L(s) = 1 | + (0.399 − 0.916i)3-s + (0.563 + 0.826i)4-s + (0.999 − 0.0373i)7-s + (−0.680 − 0.733i)9-s + (0.982 − 0.185i)12-s + (1.67 − 1.05i)13-s + (−0.365 + 0.930i)16-s + (−0.680 − 1.17i)19-s + (0.365 − 0.930i)21-s + (−0.943 + 0.330i)27-s + (0.593 + 0.804i)28-s + (−0.751 − 0.433i)31-s + (0.222 − 0.974i)36-s + (0.370 + 1.95i)37-s + (−0.294 − 1.95i)39-s + ⋯ |
L(s) = 1 | + (0.399 − 0.916i)3-s + (0.563 + 0.826i)4-s + (0.999 − 0.0373i)7-s + (−0.680 − 0.733i)9-s + (0.982 − 0.185i)12-s + (1.67 − 1.05i)13-s + (−0.365 + 0.930i)16-s + (−0.680 − 1.17i)19-s + (0.365 − 0.930i)21-s + (−0.943 + 0.330i)27-s + (0.593 + 0.804i)28-s + (−0.751 − 0.433i)31-s + (0.222 − 0.974i)36-s + (0.370 + 1.95i)37-s + (−0.294 − 1.95i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.781 + 0.624i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.781 + 0.624i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.924409435\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.924409435\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.399 + 0.916i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.999 + 0.0373i)T \) |
good | 2 | \( 1 + (-0.563 - 0.826i)T^{2} \) |
| 11 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 13 | \( 1 + (-1.67 + 1.05i)T + (0.433 - 0.900i)T^{2} \) |
| 17 | \( 1 + (0.149 - 0.988i)T^{2} \) |
| 19 | \( 1 + (0.680 + 1.17i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.149 - 0.988i)T^{2} \) |
| 29 | \( 1 + (0.623 - 0.781i)T^{2} \) |
| 31 | \( 1 + (0.751 + 0.433i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.370 - 1.95i)T + (-0.930 + 0.365i)T^{2} \) |
| 41 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 43 | \( 1 + (1.93 + 0.218i)T + (0.974 + 0.222i)T^{2} \) |
| 47 | \( 1 + (0.563 + 0.826i)T^{2} \) |
| 53 | \( 1 + (0.930 + 0.365i)T^{2} \) |
| 59 | \( 1 + (-0.955 + 0.294i)T^{2} \) |
| 61 | \( 1 + (0.634 - 0.930i)T + (-0.365 - 0.930i)T^{2} \) |
| 67 | \( 1 + (-1.79 + 0.481i)T + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 73 | \( 1 + (0.0698 + 0.132i)T + (-0.563 + 0.826i)T^{2} \) |
| 79 | \( 1 + (1.43 - 0.826i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.433 + 0.900i)T^{2} \) |
| 89 | \( 1 + (-0.0747 + 0.997i)T^{2} \) |
| 97 | \( 1 + (-1.35 + 1.35i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.499622977982676873374094142671, −7.986719403878843685295173420873, −7.25986952405650618317258970427, −6.54250281120121429203050105318, −5.90222908362550623856200687014, −4.81877711947732562620236664653, −3.71725033196078871619739000912, −3.04845975669908596007714619904, −2.12086344573562026178761819309, −1.19771634821599413979445998547,
1.56750712821860879362055722533, 2.11280234827145969470582255942, 3.50617333796007746810358745771, 4.15274458125251469529217296258, 5.01958989528421579741352111606, 5.76123996731148741189207705726, 6.37235218496395686842339867392, 7.37909883088053737130322300321, 8.284212765245571040419531439404, 8.775694829128521365717785992935