Properties

Label 3675.1.cy.a
Level $3675$
Weight $1$
Character orbit 3675.cy
Analytic conductor $1.834$
Analytic rank $0$
Dimension $48$
Projective image $D_{42}$
CM discriminant -3
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3675,1,Mod(143,3675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3675, base_ring=CyclotomicField(84)) chi = DirichletCharacter(H, H._module([42, 63, 62])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3675.143"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3675.cy (of order \(84\), degree \(24\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.83406392143\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(2\) over \(\Q(\zeta_{84})\)
Coefficient field: \(\Q(\zeta_{168})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{48} + x^{44} - x^{36} - x^{32} + x^{24} - x^{16} - x^{12} + x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{42}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{42} + \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{168}^{59} q^{3} - \zeta_{168}^{2} q^{4} + \zeta_{168}^{29} q^{7} - \zeta_{168}^{34} q^{9} - \zeta_{168}^{61} q^{12} + ( - \zeta_{168}^{67} + \zeta_{168}^{47}) q^{13} + \zeta_{168}^{4} q^{16} + \cdots + (\zeta_{168}^{41} + \zeta_{168}) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{16} + 4 q^{21} + 8 q^{36} - 44 q^{61} - 4 q^{81} + 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3675\mathbb{Z}\right)^\times\).

\(n\) \(1177\) \(1226\) \(2551\)
\(\chi(n)\) \(-\zeta_{168}^{42}\) \(-1\) \(\zeta_{168}^{76}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
143.1
−0.185912 0.982566i
0.185912 + 0.982566i
−0.185912 + 0.982566i
0.185912 0.982566i
0.0373912 0.999301i
−0.0373912 + 0.999301i
−0.804598 0.593820i
0.804598 + 0.593820i
0.884115 0.467269i
−0.884115 + 0.467269i
−0.467269 + 0.884115i
0.467269 0.884115i
0.0373912 + 0.999301i
−0.0373912 0.999301i
−0.652287 + 0.757972i
0.652287 0.757972i
−0.916562 0.399892i
0.916562 + 0.399892i
−0.804598 + 0.593820i
0.804598 0.593820i
0 −0.999301 + 0.0373912i 0.930874 0.365341i 0 0 0.757972 0.652287i 0 0.997204 0.0747301i 0
143.2 0 0.999301 0.0373912i 0.930874 0.365341i 0 0 −0.757972 + 0.652287i 0 0.997204 0.0747301i 0
257.1 0 −0.999301 0.0373912i 0.930874 + 0.365341i 0 0 0.757972 + 0.652287i 0 0.997204 + 0.0747301i 0
257.2 0 0.999301 + 0.0373912i 0.930874 + 0.365341i 0 0 −0.757972 0.652287i 0 0.997204 + 0.0747301i 0
332.1 0 −0.804598 0.593820i 0.997204 + 0.0747301i 0 0 0.884115 0.467269i 0 0.294755 + 0.955573i 0
332.2 0 0.804598 + 0.593820i 0.997204 + 0.0747301i 0 0 −0.884115 + 0.467269i 0 0.294755 + 0.955573i 0
593.1 0 −0.982566 + 0.185912i −0.294755 0.955573i 0 0 −0.916562 + 0.399892i 0 0.930874 0.365341i 0
593.2 0 0.982566 0.185912i −0.294755 0.955573i 0 0 0.916562 0.399892i 0 0.930874 0.365341i 0
782.1 0 −0.916562 + 0.399892i −0.563320 + 0.826239i 0 0 0.0373912 0.999301i 0 0.680173 0.733052i 0
782.2 0 0.916562 0.399892i −0.563320 + 0.826239i 0 0 −0.0373912 + 0.999301i 0 0.680173 0.733052i 0
857.1 0 −0.399892 + 0.916562i 0.563320 + 0.826239i 0 0 −0.999301 + 0.0373912i 0 −0.680173 0.733052i 0
857.2 0 0.399892 0.916562i 0.563320 + 0.826239i 0 0 0.999301 0.0373912i 0 −0.680173 0.733052i 0
1118.1 0 −0.804598 + 0.593820i 0.997204 0.0747301i 0 0 0.884115 + 0.467269i 0 0.294755 0.955573i 0
1118.2 0 0.804598 0.593820i 0.997204 0.0747301i 0 0 −0.884115 0.467269i 0 0.294755 0.955573i 0
1193.1 0 −0.884115 + 0.467269i 0.149042 + 0.988831i 0 0 −0.982566 0.185912i 0 0.563320 0.826239i 0
1193.2 0 0.884115 0.467269i 0.149042 + 0.988831i 0 0 0.982566 + 0.185912i 0 0.563320 0.826239i 0
1307.1 0 −0.652287 + 0.757972i −0.680173 0.733052i 0 0 −0.804598 + 0.593820i 0 −0.149042 0.988831i 0
1307.2 0 0.652287 0.757972i −0.680173 0.733052i 0 0 0.804598 0.593820i 0 −0.149042 0.988831i 0
1382.1 0 −0.982566 0.185912i −0.294755 + 0.955573i 0 0 −0.916562 0.399892i 0 0.930874 + 0.365341i 0
1382.2 0 0.982566 + 0.185912i −0.294755 + 0.955573i 0 0 0.916562 + 0.399892i 0 0.930874 + 0.365341i 0
See all 48 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 143.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
5.b even 2 1 inner
5.c odd 4 2 inner
15.d odd 2 1 inner
15.e even 4 2 inner
49.h odd 42 1 inner
147.o even 42 1 inner
245.u odd 42 1 inner
245.x even 84 2 inner
735.bp even 42 1 inner
735.bs odd 84 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3675.1.cy.a 48
3.b odd 2 1 CM 3675.1.cy.a 48
5.b even 2 1 inner 3675.1.cy.a 48
5.c odd 4 2 inner 3675.1.cy.a 48
15.d odd 2 1 inner 3675.1.cy.a 48
15.e even 4 2 inner 3675.1.cy.a 48
49.h odd 42 1 inner 3675.1.cy.a 48
147.o even 42 1 inner 3675.1.cy.a 48
245.u odd 42 1 inner 3675.1.cy.a 48
245.x even 84 2 inner 3675.1.cy.a 48
735.bp even 42 1 inner 3675.1.cy.a 48
735.bs odd 84 2 inner 3675.1.cy.a 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3675.1.cy.a 48 1.a even 1 1 trivial
3675.1.cy.a 48 3.b odd 2 1 CM
3675.1.cy.a 48 5.b even 2 1 inner
3675.1.cy.a 48 5.c odd 4 2 inner
3675.1.cy.a 48 15.d odd 2 1 inner
3675.1.cy.a 48 15.e even 4 2 inner
3675.1.cy.a 48 49.h odd 42 1 inner
3675.1.cy.a 48 147.o even 42 1 inner
3675.1.cy.a 48 245.u odd 42 1 inner
3675.1.cy.a 48 245.x even 84 2 inner
3675.1.cy.a 48 735.bp even 42 1 inner
3675.1.cy.a 48 735.bs odd 84 2 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(3675, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{48} \) Copy content Toggle raw display
$3$ \( T^{48} + T^{44} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{48} \) Copy content Toggle raw display
$7$ \( T^{48} + T^{44} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{48} \) Copy content Toggle raw display
$13$ \( T^{48} - 2 T^{44} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{48} \) Copy content Toggle raw display
$19$ \( (T^{24} + 11 T^{22} + \cdots + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{48} \) Copy content Toggle raw display
$29$ \( T^{48} \) Copy content Toggle raw display
$31$ \( (T^{12} - 7 T^{10} + \cdots + 49)^{4} \) Copy content Toggle raw display
$37$ \( T^{48} + 2 T^{44} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{48} \) Copy content Toggle raw display
$43$ \( (T^{24} - 28 T^{20} + \cdots + 2401)^{2} \) Copy content Toggle raw display
$47$ \( T^{48} \) Copy content Toggle raw display
$53$ \( T^{48} \) Copy content Toggle raw display
$59$ \( T^{48} \) Copy content Toggle raw display
$61$ \( (T^{12} + 11 T^{11} + \cdots + 1)^{4} \) Copy content Toggle raw display
$67$ \( T^{48} - 33 T^{44} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{48} \) Copy content Toggle raw display
$73$ \( T^{48} - 27 T^{44} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( (T^{24} - 13 T^{22} + \cdots + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{48} \) Copy content Toggle raw display
$89$ \( T^{48} \) Copy content Toggle raw display
$97$ \( (T^{24} + 41 T^{20} + \cdots + 1)^{2} \) Copy content Toggle raw display
show more
show less