217.264 + 376.313i 0.307740 + 0.533021i
\(707\) 50.5221 29.1690i 0.0714598 0.0412574i
\(708\) 134.555 83.8578i 0.190049 0.118443i
\(709\) −375.204 + 649.872i −0.529201 + 0.916603i 0.470219 + 0.882550i \(0.344175\pi\)
−0.999420 + 0.0340534i \(0.989158\pi\)
\(710\) 659.552i 0.928946i
\(711\) 1075.31 72.6358i 1.51239 0.102160i
\(712\) −236.320 −0.331910
\(713\) 381.679 + 220.362i 0.535314 + 0.309064i
\(714\) 209.188 7.05717i 0.292981 0.00988399i
\(715\) 198.544 + 343.889i 0.277684 + 0.480963i
\(716\) −527.465 + 304.532i −0.736683 + 0.425324i
\(717\) −21.0380 623.606i −0.0293417 0.869744i
\(718\) −374.094 + 647.951i −0.521023 + 0.902438i
\(719\) 528.232i 0.734676i 0.930088 + 0.367338i \(0.119731\pi\)
−0.930088 + 0.367338i \(0.880269\pi\)
\(720\) −124.558 + 83.5869i −0.172997 + 0.116093i
\(721\) 334.721 0.464245
\(722\) −140.297 81.0005i −0.194317 0.112189i
\(723\) −513.259 823.553i −0.709901 1.13908i
\(724\) −260.720 451.580i −0.360111 0.623730i
\(725\) 71.0872 41.0422i 0.0980513 0.0566099i
\(726\) 296.078 + 157.877i 0.407821 + 0.217461i
\(727\) 337.899 585.259i 0.464786 0.805033i −0.534406 0.845228i \(-0.679465\pi\)
0.999192 + 0.0401952i \(0.0127980\pi\)
\(728\) 110.156i 0.151313i
\(729\) 714.128 146.501i 0.979599 0.200961i
\(730\) −78.4379 −0.107449
\(731\) 805.761 + 465.206i 1.10227 + 0.636397i
\(732\) −185.140 + 347.206i −0.252924 + 0.474325i
\(733\) 83.9702 + 145.441i 0.114557 + 0.198418i 0.917603 0.397499i \(-0.130122\pi\)
−0.803046 + 0.595918i \(0.796789\pi\)
\(734\) 415.273 239.758i 0.565766 0.326645i
\(735\) −74.2613 + 46.2815i −0.101036 + 0.0629680i
\(736\) −55.8957 + 96.8142i −0.0759453 + 0.131541i
\(737\) 154.130i 0.209132i
\(738\) 59.7132 + 88.9820i 0.0809122 + 0.120572i
\(739\) −832.894 −1.12706 −0.563528 0.826097i \(-0.690556\pi\)
−0.563528 + 0.826097i \(0.690556\pi\)
\(740\) −511.393 295.253i −0.691072 0.398991i
\(741\) −692.868 + 23.3746i −0.935045 + 0.0315447i
\(742\) −150.245 260.232i −0.202486 0.350717i
\(743\) −698.782 + 403.442i −0.940487 + 0.542990i −0.890113 0.455740i \(-0.849375\pi\)
−0.0503738 + 0.998730i \(0.516041\pi\)
\(744\) −6.38038 189.127i −0.00857579 0.254203i
\(745\) −212.211 + 367.560i −0.284847 + 0.493370i
\(746\) 699.737i 0.937985i
\(747\) −7.05410 104.430i −0.00944324 0.139799i
\(748\) 241.435 0.322774
\(749\) 90.9701 + 52.5216i 0.121455 + 0.0701223i
\(750\) 305.173 + 489.667i 0.406897 + 0.652889i
\(751\) −203.868 353.110i −0.271462 0.470187i 0.697774 0.716318i \(-0.254174\pi\)
−0.969237 + 0.246131i \(0.920841\pi\)
\(752\) 250.049 144.366i 0.332512 0.191976i
\(753\) 762.602 + 406.641i 1.01275 + 0.540028i
\(754\) 111.864 193.754i 0.148360 0.256968i
\(755\) 585.277i 0.775201i
\(756\) −142.140 + 14.4295i −0.188016 + 0.0190867i
\(757\) 709.798 0.937646 0.468823 0.883292i \(-0.344678\pi\)
0.468823 + 0.883292i \(0.344678\pi\)
\(758\) −17.7224 10.2321i −0.0233805 0.0134988i
\(759\) 180.593 338.678i 0.237935 0.446217i
\(760\) −92.5081 160.229i −0.121721 0.210827i
\(761\) 454.599 262.463i 0.597370 0.344892i −0.170636 0.985334i \(-0.554582\pi\)
0.768006 + 0.640442i \(0.221249\pi\)
\(762\) 81.1548 50.5777i 0.106502 0.0663750i
\(763\) −123.321 + 213.599i −0.161627 + 0.279946i
\(764\) 115.450i 0.151113i
\(765\) −308.025 + 627.770i −0.402648 + 0.820615i
\(766\) 422.557 0.551641
\(767\) −336.861 194.487i −0.439193 0.253568i
\(768\) 47.9727 1.61841i 0.0624645 0.00210730i
\(769\) 164.387 + 284.726i 0.213767 + 0.370255i 0.952890 0.303315i \(-0.0980933\pi\)
−0.739123 + 0.673570i \(0.764760\pi\)
\(770\) −87.4114 + 50.4670i −0.113521 + 0.0655416i
\(771\) −13.0443 386.660i −0.0169187 0.501504i
\(772\) 89.5108 155.037i 0.115947 0.200825i
\(773\) 343.076i 0.443824i −0.975067 0.221912i \(-0.928770\pi\)
0.975067 0.221912i \(-0.0712298\pi\)
\(774\) −570.153 279.755i −0.736632 0.361440i
\(775\) −170.335 −0.219787
\(776\) −411.815 237.762i −0.530690 0.306394i
\(777\) −297.474 477.314i −0.382849 0.614303i
\(778\) −62.8723 108.898i −0.0808128 0.139972i
\(779\) −114.465 + 66.0863i −0.146938 + 0.0848348i
\(780\) 324.734 + 173.158i 0.416326 + 0.221997i
\(781\) −362.304 + 627.529i −0.463898 + 0.803495i
\(782\) 521.132i 0.666409i
\(783\) −264.664 118.964i −0.338012 0.151933i
\(784\) 28.0000 0.0357143
\(785\) 898.195 + 518.573i 1.14420 + 0.660603i
\(786\) −473.262 + 887.542i −0.602115 + 1.12919i
\(787\) −165.233 286.191i −0.209952 0.363648i 0.741747 0.670680i \(-0.233998\pi\)
−0.951699 + 0.307032i \(0.900664\pi\)
\(788\) 3.25122 1.87709i 0.00412591 0.00238210i
\(789\) 80.6664 50.2734i 0.102239 0.0637178i
\(790\) 352.830 611.120i 0.446621 0.773570i
\(791\) 212.803i 0.269031i
\(792\) −164.426 + 11.1068i −0.207609 + 0.0140237i
\(793\) 965.358 1.21735
\(794\) −658.398 380.126i −0.829217 0.478749i
\(795\) 1003.33 33.8482i 1.26204 0.0425763i
\(796\) −80.1938 138.900i −0.100746 0.174497i
\(797\) −199.933 + 115.431i −0.250856 + 0.144832i −0.620156 0.784478i \(-0.712931\pi\)
0.369300 + 0.929310i \(0.379598\pi\)
\(798\) −5.94148 176.117i −0.00744546 0.220698i
\(799\) 672.983 1165.64i 0.842281 1.45887i
\(800\) 43.2061i 0.0540077i
\(801\) 624.400 419.017i 0.779526 0.523117i
\(802\) 247.008 0.307990
\(803\) −74.6296 43.0874i −0.0929385 0.0536581i
\(804\) 75.5535 + 121.230i 0.0939720 + 0.150783i
\(805\) −108.932 188.675i −0.135319 0.234379i
\(806\) −402.062 + 232.131i −0.498837 + 0.288004i
\(807\) 409.459 + 218.335i 0.507385 + 0.270552i
\(808\) 31.1829 54.0104i 0.0385927 0.0668446i
\(809\) 1138.49i 1.40729i −0.710554 0.703643i \(-0.751556\pi\)
0.710554 0.703643i \(-0.248444\pi\)
\(810\) 180.897 441.704i 0.223330 0.545314i
\(811\) 1346.08 1.65977 0.829887 0.557931i \(-0.188405\pi\)
0.829887 + 0.557931i \(0.188405\pi\)
\(812\) 49.2493 + 28.4341i 0.0606518 + 0.0350173i
\(813\) 240.457 450.946i 0.295766 0.554670i
\(814\) −324.376 561.836i −0.398496 0.690216i
\(815\) −608.289 + 351.196i −0.746367 + 0.430915i
\(816\) 189.898 118.349i 0.232719 0.145036i
\(817\) 391.660 678.375i 0.479388 0.830325i
\(818\) 304.428i 0.372161i
\(819\) 195.317 + 291.052i 0.238482 + 0.355375i
\(820\) 70.1634 0.0855651
\(821\) 415.276 + 239.760i 0.505817 + 0.292034i 0.731113 0.682257i \(-0.239001\pi\)
−0.225295 + 0.974291i \(0.572335\pi\)
\(822\) −822.575 + 27.7504i −1.00070 + 0.0337596i
\(823\) −623.100 1079.24i −0.757109 1.31135i −0.944319 0.329031i \(-0.893278\pi\)
0.187210 0.982320i \(-0.440055\pi\)
\(824\) 309.891 178.916i 0.376081 0.217131i
\(825\) 5.00161 + 148.257i 0.00606255 + 0.179706i
\(826\) 49.4356 85.6250i 0.0598494 0.103662i
\(827\) 464.446i 0.561603i 0.959766 + 0.280802i \(0.0906003\pi\)
−0.959766 + 0.280802i \(0.909400\pi\)
\(828\) −23.9737 354.909i −0.0289538 0.428635i
\(829\) 479.856 0.578837 0.289418 0.957203i \(-0.406538\pi\)
0.289418 + 0.957203i \(0.406538\pi\)
\(830\) −59.3495 34.2654i −0.0715054 0.0412837i
\(831\) 837.448 + 1343.73i 1.00776 + 1.61701i
\(832\) −58.8808 101.985i −0.0707702 0.122578i
\(833\) 113.039 65.2630i 0.135701 0.0783469i
\(834\) −594.957 317.248i −0.713377 0.380393i
\(835\) −606.450 + 1050.40i −0.726288 + 1.25797i
\(836\) 203.266i 0.243141i
\(837\) 352.198 + 488.395i 0.420786 + 0.583507i
\(838\) 330.335 0.394195
\(839\) −249.072 143.802i −0.296868 0.171397i 0.344167 0.938908i \(-0.388161\pi\)
−0.641035 + 0.767512i \(0.721495\pi\)
\(840\) −44.0141 + 82.5427i −0.0523977 + 0.0982651i
\(841\) −362.750 628.302i −0.431332 0.747089i
\(842\) 997.344 575.817i 1.18449 0.683868i
\(843\) 1027.62 640.437i 1.21900 0.759712i
\(844\) −161.110 + 279.051i −0.190889 + 0.330629i
\(845\) 198.691i 0.235137i
\(846\) −404.702 + 824.802i −0.478372 + 0.974944i
\(847\) 209.246 0.247044
\(848\) −278.200 160.619i −0.328065 0.189409i
\(849\) −665.507 + 22.4515i −0.783871 + 0.0264447i
\(850\) −100.706 174.427i −0.118477 0.205209i
\(851\) 1212.71 700.158i 1.42504 0.822747i
\(852\) 22.6428 + 671.176i 0.0265760 + 0.787765i
\(853\) 339.982 588.866i 0.398572 0.690347i −0.594978 0.803742i \(-0.702839\pi\)
0.993550 + 0.113395i \(0.0361725\pi\)
\(854\) 245.380i 0.287330i
\(855\) 528.524 + 259.328i 0.618156 + 0.303308i
\(856\) 112.296 0.131187
\(857\) 725.061 + 418.614i 0.846045 + 0.488464i 0.859314 0.511448i \(-0.170891\pi\)
−0.0132695 + 0.999912i \(0.504224\pi\)
\(858\) 213.849 + 343.133i 0.249242 + 0.399922i
\(859\) −173.311 300.184i −0.201759 0.349457i 0.747336 0.664446i \(-0.231332\pi\)
−0.949095 + 0.314989i \(0.897999\pi\)
\(860\) −360.113 + 207.912i −0.418737 + 0.241758i
\(861\) 58.9672 + 31.4430i 0.0684868 + 0.0365191i
\(862\) 224.845 389.443i 0.260841 0.451790i
\(863\) 62.3236i 0.0722174i −0.999348 0.0361087i \(-0.988504\pi\)
0.999348 0.0361087i \(-0.0114962\pi\)
\(864\) −123.883 + 89.3362i −0.143383 + 0.103398i
\(865\) −576.361 −0.666313
\(866\) −421.679 243.456i −0.486927 0.281127i
\(867\) 82.8502 155.375i 0.0955596 0.179210i
\(868\) −59.0042 102.198i −0.0679772 0.117740i
\(869\) 671.399 387.633i 0.772612 0.446068i
\(870\) −161.239 + 100.488i −0.185332 + 0.115504i
\(871\) 175.227 303.502i 0.201179 0.348452i
\(872\) 263.672i 0.302376i
\(873\) 1509.67 101.976i 1.72929 0.116811i
\(874\) 438.744 0.501995
\(875\) 311.604 + 179.905i 0.356119 + 0.205605i
\(876\) −79.8203 + 2.69282i −0.0911190 + 0.00307399i
\(877\) 845.076 + 1463.71i 0.963598 + 1.66900i 0.713334 + 0.700824i \(0.247184\pi\)
0.250264 + 0.968178i \(0.419483\pi\)
\(878\) 332.352 191.883i 0.378533 0.218546i
\(879\) −26.4641 784.446i −0.0301070 0.892430i
\(880\) −53.9515 + 93.4467i −0.0613085 + 0.106189i
\(881\) 1480.43i 1.68040i −0.542280 0.840198i \(-0.682439\pi\)
0.542280 0.840198i \(-0.317561\pi\)
\(882\) −73.9812 + 49.6466i −0.0838789 + 0.0562886i
\(883\) −688.171 −0.779356 −0.389678 0.920951i \(-0.627414\pi\)
−0.389678 + 0.920951i \(0.627414\pi\)
\(884\) −475.416 274.481i −0.537800 0.310499i
\(885\) 174.709 + 280.331i 0.197411 + 0.316758i
\(886\) −134.206 232.452i −0.151474 0.262361i
\(887\) −541.722 + 312.763i −0.610735 + 0.352608i −0.773253 0.634098i \(-0.781372\pi\)
0.162518 + 0.986706i \(0.448038\pi\)
\(888\) −530.542 282.900i −0.597457 0.318581i
\(889\) 29.8164 51.6436i 0.0335393 0.0580918i
\(890\) 492.347i 0.553199i
\(891\) 414.751 320.889i 0.465489 0.360144i
\(892\) 40.9954 0.0459590
\(893\) −981.360 566.589i −1.09895 0.634478i
\(894\) −203.333 + 381.324i −0.227441 + 0.426536i
\(895\) −634.461 1098.92i −0.708895 1.22784i
\(896\) 25.9230 14.9666i 0.0289319 0.0167038i
\(897\) −740.645 + 461.588i −0.825691 + 0.514591i
\(898\) −425.558 + 737.088i −0.473896 + 0.820811i
\(899\) 239.676i 0.266603i
\(900\) 76.6084 + 114.159i 0.0851205 + 0.126843i
\(901\) −1497.49 −1.66203
\(902\) 66.7569 + 38.5421i 0.0740098 + 0.0427296i
\(903\) −395.822 + 13.3535i −0.438341 + 0.0147879i
\(904\) 113.748 + 197.018i 0.125828 + 0.217940i
\(905\) 940.821 543.183i 1.03958 0.600203i
\(906\) 20.0929 + 595.592i 0.0221776 + 0.657386i
\(907\) −503.987 + 872.931i −0.555664 + 0.962438i 0.442188 + 0.896922i \(0.354202\pi\)
−0.997852 + 0.0655154i \(0.979131\pi\)
\(908\) 301.643i 0.332206i
\(909\) 13.3744 + 197.996i 0.0147133 + 0.217817i
\(910\) 229.498 0.252196
\(911\) −331.886 191.614i −0.364309 0.210334i 0.306660 0.951819i \(-0.400788\pi\)
−0.670969 + 0.741485i \(0.734122\pi\)
\(912\) −99.6392 159.877i −0.109253 0.175303i
\(913\) −37.6453 65.2036i −0.0412325 0.0714169i
\(914\) 216.881 125.217i 0.237288 0.136998i
\(915\) −723.368 385.720i −0.790566 0.421552i
\(916\) −297.761 + 515.737i −0.325066 + 0.563031i
\(917\) 627.249i 0.684023i
\(918\) −291.902 + 649.409i −0.317976 + 0.707417i
\(919\) −769.956 −0.837819 −0.418910 0.908028i \(-0.637588\pi\)
−0.418910 + 0.908028i \(0.637588\pi\)
\(920\) −201.702 116.453i −0.219242 0.126579i
\(921\) 194.472 364.706i 0.211153 0.395990i
\(922\) 141.586 + 245.234i 0.153564 + 0.265981i
\(923\) 1426.84 823.788i 1.54588 0.892512i
\(924\) −87.2194 + 54.3573i −0.0943933 + 0.0588283i
\(925\) −270.603 + 468.698i −0.292544 + 0.506701i
\(926\) 671.055i 0.724681i
\(927\) −501.555 + 1022.19i −0.541052 + 1.10269i
\(928\) 60.7946 0.0655115
\(929\) −323.085 186.533i −0.347778 0.200789i 0.315928 0.948783i \(-0.397684\pi\)
−0.663706 + 0.747994i \(0.731017\pi\)
\(930\) 394.026 13.2929i 0.423684 0.0142934i
\(931\) −54.9453 95.1681i −0.0590175 0.102221i
\(932\) −669.290 + 386.415i −0.718122 + 0.414608i
\(933\) 34.6884 + 1028.23i 0.0371794 + 1.10207i
\(934\) −178.923 + 309.904i −0.191566 + 0.331803i
\(935\) 503.005i 0.537973i
\(936\) 336.402 + 165.061i 0.359404 + 0.176347i
\(937\) −987.512 −1.05391 −0.526954 0.849894i \(-0.676666\pi\)
−0.526954 + 0.849894i \(0.676666\pi\)
\(938\) 77.1457 + 44.5401i 0.0822449 + 0.0474841i
\(939\) 558.943 + 896.855i 0.595253 + 0.955117i
\(940\) 300.772 + 520.952i 0.319970 + 0.554204i
\(941\) −1178.37 + 680.335i −1.25226 + 0.722991i −0.971557 0.236804i \(-0.923900\pi\)
−0.280700 + 0.959795i \(0.590567\pi\)
\(942\) 931.828 + 496.877i 0.989202 + 0.527470i
\(943\) −83.1921 + 144.093i −0.0882207 + 0.152803i
\(944\) 105.698i 0.111968i
\(945\) −30.0624 296.134i −0.0318121 0.313369i
\(946\) −456.839 −0.482917
\(947\) 1344.82 + 776.431i 1.42008 + 0.819884i 0.996305 0.0858826i \(-0.0273710\pi\)
0.423776 + 0.905767i \(0.360704\pi\)
\(948\) 338.068 634.003i 0.356612 0.668780i
\(949\) 97.9699 + 169.689i 0.103235 + 0.178808i
\(950\) −146.852 + 84.7848i −0.154581 + 0.0892472i
\(951\) −376.525 + 234.660i −0.395926 + 0.246751i
\(952\) 69.7691 120.844i 0.0732868 0.126937i
\(953\) 756.704i 0.794023i 0.917814 + 0.397012i \(0.129953\pi\)
−0.917814 + 0.397012i \(0.870047\pi\)
\(954\) 1019.85 68.8895i 1.06902 0.0722112i
\(955\) −240.529 −0.251862
\(956\) −360.244 207.987i −0.376824 0.217560i
\(957\) −208.610 + 7.03768i −0.217984 + 0.00735390i
\(958\) −516.895 895.288i −0.539556 0.934539i
\(959\) −444.494 + 256.629i −0.463497 + 0.267600i
\(960\) 3.37178 + 99.9462i 0.00351227 + 0.104111i
\(961\) 231.822 401.527i 0.241229 0.417822i
\(962\) 1475.10i 1.53337i
\(963\) −296.707 + 199.111i −0.308107 + 0.206761i
\(964\) −646.932 −0.671092
\(965\) 323.004 + 186.486i 0.334719 + 0.193250i
\(966\) −117.329 188.261i −0.121458 0.194887i
\(967\) 49.6997 + 86.0824i 0.0513958 + 0.0890201i 0.890579 0.454829i \(-0.150300\pi\)
−0.839183 + 0.543849i \(0.816966\pi\)
\(968\) 193.724 111.847i 0.200128 0.115544i
\(969\) −774.897 413.197i −0.799688 0.426416i
\(970\) 495.352 857.975i 0.510672 0.884510i
\(971\) 24.0392i 0.0247571i 0.999923 + 0.0123786i \(0.00394032\pi\)
−0.999923 + 0.0123786i \(0.996060\pi\)
\(972\) 168.921 455.699i 0.173787 0.468826i
\(973\) −420.472 −0.432140
\(974\) 782.250 + 451.632i 0.803132 + 0.463688i
\(975\) 158.701 297.623i 0.162770 0.305254i
\(976\) 131.161 + 227.177i 0.134386 + 0.232764i
\(977\) 1101.39 635.889i 1.12732 0.650859i 0.184061 0.982915i \(-0.441076\pi\)
0.943260 + 0.332056i \(0.107742\pi\)
\(978\) −606.953 + 378.268i −0.620607 + 0.386778i
\(979\) 270.456 468.443i 0.276257 0.478491i
\(980\) 58.3351i 0.0595256i
\(981\) −467.515 696.670i −0.476570 0.710163i
\(982\) 795.789 0.810376
\(983\) 881.017 + 508.656i 0.896254 + 0.517452i 0.875983 0.482342i \(-0.160214\pi\)
0.0202708 + 0.999795i \(0.493547\pi\)
\(984\) 71.4000 2.40875i 0.0725609 0.00244792i
\(985\) 3.91073 + 6.77358i 0.00397028 + 0.00687673i
\(986\) 245.434 141.701i 0.248919 0.143713i
\(987\) 19.3175 + 572.609i 0.0195720 + 0.580151i
\(988\) −231.088 + 400.255i −0.233894 + 0.405117i
\(989\) 986.076i 0.997043i
\(990\) −23.1398 342.565i −0.0233736 0.346025i
\(991\) −1748.26 −1.76414 −0.882070 0.471118i \(-0.843851\pi\)
−0.882070 + 0.471118i \(0.843851\pi\)
\(992\) −109.255 63.0782i −0.110136 0.0635869i
\(993\) −888.667 1425.92i −0.894931 1.43597i
\(994\) 209.395 + 362.682i 0.210659 + 0.364872i
\(995\) 289.383 167.075i 0.290837 0.167915i
\(996\) −61.5718 32.8318i −0.0618191 0.0329637i
\(997\) −123.758 + 214.355i −0.124130 + 0.215000i −0.921393 0.388633i \(-0.872947\pi\)
0.797262 + 0.603633i \(0.206281\pi\)
\(998\) 1072.23i 1.07438i
\(999\) 1903.40 193.226i 1.90530 0.193419i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.q.a.29.8 24
3.2 odd 2 378.3.q.a.197.5 24
9.2 odd 6 1134.3.b.c.323.21 24
9.4 even 3 378.3.q.a.71.5 24
9.5 odd 6 inner 126.3.q.a.113.8 yes 24
9.7 even 3 1134.3.b.c.323.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.8 24 1.1 even 1 trivial
126.3.q.a.113.8 yes 24 9.5 odd 6 inner
378.3.q.a.71.5 24 9.4 even 3
378.3.q.a.197.5 24 3.2 odd 2
1134.3.b.c.323.4 24 9.7 even 3
1134.3.b.c.323.21 24 9.2 odd 6