L(s) = 1 | + (0.916 − 0.399i)3-s + (−0.563 + 0.826i)4-s + (−0.0373 + 0.999i)7-s + (0.680 − 0.733i)9-s + (−0.185 + 0.982i)12-s + (1.05 − 1.67i)13-s + (−0.365 − 0.930i)16-s + (0.680 − 1.17i)19-s + (0.365 + 0.930i)21-s + (0.330 − 0.943i)27-s + (−0.804 − 0.593i)28-s + (−0.751 + 0.433i)31-s + (0.222 + 0.974i)36-s + (1.95 + 0.370i)37-s + (0.294 − 1.95i)39-s + ⋯ |
L(s) = 1 | + (0.916 − 0.399i)3-s + (−0.563 + 0.826i)4-s + (−0.0373 + 0.999i)7-s + (0.680 − 0.733i)9-s + (−0.185 + 0.982i)12-s + (1.05 − 1.67i)13-s + (−0.365 − 0.930i)16-s + (0.680 − 1.17i)19-s + (0.365 + 0.930i)21-s + (0.330 − 0.943i)27-s + (−0.804 − 0.593i)28-s + (−0.751 + 0.433i)31-s + (0.222 + 0.974i)36-s + (1.95 + 0.370i)37-s + (0.294 − 1.95i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.00943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.00943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.674275543\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.674275543\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.916 + 0.399i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (0.0373 - 0.999i)T \) |
good | 2 | \( 1 + (0.563 - 0.826i)T^{2} \) |
| 11 | \( 1 + (-0.0747 + 0.997i)T^{2} \) |
| 13 | \( 1 + (-1.05 + 1.67i)T + (-0.433 - 0.900i)T^{2} \) |
| 17 | \( 1 + (-0.149 - 0.988i)T^{2} \) |
| 19 | \( 1 + (-0.680 + 1.17i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.149 - 0.988i)T^{2} \) |
| 29 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 + (0.751 - 0.433i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-1.95 - 0.370i)T + (0.930 + 0.365i)T^{2} \) |
| 41 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 43 | \( 1 + (-0.218 - 1.93i)T + (-0.974 + 0.222i)T^{2} \) |
| 47 | \( 1 + (-0.563 + 0.826i)T^{2} \) |
| 53 | \( 1 + (-0.930 + 0.365i)T^{2} \) |
| 59 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 61 | \( 1 + (0.634 + 0.930i)T + (-0.365 + 0.930i)T^{2} \) |
| 67 | \( 1 + (0.481 - 1.79i)T + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 73 | \( 1 + (-0.132 - 0.0698i)T + (0.563 + 0.826i)T^{2} \) |
| 79 | \( 1 + (-1.43 - 0.826i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.433 + 0.900i)T^{2} \) |
| 89 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 97 | \( 1 + (1.35 - 1.35i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.522863549656046337508465277580, −8.109656917399084023957320871686, −7.56691680438396990379330761184, −6.59006662035825839396812908415, −5.72536635969291783703021881616, −4.86614178348742747736413369317, −3.86772386467138591811107399453, −2.93803415254800070828802841672, −2.73690948842777253346484621641, −1.10236126631638938951360508116,
1.26312319335992291536575007928, 2.04175039236077474813373596854, 3.58121181037508491157085912970, 4.02689976971065954944218118684, 4.64498140019931841515920006751, 5.70740478798309309243951656038, 6.48391771892330484668994056536, 7.36193946747121456899392201120, 8.041797963050173260157569751147, 8.935936617014289784861100583691