L(s) = 1 | + (−1.22 − 0.707i)2-s + (0.999 + 1.73i)4-s + (3.60 − 2.08i)5-s + (−1.32 + 2.29i)7-s − 2.82i·8-s − 5.89·10-s + (5.60 + 3.23i)11-s + (7.36 + 12.7i)13-s + (3.24 − 1.87i)14-s + (−2.00 + 3.46i)16-s − 18.6i·17-s + 15.6·19-s + (7.21 + 4.16i)20-s + (−4.57 − 7.92i)22-s + (−17.1 + 9.88i)23-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (0.721 − 0.416i)5-s + (−0.188 + 0.327i)7-s − 0.353i·8-s − 0.589·10-s + (0.509 + 0.294i)11-s + (0.566 + 0.980i)13-s + (0.231 − 0.133i)14-s + (−0.125 + 0.216i)16-s − 1.09i·17-s + 0.826·19-s + (0.360 + 0.208i)20-s + (−0.208 − 0.360i)22-s + (−0.744 + 0.429i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 + 0.140i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.990 + 0.140i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.46929 - 0.103616i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.46929 - 0.103616i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.22 + 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.32 - 2.29i)T \) |
good | 5 | \( 1 + (-3.60 + 2.08i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (-5.60 - 3.23i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-7.36 - 12.7i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + 18.6iT - 289T^{2} \) |
| 19 | \( 1 - 15.6T + 361T^{2} \) |
| 23 | \( 1 + (17.1 - 9.88i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-9.30 - 5.37i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-11.1 - 19.3i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 - 70.8T + 1.36e3T^{2} \) |
| 41 | \( 1 + (-7.29 + 4.20i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-24.9 + 43.2i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-62.5 - 36.0i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + 80.3iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (-22.8 + 13.2i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-32.7 + 56.7i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (11.9 + 20.6i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 - 111. iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 13.3T + 5.32e3T^{2} \) |
| 79 | \( 1 + (59.8 - 103. i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (10.0 + 5.81i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + 83.5iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (84.0 - 145. i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.24887684313275397087984211907, −9.843846703783059457066824740056, −9.448580836547781876728424964226, −8.669652816273646442178986961784, −7.43152384896121511162751103057, −6.43594044724590171067686989463, −5.33318801689837646667033099345, −3.96222936158074687021620418090, −2.46133187763108865898193508932, −1.20071831140843240879061462609,
1.02456638777289451282135275813, 2.64835796675551464103701984068, 4.11852856651082033767553042107, 5.92530823384303747203768460208, 6.16023785913294268093569380115, 7.53120623151958335830367131099, 8.331483434988123886471541209718, 9.422346604973782166507699136590, 10.21361517191184966699476142544, 10.81826657377384879437472122155