L(s) = 1 | + (0.884 − 0.467i)3-s + (0.149 + 0.988i)4-s + (0.982 + 0.185i)7-s + (0.563 − 0.826i)9-s + (0.593 + 0.804i)12-s + (−1.38 + 0.484i)13-s + (−0.955 + 0.294i)16-s + (0.563 + 0.975i)19-s + (0.955 − 0.294i)21-s + (0.111 − 0.993i)27-s + (−0.0373 + 0.999i)28-s + (1.35 + 0.781i)31-s + (0.900 + 0.433i)36-s + (1.49 − 1.10i)37-s + (−0.997 + 1.07i)39-s + ⋯ |
L(s) = 1 | + (0.884 − 0.467i)3-s + (0.149 + 0.988i)4-s + (0.982 + 0.185i)7-s + (0.563 − 0.826i)9-s + (0.593 + 0.804i)12-s + (−1.38 + 0.484i)13-s + (−0.955 + 0.294i)16-s + (0.563 + 0.975i)19-s + (0.955 − 0.294i)21-s + (0.111 − 0.993i)27-s + (−0.0373 + 0.999i)28-s + (1.35 + 0.781i)31-s + (0.900 + 0.433i)36-s + (1.49 − 1.10i)37-s + (−0.997 + 1.07i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.854 - 0.519i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.854 - 0.519i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.963916755\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.963916755\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.884 + 0.467i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.982 - 0.185i)T \) |
good | 2 | \( 1 + (-0.149 - 0.988i)T^{2} \) |
| 11 | \( 1 + (-0.365 + 0.930i)T^{2} \) |
| 13 | \( 1 + (1.38 - 0.484i)T + (0.781 - 0.623i)T^{2} \) |
| 17 | \( 1 + (0.680 + 0.733i)T^{2} \) |
| 19 | \( 1 + (-0.563 - 0.975i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.680 + 0.733i)T^{2} \) |
| 29 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 31 | \( 1 + (-1.35 - 0.781i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-1.49 + 1.10i)T + (0.294 - 0.955i)T^{2} \) |
| 41 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 43 | \( 1 + (0.734 - 0.461i)T + (0.433 - 0.900i)T^{2} \) |
| 47 | \( 1 + (0.149 + 0.988i)T^{2} \) |
| 53 | \( 1 + (-0.294 - 0.955i)T^{2} \) |
| 59 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 61 | \( 1 + (0.0444 - 0.294i)T + (-0.955 - 0.294i)T^{2} \) |
| 67 | \( 1 + (0.152 + 0.569i)T + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 73 | \( 1 + (0.476 + 0.553i)T + (-0.149 + 0.988i)T^{2} \) |
| 79 | \( 1 + (1.71 - 0.988i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.781 + 0.623i)T^{2} \) |
| 89 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 97 | \( 1 + (0.105 + 0.105i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.453937498393266408588525572547, −8.100791929758386652810247091697, −7.40374348537054378488660555535, −6.96051904139485642016967048531, −5.88564561358689388586277932211, −4.69785211444322721923968685214, −4.16560141550273518025596841110, −3.07618364629702112610191974912, −2.43301437805298664172000325085, −1.53723240512789001346432450721,
1.12941104201757571304621734514, 2.30352087319640480287763990674, 2.85153491986329118496766790637, 4.28283262246818524344493368907, 4.83364869188022000870175626509, 5.34599779865592292103676414868, 6.48228358303495191669731829506, 7.38937501649925501112296780719, 7.86323449793975793883123604966, 8.714288618903258517663848954395