L(s) = 1 | + (0.999 + 0.0373i)3-s + (0.930 + 0.365i)4-s + (−0.757 − 0.652i)7-s + (0.997 + 0.0747i)9-s + (0.916 + 0.399i)12-s + (−0.631 − 1.80i)13-s + (0.733 + 0.680i)16-s + (0.997 − 1.72i)19-s + (−0.733 − 0.680i)21-s + (0.993 + 0.111i)27-s + (−0.467 − 0.884i)28-s + (−1.35 + 0.781i)31-s + (0.900 + 0.433i)36-s + (−0.119 + 0.273i)37-s + (−0.563 − 1.82i)39-s + ⋯ |
L(s) = 1 | + (0.999 + 0.0373i)3-s + (0.930 + 0.365i)4-s + (−0.757 − 0.652i)7-s + (0.997 + 0.0747i)9-s + (0.916 + 0.399i)12-s + (−0.631 − 1.80i)13-s + (0.733 + 0.680i)16-s + (0.997 − 1.72i)19-s + (−0.733 − 0.680i)21-s + (0.993 + 0.111i)27-s + (−0.467 − 0.884i)28-s + (−1.35 + 0.781i)31-s + (0.900 + 0.433i)36-s + (−0.119 + 0.273i)37-s + (−0.563 − 1.82i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.904 + 0.426i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.904 + 0.426i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.135127355\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.135127355\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.999 - 0.0373i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (0.757 + 0.652i)T \) |
good | 2 | \( 1 + (-0.930 - 0.365i)T^{2} \) |
| 11 | \( 1 + (0.988 - 0.149i)T^{2} \) |
| 13 | \( 1 + (0.631 + 1.80i)T + (-0.781 + 0.623i)T^{2} \) |
| 17 | \( 1 + (-0.294 + 0.955i)T^{2} \) |
| 19 | \( 1 + (-0.997 + 1.72i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.294 + 0.955i)T^{2} \) |
| 29 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 31 | \( 1 + (1.35 - 0.781i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.119 - 0.273i)T + (-0.680 - 0.733i)T^{2} \) |
| 41 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 43 | \( 1 + (-0.461 - 0.734i)T + (-0.433 + 0.900i)T^{2} \) |
| 47 | \( 1 + (0.930 + 0.365i)T^{2} \) |
| 53 | \( 1 + (0.680 - 0.733i)T^{2} \) |
| 59 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 61 | \( 1 + (1.73 - 0.680i)T + (0.733 - 0.680i)T^{2} \) |
| 67 | \( 1 + (0.352 - 1.31i)T + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 73 | \( 1 + (-0.367 - 1.94i)T + (-0.930 + 0.365i)T^{2} \) |
| 79 | \( 1 + (-0.632 - 0.365i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.781 - 0.623i)T^{2} \) |
| 89 | \( 1 + (0.988 + 0.149i)T^{2} \) |
| 97 | \( 1 + (-1.16 + 1.16i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.602628504579991472709325723765, −7.66152780168906824259127635485, −7.35770018547754599828201479130, −6.78808390514836568229282981135, −5.72583699629776310136035332157, −4.79116508844815462711440094663, −3.65214695198033080555031100938, −3.00461698913159166967063552139, −2.59212601596023274608683847953, −1.12838678788571886789051358942,
1.73811145344380419261659083778, 2.14237434839304910629385923246, 3.22526837457485091820470355935, 3.84591898025161409181888780367, 5.02074842341356178871422159815, 6.01339433451564270987238856700, 6.55352036758216604809156622587, 7.44853351492924382127065816023, 7.76091591054081022385756381845, 9.078605725275843075241022527177