Properties

Label 350.4.e.n.151.3
Level $350$
Weight $4$
Character 350.151
Analytic conductor $20.651$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,4,Mod(51,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.51"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 350.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-12,-7,-24,0,28,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6506685020\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 93 x^{10} + 40 x^{9} + 6374 x^{8} + 1920 x^{7} + 179828 x^{6} + 77536 x^{5} + \cdots + 60840000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.3
Root \(1.03379 - 1.79059i\) of defining polynomial
Character \(\chi\) \(=\) 350.151
Dual form 350.4.e.n.51.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(-1.53379 + 2.65661i) q^{3} +(-2.00000 + 3.46410i) q^{4} +6.13518 q^{6} +(18.4345 + 1.78031i) q^{7} +8.00000 q^{8} +(8.79495 + 15.2333i) q^{9} +(24.7508 - 42.8697i) q^{11} +(-6.13518 - 10.6264i) q^{12} -44.6154 q^{13} +(-15.3509 - 33.7098i) q^{14} +(-8.00000 - 13.8564i) q^{16} +(-19.6456 + 34.0272i) q^{17} +(17.5899 - 30.4666i) q^{18} +(28.1578 + 48.7708i) q^{19} +(-33.0043 + 46.2426i) q^{21} -99.0033 q^{22} +(-45.8301 - 79.3801i) q^{23} +(-12.2704 + 21.2529i) q^{24} +(44.6154 + 77.2761i) q^{26} -136.783 q^{27} +(-43.0362 + 60.2983i) q^{28} +281.845 q^{29} +(-35.2827 + 61.1114i) q^{31} +(-16.0000 + 27.7128i) q^{32} +(75.9254 + 131.507i) q^{33} +78.5824 q^{34} -70.3596 q^{36} +(98.5446 + 170.684i) q^{37} +(56.3157 - 97.5416i) q^{38} +(68.4308 - 118.526i) q^{39} +399.021 q^{41} +(113.099 + 10.9225i) q^{42} +203.567 q^{43} +(99.0033 + 171.479i) q^{44} +(-91.6603 + 158.760i) q^{46} +(34.2494 + 59.3217i) q^{47} +49.0814 q^{48} +(336.661 + 65.6384i) q^{49} +(-60.2646 - 104.381i) q^{51} +(89.2307 - 154.552i) q^{52} +(-308.743 + 534.758i) q^{53} +(136.783 + 236.916i) q^{54} +(147.476 + 14.2425i) q^{56} -172.753 q^{57} +(-281.845 - 488.169i) q^{58} +(-240.256 + 416.136i) q^{59} +(11.7487 + 20.3493i) q^{61} +141.131 q^{62} +(135.010 + 296.476i) q^{63} +64.0000 q^{64} +(151.851 - 263.013i) q^{66} +(126.062 - 218.346i) q^{67} +(-78.5824 - 136.109i) q^{68} +281.176 q^{69} +835.640 q^{71} +(70.3596 + 121.866i) q^{72} +(-128.893 + 223.249i) q^{73} +(197.089 - 341.369i) q^{74} -225.263 q^{76} +(532.590 - 746.216i) q^{77} -273.723 q^{78} +(386.850 + 670.044i) q^{79} +(-27.6658 + 47.9185i) q^{81} +(-399.021 - 691.125i) q^{82} +1341.21 q^{83} +(-94.1805 - 206.816i) q^{84} +(-203.567 - 352.588i) q^{86} +(-432.292 + 748.752i) q^{87} +(198.007 - 342.957i) q^{88} +(-650.558 - 1126.80i) q^{89} +(-822.462 - 79.4293i) q^{91} +366.641 q^{92} +(-108.233 - 187.465i) q^{93} +(68.4988 - 118.643i) q^{94} +(-49.0814 - 85.0115i) q^{96} +323.729 q^{97} +(-222.972 - 648.752i) q^{98} +870.729 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{2} - 7 q^{3} - 24 q^{4} + 28 q^{6} - 9 q^{7} + 96 q^{8} - 31 q^{9} - 31 q^{11} - 28 q^{12} + 118 q^{13} + 42 q^{14} - 96 q^{16} - 68 q^{17} - 62 q^{18} - 93 q^{19} + 175 q^{21} + 124 q^{22}+ \cdots + 8546 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.353553 0.612372i
\(3\) −1.53379 + 2.65661i −0.295179 + 0.511265i −0.975027 0.222089i \(-0.928713\pi\)
0.679848 + 0.733353i \(0.262046\pi\)
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 6.13518 0.417446
\(7\) 18.4345 + 1.78031i 0.995369 + 0.0961279i
\(8\) 8.00000 0.353553
\(9\) 8.79495 + 15.2333i 0.325739 + 0.564196i
\(10\) 0 0
\(11\) 24.7508 42.8697i 0.678423 1.17506i −0.297033 0.954867i \(-0.595997\pi\)
0.975456 0.220196i \(-0.0706696\pi\)
\(12\) −6.13518 10.6264i −0.147589 0.255632i
\(13\) −44.6154 −0.951852 −0.475926 0.879485i \(-0.657887\pi\)
−0.475926 + 0.879485i \(0.657887\pi\)
\(14\) −15.3509 33.7098i −0.293050 0.643523i
\(15\) 0 0
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −19.6456 + 34.0272i −0.280280 + 0.485459i −0.971454 0.237230i \(-0.923761\pi\)
0.691174 + 0.722689i \(0.257094\pi\)
\(18\) 17.5899 30.4666i 0.230332 0.398947i
\(19\) 28.1578 + 48.7708i 0.339992 + 0.588884i 0.984431 0.175772i \(-0.0562422\pi\)
−0.644439 + 0.764656i \(0.722909\pi\)
\(20\) 0 0
\(21\) −33.0043 + 46.2426i −0.342959 + 0.480522i
\(22\) −99.0033 −0.959435
\(23\) −45.8301 79.3801i −0.415489 0.719648i 0.579991 0.814623i \(-0.303056\pi\)
−0.995480 + 0.0949751i \(0.969723\pi\)
\(24\) −12.2704 + 21.2529i −0.104362 + 0.180759i
\(25\) 0 0
\(26\) 44.6154 + 77.2761i 0.336530 + 0.582888i
\(27\) −136.783 −0.974963
\(28\) −43.0362 + 60.2983i −0.290467 + 0.406975i
\(29\) 281.845 1.80473 0.902367 0.430969i \(-0.141828\pi\)
0.902367 + 0.430969i \(0.141828\pi\)
\(30\) 0 0
\(31\) −35.2827 + 61.1114i −0.204418 + 0.354063i −0.949947 0.312411i \(-0.898864\pi\)
0.745529 + 0.666473i \(0.232197\pi\)
\(32\) −16.0000 + 27.7128i −0.0883883 + 0.153093i
\(33\) 75.9254 + 131.507i 0.400512 + 0.693708i
\(34\) 78.5824 0.396376
\(35\) 0 0
\(36\) −70.3596 −0.325739
\(37\) 98.5446 + 170.684i 0.437855 + 0.758387i 0.997524 0.0703292i \(-0.0224050\pi\)
−0.559669 + 0.828716i \(0.689072\pi\)
\(38\) 56.3157 97.5416i 0.240411 0.416404i
\(39\) 68.4308 118.526i 0.280967 0.486649i
\(40\) 0 0
\(41\) 399.021 1.51992 0.759959 0.649971i \(-0.225219\pi\)
0.759959 + 0.649971i \(0.225219\pi\)
\(42\) 113.099 + 10.9225i 0.415513 + 0.0401282i
\(43\) 203.567 0.721946 0.360973 0.932576i \(-0.382445\pi\)
0.360973 + 0.932576i \(0.382445\pi\)
\(44\) 99.0033 + 171.479i 0.339211 + 0.587531i
\(45\) 0 0
\(46\) −91.6603 + 158.760i −0.293795 + 0.508868i
\(47\) 34.2494 + 59.3217i 0.106293 + 0.184106i 0.914266 0.405115i \(-0.132768\pi\)
−0.807972 + 0.589220i \(0.799435\pi\)
\(48\) 49.0814 0.147589
\(49\) 336.661 + 65.6384i 0.981519 + 0.191365i
\(50\) 0 0
\(51\) −60.2646 104.381i −0.165465 0.286595i
\(52\) 89.2307 154.552i 0.237963 0.412164i
\(53\) −308.743 + 534.758i −0.800172 + 1.38594i 0.119331 + 0.992855i \(0.461925\pi\)
−0.919503 + 0.393084i \(0.871408\pi\)
\(54\) 136.783 + 236.916i 0.344701 + 0.597040i
\(55\) 0 0
\(56\) 147.476 + 14.2425i 0.351916 + 0.0339863i
\(57\) −172.753 −0.401434
\(58\) −281.845 488.169i −0.638070 1.10517i
\(59\) −240.256 + 416.136i −0.530147 + 0.918242i 0.469234 + 0.883074i \(0.344530\pi\)
−0.999381 + 0.0351685i \(0.988803\pi\)
\(60\) 0 0
\(61\) 11.7487 + 20.3493i 0.0246601 + 0.0427125i 0.878092 0.478492i \(-0.158816\pi\)
−0.853432 + 0.521204i \(0.825483\pi\)
\(62\) 141.131 0.289091
\(63\) 135.010 + 296.476i 0.269995 + 0.592896i
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 151.851 263.013i 0.283205 0.490525i
\(67\) 126.062 218.346i 0.229865 0.398137i −0.727903 0.685680i \(-0.759505\pi\)
0.957768 + 0.287543i \(0.0928383\pi\)
\(68\) −78.5824 136.109i −0.140140 0.242729i
\(69\) 281.176 0.490574
\(70\) 0 0
\(71\) 835.640 1.39679 0.698396 0.715711i \(-0.253897\pi\)
0.698396 + 0.715711i \(0.253897\pi\)
\(72\) 70.3596 + 121.866i 0.115166 + 0.199473i
\(73\) −128.893 + 223.249i −0.206654 + 0.357936i −0.950659 0.310239i \(-0.899591\pi\)
0.744004 + 0.668175i \(0.232924\pi\)
\(74\) 197.089 341.369i 0.309610 0.536261i
\(75\) 0 0
\(76\) −225.263 −0.339992
\(77\) 532.590 746.216i 0.788237 1.10441i
\(78\) −273.723 −0.397347
\(79\) 386.850 + 670.044i 0.550937 + 0.954251i 0.998207 + 0.0598520i \(0.0190629\pi\)
−0.447270 + 0.894399i \(0.647604\pi\)
\(80\) 0 0
\(81\) −27.6658 + 47.9185i −0.0379503 + 0.0657318i
\(82\) −399.021 691.125i −0.537372 0.930756i
\(83\) 1341.21 1.77369 0.886846 0.462065i \(-0.152891\pi\)
0.886846 + 0.462065i \(0.152891\pi\)
\(84\) −94.1805 206.816i −0.122333 0.268636i
\(85\) 0 0
\(86\) −203.567 352.588i −0.255246 0.442100i
\(87\) −432.292 + 748.752i −0.532719 + 0.922697i
\(88\) 198.007 342.957i 0.239859 0.415448i
\(89\) −650.558 1126.80i −0.774821 1.34203i −0.934895 0.354924i \(-0.884507\pi\)
0.160075 0.987105i \(-0.448827\pi\)
\(90\) 0 0
\(91\) −822.462 79.4293i −0.947444 0.0914995i
\(92\) 366.641 0.415489
\(93\) −108.233 187.465i −0.120680 0.209024i
\(94\) 68.4988 118.643i 0.0751608 0.130182i
\(95\) 0 0
\(96\) −49.0814 85.0115i −0.0521808 0.0903797i
\(97\) 323.729 0.338862 0.169431 0.985542i \(-0.445807\pi\)
0.169431 + 0.985542i \(0.445807\pi\)
\(98\) −222.972 648.752i −0.229832 0.668713i
\(99\) 870.729 0.883955
\(100\) 0 0
\(101\) −590.509 + 1022.79i −0.581761 + 1.00764i 0.413510 + 0.910500i \(0.364303\pi\)
−0.995271 + 0.0971395i \(0.969031\pi\)
\(102\) −120.529 + 208.763i −0.117002 + 0.202653i
\(103\) −366.021 633.967i −0.350147 0.606472i 0.636128 0.771583i \(-0.280535\pi\)
−0.986275 + 0.165111i \(0.947202\pi\)
\(104\) −356.923 −0.336530
\(105\) 0 0
\(106\) 1234.97 1.13161
\(107\) 669.021 + 1158.78i 0.604455 + 1.04695i 0.992137 + 0.125154i \(0.0399425\pi\)
−0.387682 + 0.921793i \(0.626724\pi\)
\(108\) 273.567 473.832i 0.243741 0.422171i
\(109\) 25.8786 44.8230i 0.0227405 0.0393877i −0.854431 0.519565i \(-0.826094\pi\)
0.877172 + 0.480177i \(0.159428\pi\)
\(110\) 0 0
\(111\) −604.589 −0.516982
\(112\) −122.807 269.678i −0.103609 0.227520i
\(113\) −471.803 −0.392774 −0.196387 0.980526i \(-0.562921\pi\)
−0.196387 + 0.980526i \(0.562921\pi\)
\(114\) 172.753 + 299.218i 0.141928 + 0.245827i
\(115\) 0 0
\(116\) −563.690 + 976.339i −0.451183 + 0.781472i
\(117\) −392.390 679.639i −0.310055 0.537031i
\(118\) 961.025 0.749742
\(119\) −422.736 + 592.298i −0.325648 + 0.456268i
\(120\) 0 0
\(121\) −559.706 969.439i −0.420515 0.728354i
\(122\) 23.4974 40.6987i 0.0174373 0.0302023i
\(123\) −612.017 + 1060.04i −0.448648 + 0.777081i
\(124\) −141.131 244.446i −0.102209 0.177031i
\(125\) 0 0
\(126\) 378.501 530.321i 0.267615 0.374958i
\(127\) −202.294 −0.141344 −0.0706721 0.997500i \(-0.522514\pi\)
−0.0706721 + 0.997500i \(0.522514\pi\)
\(128\) −64.0000 110.851i −0.0441942 0.0765466i
\(129\) −312.230 + 540.798i −0.213103 + 0.369106i
\(130\) 0 0
\(131\) 584.478 + 1012.35i 0.389817 + 0.675184i 0.992425 0.122854i \(-0.0392048\pi\)
−0.602607 + 0.798038i \(0.705871\pi\)
\(132\) −607.403 −0.400512
\(133\) 432.248 + 949.195i 0.281810 + 0.618839i
\(134\) −504.248 −0.325078
\(135\) 0 0
\(136\) −157.165 + 272.217i −0.0990939 + 0.171636i
\(137\) 73.3588 127.061i 0.0457479 0.0792377i −0.842245 0.539095i \(-0.818766\pi\)
0.887993 + 0.459858i \(0.152100\pi\)
\(138\) −281.176 487.011i −0.173444 0.300414i
\(139\) −2505.64 −1.52896 −0.764479 0.644648i \(-0.777004\pi\)
−0.764479 + 0.644648i \(0.777004\pi\)
\(140\) 0 0
\(141\) −210.126 −0.125502
\(142\) −835.640 1447.37i −0.493841 0.855357i
\(143\) −1104.27 + 1912.65i −0.645758 + 1.11849i
\(144\) 140.719 243.733i 0.0814347 0.141049i
\(145\) 0 0
\(146\) 515.571 0.292253
\(147\) −690.744 + 793.701i −0.387562 + 0.445329i
\(148\) −788.357 −0.437855
\(149\) −1054.09 1825.74i −0.579559 1.00383i −0.995530 0.0944481i \(-0.969891\pi\)
0.415970 0.909378i \(-0.363442\pi\)
\(150\) 0 0
\(151\) 1107.75 1918.68i 0.597004 1.03404i −0.396256 0.918140i \(-0.629691\pi\)
0.993261 0.115902i \(-0.0369758\pi\)
\(152\) 225.263 + 390.166i 0.120205 + 0.208202i
\(153\) −691.128 −0.365192
\(154\) −1825.07 176.257i −0.954992 0.0922285i
\(155\) 0 0
\(156\) 273.723 + 474.103i 0.140483 + 0.243324i
\(157\) −1131.01 + 1958.97i −0.574935 + 0.995816i 0.421114 + 0.907008i \(0.361639\pi\)
−0.996049 + 0.0888082i \(0.971694\pi\)
\(158\) 773.700 1340.09i 0.389571 0.674757i
\(159\) −947.097 1640.42i −0.472388 0.818200i
\(160\) 0 0
\(161\) −703.534 1544.92i −0.344387 0.756255i
\(162\) 110.663 0.0536698
\(163\) 43.8579 + 75.9641i 0.0210750 + 0.0365029i 0.876371 0.481638i \(-0.159958\pi\)
−0.855296 + 0.518140i \(0.826624\pi\)
\(164\) −798.043 + 1382.25i −0.379980 + 0.658144i
\(165\) 0 0
\(166\) −1341.21 2323.04i −0.627095 1.08616i
\(167\) 1851.38 0.857868 0.428934 0.903336i \(-0.358889\pi\)
0.428934 + 0.903336i \(0.358889\pi\)
\(168\) −264.035 + 369.941i −0.121254 + 0.169890i
\(169\) −206.469 −0.0939779
\(170\) 0 0
\(171\) −495.293 + 857.873i −0.221497 + 0.383645i
\(172\) −407.134 + 705.177i −0.180486 + 0.312612i
\(173\) 921.039 + 1595.29i 0.404771 + 0.701083i 0.994295 0.106668i \(-0.0340181\pi\)
−0.589524 + 0.807751i \(0.700685\pi\)
\(174\) 1729.17 0.753379
\(175\) 0 0
\(176\) −792.026 −0.339211
\(177\) −737.008 1276.53i −0.312977 0.542092i
\(178\) −1301.12 + 2253.60i −0.547881 + 0.948958i
\(179\) −374.266 + 648.248i −0.156279 + 0.270683i −0.933524 0.358515i \(-0.883283\pi\)
0.777245 + 0.629198i \(0.216617\pi\)
\(180\) 0 0
\(181\) −1393.90 −0.572418 −0.286209 0.958167i \(-0.592395\pi\)
−0.286209 + 0.958167i \(0.592395\pi\)
\(182\) 684.886 + 1503.97i 0.278940 + 0.612539i
\(183\) −72.0803 −0.0291166
\(184\) −366.641 635.041i −0.146898 0.254434i
\(185\) 0 0
\(186\) −216.466 + 374.930i −0.0853335 + 0.147802i
\(187\) 972.489 + 1684.40i 0.380297 + 0.658693i
\(188\) −273.995 −0.106293
\(189\) −2521.53 243.518i −0.970448 0.0937211i
\(190\) 0 0
\(191\) 479.087 + 829.803i 0.181495 + 0.314358i 0.942390 0.334517i \(-0.108573\pi\)
−0.760895 + 0.648875i \(0.775240\pi\)
\(192\) −98.1629 + 170.023i −0.0368974 + 0.0639081i
\(193\) 2288.52 3963.83i 0.853530 1.47836i −0.0244729 0.999700i \(-0.507791\pi\)
0.878002 0.478656i \(-0.158876\pi\)
\(194\) −323.729 560.714i −0.119806 0.207510i
\(195\) 0 0
\(196\) −900.700 + 1034.95i −0.328243 + 0.377169i
\(197\) −3429.27 −1.24023 −0.620115 0.784511i \(-0.712914\pi\)
−0.620115 + 0.784511i \(0.712914\pi\)
\(198\) −870.729 1508.15i −0.312525 0.541309i
\(199\) 73.0079 126.453i 0.0260070 0.0450454i −0.852729 0.522354i \(-0.825054\pi\)
0.878736 + 0.477308i \(0.158387\pi\)
\(200\) 0 0
\(201\) 386.707 + 669.795i 0.135702 + 0.235043i
\(202\) 2362.04 0.822734
\(203\) 5195.67 + 501.772i 1.79638 + 0.173485i
\(204\) 482.117 0.165465
\(205\) 0 0
\(206\) −732.042 + 1267.93i −0.247591 + 0.428840i
\(207\) 806.147 1396.29i 0.270682 0.468835i
\(208\) 356.923 + 618.209i 0.118981 + 0.206082i
\(209\) 2787.72 0.922634
\(210\) 0 0
\(211\) −705.410 −0.230154 −0.115077 0.993357i \(-0.536711\pi\)
−0.115077 + 0.993357i \(0.536711\pi\)
\(212\) −1234.97 2139.03i −0.400086 0.692969i
\(213\) −1281.70 + 2219.97i −0.412304 + 0.714131i
\(214\) 1338.04 2317.56i 0.427414 0.740303i
\(215\) 0 0
\(216\) −1094.27 −0.344701
\(217\) −759.216 + 1063.74i −0.237507 + 0.332773i
\(218\) −103.514 −0.0321600
\(219\) −395.390 684.836i −0.122000 0.211310i
\(220\) 0 0
\(221\) 876.496 1518.13i 0.266785 0.462085i
\(222\) 604.589 + 1047.18i 0.182781 + 0.316586i
\(223\) −2232.07 −0.670271 −0.335135 0.942170i \(-0.608782\pi\)
−0.335135 + 0.942170i \(0.608782\pi\)
\(224\) −344.289 + 482.387i −0.102696 + 0.143888i
\(225\) 0 0
\(226\) 471.803 + 817.186i 0.138867 + 0.240524i
\(227\) 2732.48 4732.79i 0.798947 1.38382i −0.121355 0.992609i \(-0.538724\pi\)
0.920302 0.391208i \(-0.127943\pi\)
\(228\) 345.507 598.435i 0.100359 0.173826i
\(229\) −971.944 1683.46i −0.280471 0.485790i 0.691030 0.722826i \(-0.257157\pi\)
−0.971501 + 0.237036i \(0.923824\pi\)
\(230\) 0 0
\(231\) 1165.52 + 2559.43i 0.331973 + 0.728996i
\(232\) 2254.76 0.638070
\(233\) −1653.62 2864.16i −0.464946 0.805311i 0.534253 0.845325i \(-0.320593\pi\)
−0.999199 + 0.0400141i \(0.987260\pi\)
\(234\) −784.780 + 1359.28i −0.219242 + 0.379738i
\(235\) 0 0
\(236\) −961.025 1664.54i −0.265074 0.459121i
\(237\) −2373.39 −0.650500
\(238\) 1448.63 + 139.901i 0.394540 + 0.0381028i
\(239\) 6107.99 1.65311 0.826554 0.562857i \(-0.190298\pi\)
0.826554 + 0.562857i \(0.190298\pi\)
\(240\) 0 0
\(241\) 1981.30 3431.71i 0.529571 0.917245i −0.469834 0.882755i \(-0.655686\pi\)
0.999405 0.0344896i \(-0.0109805\pi\)
\(242\) −1119.41 + 1938.88i −0.297349 + 0.515024i
\(243\) −1931.44 3345.36i −0.509886 0.883148i
\(244\) −93.9895 −0.0246601
\(245\) 0 0
\(246\) 2448.07 0.634484
\(247\) −1256.27 2175.93i −0.323622 0.560530i
\(248\) −282.262 + 488.892i −0.0722727 + 0.125180i
\(249\) −2057.13 + 3563.06i −0.523556 + 0.906826i
\(250\) 0 0
\(251\) −3.92299 −0.000986522 −0.000493261 1.00000i \(-0.500157\pi\)
−0.000493261 1.00000i \(0.500157\pi\)
\(252\) −1297.04 125.262i −0.324230 0.0313126i
\(253\) −4537.33 −1.12751
\(254\) 202.294 + 350.384i 0.0499727 + 0.0865553i
\(255\) 0 0
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) 109.797 + 190.175i 0.0266497 + 0.0461586i 0.879043 0.476743i \(-0.158183\pi\)
−0.852393 + 0.522902i \(0.824849\pi\)
\(258\) 1248.92 0.301373
\(259\) 1512.75 + 3321.92i 0.362925 + 0.796965i
\(260\) 0 0
\(261\) 2478.81 + 4293.42i 0.587872 + 1.01822i
\(262\) 1168.96 2024.69i 0.275643 0.477427i
\(263\) 2733.86 4735.18i 0.640977 1.11020i −0.344238 0.938882i \(-0.611863\pi\)
0.985215 0.171322i \(-0.0548039\pi\)
\(264\) 607.403 + 1052.05i 0.141602 + 0.245263i
\(265\) 0 0
\(266\) 1211.81 1697.87i 0.279325 0.391365i
\(267\) 3991.29 0.914843
\(268\) 504.248 + 873.383i 0.114932 + 0.199069i
\(269\) 145.866 252.647i 0.0330616 0.0572644i −0.849021 0.528359i \(-0.822808\pi\)
0.882083 + 0.471094i \(0.156141\pi\)
\(270\) 0 0
\(271\) −1330.51 2304.51i −0.298239 0.516565i 0.677494 0.735528i \(-0.263066\pi\)
−0.975733 + 0.218963i \(0.929733\pi\)
\(272\) 628.659 0.140140
\(273\) 1472.50 2063.13i 0.326446 0.457386i
\(274\) −293.435 −0.0646973
\(275\) 0 0
\(276\) −562.352 + 974.023i −0.122644 + 0.212425i
\(277\) 2251.33 3899.41i 0.488336 0.845824i −0.511574 0.859240i \(-0.670937\pi\)
0.999910 + 0.0134159i \(0.00427054\pi\)
\(278\) 2505.64 + 4339.89i 0.540568 + 0.936292i
\(279\) −1241.24 −0.266348
\(280\) 0 0
\(281\) −462.388 −0.0981628 −0.0490814 0.998795i \(-0.515629\pi\)
−0.0490814 + 0.998795i \(0.515629\pi\)
\(282\) 210.126 + 363.949i 0.0443718 + 0.0768542i
\(283\) −3572.86 + 6188.37i −0.750474 + 1.29986i 0.197118 + 0.980380i \(0.436842\pi\)
−0.947593 + 0.319480i \(0.896492\pi\)
\(284\) −1671.28 + 2894.74i −0.349198 + 0.604829i
\(285\) 0 0
\(286\) 4417.07 0.913240
\(287\) 7355.75 + 710.383i 1.51288 + 0.146107i
\(288\) −562.877 −0.115166
\(289\) 1684.60 + 2917.81i 0.342886 + 0.593897i
\(290\) 0 0
\(291\) −496.533 + 860.021i −0.100025 + 0.173248i
\(292\) −515.571 892.996i −0.103327 0.178968i
\(293\) 8656.21 1.72594 0.862971 0.505254i \(-0.168601\pi\)
0.862971 + 0.505254i \(0.168601\pi\)
\(294\) 2065.48 + 402.703i 0.409731 + 0.0798848i
\(295\) 0 0
\(296\) 788.357 + 1365.47i 0.154805 + 0.268130i
\(297\) −3385.50 + 5863.86i −0.661437 + 1.14564i
\(298\) −2108.18 + 3651.47i −0.409810 + 0.709812i
\(299\) 2044.73 + 3541.57i 0.395484 + 0.684998i
\(300\) 0 0
\(301\) 3752.65 + 362.413i 0.718603 + 0.0693991i
\(302\) −4431.01 −0.844291
\(303\) −1811.44 3137.50i −0.343447 0.594868i
\(304\) 450.525 780.333i 0.0849981 0.147221i
\(305\) 0 0
\(306\) 691.128 + 1197.07i 0.129115 + 0.223634i
\(307\) 4296.26 0.798699 0.399349 0.916799i \(-0.369236\pi\)
0.399349 + 0.916799i \(0.369236\pi\)
\(308\) 1519.79 + 3337.38i 0.281162 + 0.617418i
\(309\) 2245.60 0.413424
\(310\) 0 0
\(311\) −1967.56 + 3407.92i −0.358747 + 0.621368i −0.987752 0.156034i \(-0.950129\pi\)
0.629005 + 0.777401i \(0.283463\pi\)
\(312\) 547.446 948.205i 0.0993367 0.172056i
\(313\) −5249.47 9092.34i −0.947979 1.64195i −0.749674 0.661807i \(-0.769790\pi\)
−0.198304 0.980140i \(-0.563543\pi\)
\(314\) 4524.05 0.813080
\(315\) 0 0
\(316\) −3094.80 −0.550937
\(317\) −2873.59 4977.20i −0.509138 0.881853i −0.999944 0.0105840i \(-0.996631\pi\)
0.490806 0.871269i \(-0.336702\pi\)
\(318\) −1894.19 + 3280.84i −0.334029 + 0.578554i
\(319\) 6975.89 12082.6i 1.22437 2.12068i
\(320\) 0 0
\(321\) −4104.56 −0.713690
\(322\) −1972.35 + 2763.48i −0.341351 + 0.478270i
\(323\) −2212.71 −0.381172
\(324\) −110.663 191.674i −0.0189751 0.0328659i
\(325\) 0 0
\(326\) 87.7158 151.928i 0.0149022 0.0258114i
\(327\) 79.3848 + 137.499i 0.0134250 + 0.0232529i
\(328\) 3192.17 0.537372
\(329\) 525.759 + 1154.54i 0.0881035 + 0.193471i
\(330\) 0 0
\(331\) −4704.04 8147.64i −0.781141 1.35298i −0.931277 0.364311i \(-0.881305\pi\)
0.150136 0.988665i \(-0.452029\pi\)
\(332\) −2682.41 + 4646.07i −0.443423 + 0.768031i
\(333\) −1733.39 + 3002.32i −0.285253 + 0.494072i
\(334\) −1851.38 3206.68i −0.303302 0.525335i
\(335\) 0 0
\(336\) 904.791 + 87.3803i 0.146906 + 0.0141875i
\(337\) −4501.95 −0.727706 −0.363853 0.931456i \(-0.618539\pi\)
−0.363853 + 0.931456i \(0.618539\pi\)
\(338\) 206.469 + 357.615i 0.0332262 + 0.0575495i
\(339\) 723.649 1253.40i 0.115939 0.200812i
\(340\) 0 0
\(341\) 1746.55 + 3025.12i 0.277364 + 0.480408i
\(342\) 1981.17 0.313244
\(343\) 6089.32 + 1809.37i 0.958578 + 0.284831i
\(344\) 1628.54 0.255246
\(345\) 0 0
\(346\) 1842.08 3190.57i 0.286216 0.495741i
\(347\) −2496.68 + 4324.38i −0.386250 + 0.669005i −0.991942 0.126695i \(-0.959563\pi\)
0.605692 + 0.795700i \(0.292897\pi\)
\(348\) −1729.17 2995.01i −0.266360 0.461348i
\(349\) 6675.06 1.02381 0.511903 0.859044i \(-0.328941\pi\)
0.511903 + 0.859044i \(0.328941\pi\)
\(350\) 0 0
\(351\) 6102.65 0.928020
\(352\) 792.026 + 1371.83i 0.119929 + 0.207724i
\(353\) −1419.66 + 2458.93i −0.214054 + 0.370752i −0.952979 0.303035i \(-0.902000\pi\)
0.738926 + 0.673787i \(0.235333\pi\)
\(354\) −1474.02 + 2553.07i −0.221308 + 0.383317i
\(355\) 0 0
\(356\) 5204.47 0.774821
\(357\) −925.116 2031.51i −0.137149 0.301173i
\(358\) 1497.06 0.221012
\(359\) 4242.21 + 7347.72i 0.623663 + 1.08022i 0.988798 + 0.149262i \(0.0476897\pi\)
−0.365134 + 0.930955i \(0.618977\pi\)
\(360\) 0 0
\(361\) 1843.77 3193.51i 0.268811 0.465594i
\(362\) 1393.90 + 2414.30i 0.202380 + 0.350533i
\(363\) 3433.90 0.496509
\(364\) 1920.07 2690.23i 0.276481 0.387380i
\(365\) 0 0
\(366\) 72.0803 + 124.847i 0.0102943 + 0.0178302i
\(367\) −5659.86 + 9803.17i −0.805020 + 1.39434i 0.111257 + 0.993792i \(0.464512\pi\)
−0.916277 + 0.400544i \(0.868821\pi\)
\(368\) −733.282 + 1270.08i −0.103872 + 0.179912i
\(369\) 3509.37 + 6078.41i 0.495096 + 0.857532i
\(370\) 0 0
\(371\) −6643.56 + 9308.34i −0.929693 + 1.30260i
\(372\) 865.863 0.120680
\(373\) −5653.09 9791.45i −0.784735 1.35920i −0.929157 0.369684i \(-0.879466\pi\)
0.144423 0.989516i \(-0.453868\pi\)
\(374\) 1944.98 3368.80i 0.268910 0.465766i
\(375\) 0 0
\(376\) 273.995 + 474.574i 0.0375804 + 0.0650912i
\(377\) −12574.6 −1.71784
\(378\) 2099.75 + 4610.94i 0.285713 + 0.627411i
\(379\) −10626.4 −1.44022 −0.720109 0.693861i \(-0.755908\pi\)
−0.720109 + 0.693861i \(0.755908\pi\)
\(380\) 0 0
\(381\) 310.278 537.417i 0.0417218 0.0722644i
\(382\) 958.174 1659.61i 0.128336 0.222285i
\(383\) 3791.44 + 6566.96i 0.505832 + 0.876126i 0.999977 + 0.00674681i \(0.00214759\pi\)
−0.494146 + 0.869379i \(0.664519\pi\)
\(384\) 392.651 0.0521808
\(385\) 0 0
\(386\) −9154.08 −1.20707
\(387\) 1790.36 + 3101.00i 0.235166 + 0.407319i
\(388\) −647.457 + 1121.43i −0.0847156 + 0.146732i
\(389\) −1606.41 + 2782.39i −0.209379 + 0.362655i −0.951519 0.307590i \(-0.900478\pi\)
0.742140 + 0.670245i \(0.233811\pi\)
\(390\) 0 0
\(391\) 3601.44 0.465813
\(392\) 2693.29 + 525.107i 0.347019 + 0.0676579i
\(393\) −3585.88 −0.460264
\(394\) 3429.27 + 5939.67i 0.438488 + 0.759483i
\(395\) 0 0
\(396\) −1741.46 + 3016.29i −0.220989 + 0.382764i
\(397\) −6590.40 11414.9i −0.833155 1.44307i −0.895524 0.445014i \(-0.853199\pi\)
0.0623685 0.998053i \(-0.480135\pi\)
\(398\) −292.031 −0.0367794
\(399\) −3184.62 307.555i −0.399575 0.0385890i
\(400\) 0 0
\(401\) 3597.12 + 6230.39i 0.447959 + 0.775887i 0.998253 0.0590837i \(-0.0188179\pi\)
−0.550295 + 0.834971i \(0.685485\pi\)
\(402\) 773.413 1339.59i 0.0959561 0.166201i
\(403\) 1574.15 2726.51i 0.194576 0.337015i
\(404\) −2362.04 4091.17i −0.290880 0.503820i
\(405\) 0 0
\(406\) −4326.57 9500.93i −0.528877 1.16139i
\(407\) 9756.24 1.18820
\(408\) −482.117 835.051i −0.0585009 0.101326i
\(409\) 544.577 943.234i 0.0658376 0.114034i −0.831228 0.555932i \(-0.812361\pi\)
0.897065 + 0.441898i \(0.145695\pi\)
\(410\) 0 0
\(411\) 225.035 + 389.771i 0.0270076 + 0.0467786i
\(412\) 2928.17 0.350147
\(413\) −5169.85 + 7243.53i −0.615961 + 0.863028i
\(414\) −3224.59 −0.382802
\(415\) 0 0
\(416\) 713.846 1236.42i 0.0841326 0.145722i
\(417\) 3843.13 6656.50i 0.451316 0.781703i
\(418\) −2787.72 4828.47i −0.326200 0.564996i
\(419\) −12514.5 −1.45913 −0.729563 0.683914i \(-0.760276\pi\)
−0.729563 + 0.683914i \(0.760276\pi\)
\(420\) 0 0
\(421\) −827.022 −0.0957401 −0.0478701 0.998854i \(-0.515243\pi\)
−0.0478701 + 0.998854i \(0.515243\pi\)
\(422\) 705.410 + 1221.81i 0.0813716 + 0.140940i
\(423\) −602.444 + 1043.46i −0.0692478 + 0.119941i
\(424\) −2469.94 + 4278.07i −0.282903 + 0.490003i
\(425\) 0 0
\(426\) 5126.80 0.583085
\(427\) 180.353 + 396.046i 0.0204400 + 0.0448853i
\(428\) −5352.17 −0.604455
\(429\) −3387.44 5867.21i −0.381228 0.660307i
\(430\) 0 0
\(431\) 840.220 1455.30i 0.0939025 0.162644i −0.815248 0.579113i \(-0.803399\pi\)
0.909150 + 0.416469i \(0.136732\pi\)
\(432\) 1094.27 + 1895.33i 0.121870 + 0.211086i
\(433\) 7421.56 0.823689 0.411845 0.911254i \(-0.364885\pi\)
0.411845 + 0.911254i \(0.364885\pi\)
\(434\) 2601.68 + 251.257i 0.287752 + 0.0277897i
\(435\) 0 0
\(436\) 103.514 + 179.292i 0.0113703 + 0.0196939i
\(437\) 2580.96 4470.35i 0.282526 0.489349i
\(438\) −790.781 + 1369.67i −0.0862671 + 0.149419i
\(439\) −2399.11 4155.39i −0.260828 0.451767i 0.705634 0.708576i \(-0.250662\pi\)
−0.966462 + 0.256809i \(0.917329\pi\)
\(440\) 0 0
\(441\) 1961.03 + 5705.74i 0.211751 + 0.616104i
\(442\) −3505.98 −0.377291
\(443\) −7967.80 13800.6i −0.854541 1.48011i −0.877070 0.480362i \(-0.840505\pi\)
0.0225292 0.999746i \(-0.492828\pi\)
\(444\) 1209.18 2094.36i 0.129246 0.223860i
\(445\) 0 0
\(446\) 2232.07 + 3866.06i 0.236977 + 0.410455i
\(447\) 6467.03 0.684295
\(448\) 1179.81 + 113.940i 0.124421 + 0.0120160i
\(449\) −9352.06 −0.982964 −0.491482 0.870888i \(-0.663545\pi\)
−0.491482 + 0.870888i \(0.663545\pi\)
\(450\) 0 0
\(451\) 9876.10 17105.9i 1.03115 1.78600i
\(452\) 943.606 1634.37i 0.0981935 0.170076i
\(453\) 3398.13 + 5885.73i 0.352446 + 0.610455i
\(454\) −10929.9 −1.12988
\(455\) 0 0
\(456\) −1382.03 −0.141928
\(457\) 4288.61 + 7428.09i 0.438977 + 0.760331i 0.997611 0.0690835i \(-0.0220075\pi\)
−0.558633 + 0.829415i \(0.688674\pi\)
\(458\) −1943.89 + 3366.91i −0.198323 + 0.343506i
\(459\) 2687.19 4654.36i 0.273262 0.473304i
\(460\) 0 0
\(461\) −8463.98 −0.855113 −0.427556 0.903989i \(-0.640625\pi\)
−0.427556 + 0.903989i \(0.640625\pi\)
\(462\) 3267.54 4578.17i 0.329047 0.461030i
\(463\) 4297.74 0.431388 0.215694 0.976461i \(-0.430799\pi\)
0.215694 + 0.976461i \(0.430799\pi\)
\(464\) −2254.76 3905.36i −0.225592 0.390736i
\(465\) 0 0
\(466\) −3307.25 + 5728.32i −0.328767 + 0.569441i
\(467\) −515.064 892.116i −0.0510371 0.0883988i 0.839378 0.543548i \(-0.182919\pi\)
−0.890415 + 0.455149i \(0.849586\pi\)
\(468\) 3139.12 0.310055
\(469\) 2712.61 3800.66i 0.267072 0.374197i
\(470\) 0 0
\(471\) −3469.49 6009.33i −0.339417 0.587888i
\(472\) −1922.05 + 3329.09i −0.187435 + 0.324648i
\(473\) 5038.45 8726.85i 0.489785 0.848332i
\(474\) 2373.39 + 4110.84i 0.229986 + 0.398348i
\(475\) 0 0
\(476\) −1206.31 2649.00i −0.116158 0.255077i
\(477\) −10861.5 −1.04259
\(478\) −6107.99 10579.3i −0.584462 1.01232i
\(479\) −2568.74 + 4449.19i −0.245029 + 0.424402i −0.962140 0.272557i \(-0.912131\pi\)
0.717111 + 0.696959i \(0.245464\pi\)
\(480\) 0 0
\(481\) −4396.60 7615.14i −0.416773 0.721872i
\(482\) −7925.20 −0.748927
\(483\) 5183.34 + 500.582i 0.488303 + 0.0471579i
\(484\) 4477.65 0.420515
\(485\) 0 0
\(486\) −3862.89 + 6690.72i −0.360544 + 0.624480i
\(487\) 263.269 455.995i 0.0244966 0.0424294i −0.853517 0.521065i \(-0.825535\pi\)
0.878014 + 0.478635i \(0.158868\pi\)
\(488\) 93.9895 + 162.795i 0.00871866 + 0.0151012i
\(489\) −269.076 −0.0248835
\(490\) 0 0
\(491\) −1546.87 −0.142178 −0.0710889 0.997470i \(-0.522647\pi\)
−0.0710889 + 0.997470i \(0.522647\pi\)
\(492\) −2448.07 4240.18i −0.224324 0.388540i
\(493\) −5537.01 + 9590.38i −0.505830 + 0.876124i
\(494\) −2512.54 + 4351.85i −0.228835 + 0.396355i
\(495\) 0 0
\(496\) 1129.05 0.102209
\(497\) 15404.6 + 1487.70i 1.39032 + 0.134271i
\(498\) 8228.54 0.740421
\(499\) −4746.42 8221.04i −0.425809 0.737524i 0.570686 0.821168i \(-0.306677\pi\)
−0.996496 + 0.0836446i \(0.973344\pi\)
\(500\) 0 0
\(501\) −2839.64 + 4918.39i −0.253225 + 0.438598i
\(502\) 3.92299 + 6.79482i 0.000348788 + 0.000604119i
\(503\) 9819.97 0.870479 0.435239 0.900315i \(-0.356664\pi\)
0.435239 + 0.900315i \(0.356664\pi\)
\(504\) 1080.08 + 2371.81i 0.0954578 + 0.209620i
\(505\) 0 0
\(506\) 4537.33 + 7858.89i 0.398635 + 0.690455i
\(507\) 316.682 548.509i 0.0277403 0.0480476i
\(508\) 404.589 700.768i 0.0353361 0.0612039i
\(509\) 1319.03 + 2284.62i 0.114862 + 0.198947i 0.917725 0.397217i \(-0.130024\pi\)
−0.802863 + 0.596164i \(0.796691\pi\)
\(510\) 0 0
\(511\) −2773.53 + 3886.01i −0.240105 + 0.336413i
\(512\) 512.000 0.0441942
\(513\) −3851.53 6671.04i −0.331480 0.574140i
\(514\) 219.595 380.349i 0.0188442 0.0326391i
\(515\) 0 0
\(516\) −1248.92 2163.19i −0.106552 0.184553i
\(517\) 3390.80 0.288448
\(518\) 4240.98 5942.08i 0.359726 0.504015i
\(519\) −5650.74 −0.477919
\(520\) 0 0
\(521\) −2213.18 + 3833.33i −0.186106 + 0.322344i −0.943949 0.330093i \(-0.892920\pi\)
0.757843 + 0.652437i \(0.226253\pi\)
\(522\) 4957.62 8586.85i 0.415688 0.719993i
\(523\) 452.882 + 784.415i 0.0378645 + 0.0655833i 0.884337 0.466850i \(-0.154611\pi\)
−0.846472 + 0.532433i \(0.821278\pi\)
\(524\) −4675.82 −0.389817
\(525\) 0 0
\(526\) −10935.4 −0.906478
\(527\) −1386.30 2401.14i −0.114589 0.198473i
\(528\) 1214.81 2104.11i 0.100128 0.173427i
\(529\) 1882.70 3260.92i 0.154738 0.268014i
\(530\) 0 0
\(531\) −8452.16 −0.690758
\(532\) −4152.60 401.038i −0.338418 0.0326827i
\(533\) −17802.5 −1.44674
\(534\) −3991.29 6913.12i −0.323446 0.560225i
\(535\) 0 0
\(536\) 1008.50 1746.77i 0.0812694 0.140763i
\(537\) −1148.09 1988.56i −0.0922606 0.159800i
\(538\) −583.462 −0.0467562
\(539\) 11146.5 12807.9i 0.890751 1.02352i
\(540\) 0 0
\(541\) −9810.32 16992.0i −0.779628 1.35035i −0.932157 0.362056i \(-0.882075\pi\)
0.152529 0.988299i \(-0.451258\pi\)
\(542\) −2661.02 + 4609.02i −0.210887 + 0.365267i
\(543\) 2137.96 3703.05i 0.168966 0.292657i
\(544\) −628.659 1088.87i −0.0495470 0.0858178i
\(545\) 0 0
\(546\) −5045.95 487.313i −0.395507 0.0381961i
\(547\) −6717.26 −0.525062 −0.262531 0.964923i \(-0.584557\pi\)
−0.262531 + 0.964923i \(0.584557\pi\)
\(548\) 293.435 + 508.244i 0.0228740 + 0.0396188i
\(549\) −206.658 + 357.943i −0.0160655 + 0.0278263i
\(550\) 0 0
\(551\) 7936.14 + 13745.8i 0.613595 + 1.06278i
\(552\) 2249.41 0.173444
\(553\) 5938.49 + 13040.6i 0.456655 + 1.00279i
\(554\) −9005.31 −0.690612
\(555\) 0 0
\(556\) 5011.27 8679.78i 0.382240 0.662058i
\(557\) −6551.98 + 11348.4i −0.498413 + 0.863277i −0.999998 0.00183114i \(-0.999417\pi\)
0.501585 + 0.865108i \(0.332750\pi\)
\(558\) 1241.24 + 2149.89i 0.0941681 + 0.163104i
\(559\) −9082.21 −0.687186
\(560\) 0 0
\(561\) −5966.40 −0.449022
\(562\) 462.388 + 800.879i 0.0347058 + 0.0601122i
\(563\) −8324.35 + 14418.2i −0.623143 + 1.07932i 0.365754 + 0.930712i \(0.380811\pi\)
−0.988897 + 0.148604i \(0.952522\pi\)
\(564\) 420.253 727.899i 0.0313756 0.0543441i
\(565\) 0 0
\(566\) 14291.4 1.06133
\(567\) −595.314 + 834.099i −0.0440932 + 0.0617793i
\(568\) 6685.12 0.493841
\(569\) −7348.85 12728.6i −0.541441 0.937803i −0.998822 0.0485321i \(-0.984546\pi\)
0.457381 0.889271i \(-0.348788\pi\)
\(570\) 0 0
\(571\) −1498.89 + 2596.15i −0.109854 + 0.190272i −0.915711 0.401838i \(-0.868372\pi\)
0.805857 + 0.592110i \(0.201705\pi\)
\(572\) −4417.07 7650.58i −0.322879 0.559243i
\(573\) −2939.28 −0.214294
\(574\) −6125.34 13450.9i −0.445412 0.978102i
\(575\) 0 0
\(576\) 562.877 + 974.931i 0.0407173 + 0.0705245i
\(577\) 2436.64 4220.38i 0.175803 0.304500i −0.764636 0.644463i \(-0.777081\pi\)
0.940439 + 0.339963i \(0.110414\pi\)
\(578\) 3369.20 5835.63i 0.242457 0.419948i
\(579\) 7020.24 + 12159.4i 0.503888 + 0.872759i
\(580\) 0 0
\(581\) 24724.4 + 2387.77i 1.76548 + 0.170501i
\(582\) 1986.13 0.141457
\(583\) 15283.3 + 26471.4i 1.08571 + 1.88050i
\(584\) −1031.14 + 1785.99i −0.0730634 + 0.126549i
\(585\) 0 0
\(586\) −8656.21 14993.0i −0.610213 1.05692i
\(587\) 23971.4 1.68553 0.842764 0.538283i \(-0.180927\pi\)
0.842764 + 0.538283i \(0.180927\pi\)
\(588\) −1367.97 3980.21i −0.0959426 0.279152i
\(589\) −3973.94 −0.278002
\(590\) 0 0
\(591\) 5259.80 9110.24i 0.366090 0.634086i
\(592\) 1576.71 2730.95i 0.109464 0.189597i
\(593\) −780.834 1352.44i −0.0540726 0.0936564i 0.837722 0.546097i \(-0.183887\pi\)
−0.891795 + 0.452440i \(0.850554\pi\)
\(594\) 13542.0 0.935413
\(595\) 0 0
\(596\) 8432.71 0.579559
\(597\) 223.958 + 387.907i 0.0153534 + 0.0265929i
\(598\) 4089.46 7083.15i 0.279649 0.484367i
\(599\) −8700.70 + 15070.1i −0.593491 + 1.02796i 0.400267 + 0.916398i \(0.368917\pi\)
−0.993758 + 0.111557i \(0.964416\pi\)
\(600\) 0 0
\(601\) −26823.7 −1.82057 −0.910283 0.413987i \(-0.864136\pi\)
−0.910283 + 0.413987i \(0.864136\pi\)
\(602\) −3124.94 6862.20i −0.211566 0.464589i
\(603\) 4434.84 0.299503
\(604\) 4431.01 + 7674.74i 0.298502 + 0.517021i
\(605\) 0 0
\(606\) −3622.88 + 6275.01i −0.242854 + 0.420635i
\(607\) 11360.7 + 19677.3i 0.759665 + 1.31578i 0.943022 + 0.332731i \(0.107970\pi\)
−0.183357 + 0.983046i \(0.558696\pi\)
\(608\) −1802.10 −0.120205
\(609\) −9302.10 + 13033.2i −0.618949 + 0.867215i
\(610\) 0 0
\(611\) −1528.05 2646.66i −0.101176 0.175241i
\(612\) 1382.26 2394.14i 0.0912980 0.158133i
\(613\) −11465.8 + 19859.3i −0.755462 + 1.30850i 0.189682 + 0.981846i \(0.439254\pi\)
−0.945144 + 0.326653i \(0.894079\pi\)
\(614\) −4296.26 7441.34i −0.282383 0.489101i
\(615\) 0 0
\(616\) 4260.72 5969.73i 0.278684 0.390466i
\(617\) −4299.04 −0.280507 −0.140253 0.990116i \(-0.544792\pi\)
−0.140253 + 0.990116i \(0.544792\pi\)
\(618\) −2245.60 3889.50i −0.146167 0.253169i
\(619\) 2660.95 4608.89i 0.172783 0.299268i −0.766609 0.642114i \(-0.778058\pi\)
0.939392 + 0.342846i \(0.111391\pi\)
\(620\) 0 0
\(621\) 6268.81 + 10857.9i 0.405086 + 0.701630i
\(622\) 7870.25 0.507345
\(623\) −9986.65 21930.2i −0.642226 1.41030i
\(624\) −2189.79 −0.140483
\(625\) 0 0
\(626\) −10498.9 + 18184.7i −0.670322 + 1.16103i
\(627\) −4275.79 + 7405.88i −0.272342 + 0.471710i
\(628\) −4524.05 7835.89i −0.287467 0.497908i
\(629\) −7743.87 −0.490888
\(630\) 0 0
\(631\) 19486.3 1.22938 0.614688 0.788771i \(-0.289282\pi\)
0.614688 + 0.788771i \(0.289282\pi\)
\(632\) 3094.80 + 5360.35i 0.194786 + 0.337379i
\(633\) 1081.95 1874.00i 0.0679365 0.117670i
\(634\) −5747.17 + 9954.40i −0.360015 + 0.623564i
\(635\) 0 0
\(636\) 7576.77 0.472388
\(637\) −15020.3 2928.48i −0.934261 0.182152i
\(638\) −27903.6 −1.73152
\(639\) 7349.41 + 12729.6i 0.454989 + 0.788065i
\(640\) 0 0
\(641\) 14287.3 24746.4i 0.880368 1.52484i 0.0294367 0.999567i \(-0.490629\pi\)
0.850932 0.525276i \(-0.176038\pi\)
\(642\) 4104.56 + 7109.31i 0.252327 + 0.437044i
\(643\) 6347.10 0.389277 0.194639 0.980875i \(-0.437647\pi\)
0.194639 + 0.980875i \(0.437647\pi\)
\(644\) 6758.84 + 652.736i 0.413565 + 0.0399401i
\(645\) 0 0
\(646\) 2212.71 + 3832.53i 0.134765 + 0.233419i
\(647\) −1324.85 + 2294.70i −0.0805024 + 0.139434i −0.903466 0.428660i \(-0.858986\pi\)
0.822963 + 0.568094i \(0.192319\pi\)
\(648\) −221.326 + 383.348i −0.0134175 + 0.0232397i
\(649\) 11893.1 + 20599.4i 0.719328 + 1.24591i
\(650\) 0 0
\(651\) −1661.47 3648.51i −0.100028 0.219656i
\(652\) −350.863 −0.0210750
\(653\) 3530.81 + 6115.54i 0.211595 + 0.366493i 0.952214 0.305432i \(-0.0988010\pi\)
−0.740619 + 0.671925i \(0.765468\pi\)
\(654\) 158.770 274.997i 0.00949294 0.0164423i
\(655\) 0 0
\(656\) −3192.17 5529.00i −0.189990 0.329072i
\(657\) −4534.42 −0.269261
\(658\) 1473.96 2065.18i 0.0873269 0.122354i
\(659\) 11227.0 0.663646 0.331823 0.943342i \(-0.392336\pi\)
0.331823 + 0.943342i \(0.392336\pi\)
\(660\) 0 0
\(661\) −14375.0 + 24898.2i −0.845873 + 1.46509i 0.0389881 + 0.999240i \(0.487587\pi\)
−0.884861 + 0.465855i \(0.845747\pi\)
\(662\) −9408.09 + 16295.3i −0.552350 + 0.956698i
\(663\) 2688.73 + 4657.01i 0.157499 + 0.272796i
\(664\) 10729.6 0.627095
\(665\) 0 0
\(666\) 6933.56 0.403408
\(667\) −12917.0 22372.9i −0.749847 1.29877i
\(668\) −3702.76 + 6413.36i −0.214467 + 0.371468i
\(669\) 3423.54 5929.74i 0.197850 0.342686i
\(670\) 0 0
\(671\) 1163.16 0.0669199
\(672\) −753.444 1654.52i −0.0432511 0.0949772i
\(673\) 4440.57 0.254341 0.127170 0.991881i \(-0.459411\pi\)
0.127170 + 0.991881i \(0.459411\pi\)
\(674\) 4501.95 + 7797.61i 0.257283 + 0.445627i
\(675\) 0 0
\(676\) 412.939 715.231i 0.0234945 0.0406936i
\(677\) −8154.92 14124.7i −0.462953 0.801857i 0.536154 0.844120i \(-0.319877\pi\)
−0.999107 + 0.0422629i \(0.986543\pi\)
\(678\) −2894.59 −0.163962
\(679\) 5967.77 + 576.338i 0.337293 + 0.0325741i
\(680\) 0 0
\(681\) 8382.13 + 14518.3i 0.471665 + 0.816948i
\(682\) 3493.10 6050.23i 0.196126 0.339700i
\(683\) 2433.22 4214.46i 0.136317 0.236108i −0.789783 0.613387i \(-0.789807\pi\)
0.926100 + 0.377279i \(0.123140\pi\)
\(684\) −1981.17 3431.49i −0.110749 0.191822i
\(685\) 0 0
\(686\) −2955.39 12356.4i −0.164486 0.687709i
\(687\) 5963.05 0.331157
\(688\) −1628.54 2820.71i −0.0902432 0.156306i
\(689\) 13774.7 23858.4i 0.761645 1.31921i
\(690\) 0 0
\(691\) 7513.56 + 13013.9i 0.413646 + 0.716455i 0.995285 0.0969914i \(-0.0309219\pi\)
−0.581640 + 0.813447i \(0.697589\pi\)
\(692\) −7368.31 −0.404771
\(693\) 16051.4 + 1550.17i 0.879861 + 0.0849727i
\(694\) 9986.72 0.546240
\(695\) 0 0
\(696\) −3458.34 + 5990.01i −0.188345 + 0.326223i
\(697\) −7839.01 + 13577.6i −0.426003 + 0.737858i
\(698\) −6675.06 11561.5i −0.361970 0.626950i
\(699\) 10145.3 0.548970
\(700\) 0 0
\(701\) −10821.8 −0.583073 −0.291536 0.956560i \(-0.594166\pi\)
−0.291536 + 0.956560i \(0.594166\pi\)
\(702\) −6102.65 10570.1i −0.328105 0.568294i
\(703\) −5549.61 + 9612.20i −0.297735 + 0.515691i
\(704\) 1584.05 2743.66i 0.0848029 0.146883i
\(705\) 0 0
\(706\) 5678.64 0.302718
\(707\) −12706.6 + 17803.3i −0.675929 + 0.947049i
\(708\) 5896.06 0.312977
\(709\) −10251.4 17755.9i −0.543016 0.940532i −0.998729 0.0504047i \(-0.983949\pi\)
0.455713 0.890127i \(-0.349384\pi\)
\(710\) 0 0
\(711\) −6804.65 + 11786.0i −0.358923 + 0.621673i
\(712\) −5204.47 9014.40i −0.273940 0.474479i
\(713\) 6468.05 0.339734
\(714\) −2593.56 + 3633.86i −0.135940 + 0.190467i
\(715\) 0 0
\(716\) −1497.06 2592.99i −0.0781396 0.135342i
\(717\) −9368.40 + 16226.5i −0.487963 + 0.845176i
\(718\) 8484.41 14695.4i 0.440997 0.763828i
\(719\) −136.829 236.995i −0.00709717 0.0122927i 0.862455 0.506134i \(-0.168926\pi\)
−0.869552 + 0.493841i \(0.835592\pi\)
\(720\) 0 0
\(721\) −5618.75 12338.5i −0.290226 0.637322i
\(722\) −7375.09 −0.380156
\(723\) 6077.81 + 10527.1i 0.312637 + 0.541503i
\(724\) 2787.80 4828.61i 0.143105 0.247864i
\(725\) 0 0
\(726\) −3433.90 5947.68i −0.175542 0.304049i
\(727\) −1244.59 −0.0634931 −0.0317465 0.999496i \(-0.510107\pi\)
−0.0317465 + 0.999496i \(0.510107\pi\)
\(728\) −6579.69 635.435i −0.334972 0.0323500i
\(729\) 10355.8 0.526129
\(730\) 0 0
\(731\) −3999.20 + 6926.81i −0.202347 + 0.350475i
\(732\) 144.161 249.694i 0.00727914 0.0126078i
\(733\) −7826.61 13556.1i −0.394383 0.683091i 0.598640 0.801019i \(-0.295708\pi\)
−0.993022 + 0.117928i \(0.962375\pi\)
\(734\) 22639.5 1.13847
\(735\) 0 0
\(736\) 2933.13 0.146898
\(737\) −6240.28 10808.5i −0.311891 0.540211i
\(738\) 7018.74 12156.8i 0.350086 0.606367i
\(739\) 2683.14 4647.34i 0.133560 0.231333i −0.791486 0.611187i \(-0.790692\pi\)
0.925047 + 0.379854i \(0.124026\pi\)
\(740\) 0 0
\(741\) 7707.46 0.382106
\(742\) 22766.1 + 2198.64i 1.12637 + 0.108780i
\(743\) −7927.48 −0.391428 −0.195714 0.980661i \(-0.562702\pi\)
−0.195714 + 0.980661i \(0.562702\pi\)
\(744\) −865.863 1499.72i −0.0426668 0.0739010i
\(745\) 0 0
\(746\) −11306.2 + 19582.9i −0.554891 + 0.961100i
\(747\) 11795.8 + 20431.0i 0.577760 + 1.00071i
\(748\) −7779.91 −0.380297
\(749\) 10270.1 + 22552.6i 0.501015 + 1.10020i
\(750\) 0 0
\(751\) −3693.26 6396.92i −0.179453 0.310821i 0.762240 0.647294i \(-0.224099\pi\)
−0.941693 + 0.336473i \(0.890766\pi\)
\(752\) 547.991 949.148i 0.0265734 0.0460264i
\(753\) 6.01707 10.4219i 0.000291201 0.000504374i
\(754\) 12574.6 + 21779.9i 0.607348 + 1.05196i
\(755\) 0 0
\(756\) 5886.64 8247.82i 0.283194 0.396786i
\(757\) 13406.0 0.643659 0.321829 0.946798i \(-0.395702\pi\)
0.321829 + 0.946798i \(0.395702\pi\)
\(758\) 10626.4 + 18405.5i 0.509194 + 0.881949i
\(759\) 6959.34 12053.9i 0.332817 0.576456i
\(760\) 0 0
\(761\) 12942.5 + 22417.0i 0.616510 + 1.06783i 0.990117 + 0.140240i \(0.0447875\pi\)
−0.373607 + 0.927587i \(0.621879\pi\)
\(762\) −1241.11 −0.0590036
\(763\) 556.857 780.217i 0.0264215 0.0370193i
\(764\) −3832.69 −0.181495
\(765\) 0 0
\(766\) 7582.88 13133.9i 0.357677 0.619515i
\(767\) 10719.1 18566.1i 0.504622 0.874031i
\(768\) −392.651 680.092i −0.0184487 0.0319541i
\(769\) 11600.6 0.543991 0.271996 0.962299i \(-0.412316\pi\)
0.271996 + 0.962299i \(0.412316\pi\)
\(770\) 0 0
\(771\) −673.626 −0.0314657
\(772\) 9154.08 + 15855.3i 0.426765 + 0.739178i
\(773\) 14123.7 24462.9i 0.657170 1.13825i −0.324175 0.945997i \(-0.605087\pi\)
0.981345 0.192255i \(-0.0615801\pi\)
\(774\) 3580.72 6201.99i 0.166287 0.288018i
\(775\) 0 0
\(776\) 2589.83 0.119806
\(777\) −11145.3 1076.36i −0.514588 0.0496964i
\(778\) 6425.65 0.296106
\(779\) 11235.6 + 19460.6i 0.516760 + 0.895055i
\(780\) 0 0
\(781\) 20682.8 35823.6i 0.947616 1.64132i
\(782\) −3601.44 6237.88i −0.164690 0.285251i
\(783\) −38551.7 −1.75955
\(784\) −1783.78 5190.02i −0.0812580 0.236426i
\(785\) 0 0
\(786\) 3585.88 + 6210.92i 0.162728 + 0.281853i
\(787\) 5252.63 9097.82i 0.237911 0.412074i −0.722204 0.691680i \(-0.756871\pi\)
0.960115 + 0.279606i \(0.0902040\pi\)
\(788\) 6858.54 11879.3i 0.310058 0.537036i
\(789\) 8386.36 + 14525.6i 0.378406 + 0.655418i
\(790\) 0 0
\(791\) −8697.45 839.957i −0.390955 0.0377566i
\(792\) 6965.83 0.312525
\(793\) −524.172 907.893i −0.0234728 0.0406560i
\(794\) −13180.8 + 22829.8i −0.589130 + 1.02040i
\(795\) 0 0
\(796\) 292.031 + 505.813i 0.0130035 + 0.0225227i
\(797\) 2165.99 0.0962651 0.0481325 0.998841i \(-0.484673\pi\)
0.0481325 + 0.998841i \(0.484673\pi\)
\(798\) 2651.92 + 5823.48i 0.117640 + 0.258332i
\(799\) −2691.40 −0.119168
\(800\) 0 0
\(801\) 11443.3 19820.3i 0.504778 0.874302i
\(802\) 7194.23 12460.8i 0.316755 0.548635i
\(803\) 6380.41 + 11051.2i 0.280398 + 0.485664i
\(804\) −3093.65 −0.135702
\(805\) 0 0
\(806\) −6296.60 −0.275172
\(807\) 447.456 + 775.016i 0.0195182 + 0.0338065i
\(808\) −4724.07 + 8182.33i −0.205683 + 0.356254i
\(809\) −2674.33 + 4632.08i −0.116223 + 0.201304i −0.918268 0.395959i \(-0.870412\pi\)
0.802045 + 0.597264i \(0.203745\pi\)
\(810\) 0 0
\(811\) −33841.2 −1.46526 −0.732629 0.680628i \(-0.761707\pi\)
−0.732629 + 0.680628i \(0.761707\pi\)
\(812\) −12129.5 + 16994.8i −0.524215 + 0.734482i
\(813\) 8162.92 0.352135
\(814\) −9756.24 16898.3i −0.420093 0.727623i
\(815\) 0 0
\(816\) −964.234 + 1670.10i −0.0413664 + 0.0716486i
\(817\) 5732.01 + 9928.13i 0.245456 + 0.425142i
\(818\) −2178.31 −0.0931084
\(819\) −6023.54 13227.4i −0.256996 0.564349i
\(820\) 0 0
\(821\) −7290.73 12627.9i −0.309925 0.536806i 0.668421 0.743783i \(-0.266971\pi\)
−0.978346 + 0.206978i \(0.933637\pi\)
\(822\) 450.069 779.543i 0.0190973 0.0330775i
\(823\) −1539.13 + 2665.86i −0.0651894 + 0.112911i −0.896778 0.442481i \(-0.854098\pi\)
0.831589 + 0.555392i \(0.187432\pi\)
\(824\) −2928.17 5071.74i −0.123796 0.214420i
\(825\) 0 0
\(826\) 17716.0 + 1710.93i 0.746270 + 0.0720711i
\(827\) 40275.0 1.69347 0.846734 0.532017i \(-0.178566\pi\)
0.846734 + 0.532017i \(0.178566\pi\)
\(828\) 3224.59 + 5585.15i 0.135341 + 0.234417i
\(829\) −14593.5 + 25276.6i −0.611402 + 1.05898i 0.379603 + 0.925150i \(0.376061\pi\)
−0.991004 + 0.133829i \(0.957273\pi\)
\(830\) 0 0
\(831\) 6906.15 + 11961.8i 0.288293 + 0.499339i
\(832\) −2855.38 −0.118981
\(833\) −8847.39 + 10166.1i −0.368000 + 0.422851i
\(834\) −15372.5 −0.638258
\(835\) 0 0
\(836\) −5575.44 + 9656.94i −0.230659 + 0.399512i
\(837\) 4826.09 8359.04i 0.199300 0.345198i
\(838\) 12514.5 + 21675.8i 0.515879 + 0.893528i
\(839\) 9396.07 0.386637 0.193318 0.981136i \(-0.438075\pi\)
0.193318 + 0.981136i \(0.438075\pi\)
\(840\) 0 0
\(841\) 55047.5 2.25706
\(842\) 827.022 + 1432.44i 0.0338493 + 0.0586286i
\(843\) 709.208 1228.38i 0.0289756 0.0501872i
\(844\) 1410.82 2443.61i 0.0575384 0.0996595i
\(845\) 0 0
\(846\) 2409.77 0.0979312
\(847\) −8591.99 18867.6i −0.348553 0.765404i
\(848\) 9879.77 0.400086
\(849\) −10960.1 18983.4i −0.443049 0.767383i
\(850\) 0 0
\(851\) 9032.63 15645.0i 0.363848 0.630203i
\(852\) −5126.80 8879.88i −0.206152 0.357065i
\(853\) −20167.0 −0.809502 −0.404751 0.914427i \(-0.632642\pi\)
−0.404751 + 0.914427i \(0.632642\pi\)
\(854\) 505.619 708.426i 0.0202599 0.0283862i
\(855\) 0 0
\(856\) 5352.17 + 9270.23i 0.213707 + 0.370152i
\(857\) 21239.7 36788.3i 0.846599 1.46635i −0.0376269 0.999292i \(-0.511980\pi\)
0.884226 0.467060i \(-0.154687\pi\)
\(858\) −6774.87 + 11734.4i −0.269569 + 0.466908i
\(859\) −10521.8 18224.4i −0.417929 0.723873i 0.577802 0.816177i \(-0.303910\pi\)
−0.995731 + 0.0923032i \(0.970577\pi\)
\(860\) 0 0
\(861\) −13169.4 + 18451.8i −0.521269 + 0.730355i
\(862\) −3360.88 −0.132798
\(863\) −4225.57 7318.91i −0.166675 0.288689i 0.770574 0.637350i \(-0.219970\pi\)
−0.937249 + 0.348662i \(0.886636\pi\)
\(864\) 2188.54 3790.66i 0.0861754 0.149260i
\(865\) 0 0
\(866\) −7421.56 12854.5i −0.291218 0.504405i
\(867\) −10335.3 −0.404851
\(868\) −2166.49 4757.49i −0.0847181 0.186037i
\(869\) 38299.4 1.49507
\(870\) 0 0
\(871\) −5624.30 + 9741.58i −0.218797 + 0.378968i
\(872\) 207.028 358.584i 0.00803999 0.0139257i
\(873\) 2847.18 + 4931.45i 0.110381 + 0.191185i
\(874\) −10323.8 −0.399552
\(875\) 0 0
\(876\) 3163.12 0.122000
\(877\) 17215.5 + 29818.1i 0.662856 + 1.14810i 0.979862 + 0.199677i \(0.0639893\pi\)
−0.317005 + 0.948424i \(0.602677\pi\)
\(878\) −4798.23 + 8310.78i −0.184433 + 0.319448i
\(879\) −13276.8 + 22996.2i −0.509462 + 0.882414i
\(880\) 0 0
\(881\) −11602.4 −0.443695 −0.221848 0.975081i \(-0.571209\pi\)
−0.221848 + 0.975081i \(0.571209\pi\)
\(882\) 7921.61 9102.34i 0.302420 0.347496i
\(883\) 37934.8 1.44576 0.722880 0.690974i \(-0.242818\pi\)
0.722880 + 0.690974i \(0.242818\pi\)
\(884\) 3505.98 + 6072.54i 0.133392 + 0.231043i
\(885\) 0 0
\(886\) −15935.6 + 27601.3i −0.604252 + 1.04659i
\(887\) −12718.1 22028.5i −0.481436 0.833871i 0.518337 0.855176i \(-0.326551\pi\)
−0.999773 + 0.0213052i \(0.993218\pi\)
\(888\) −4836.71 −0.182781
\(889\) −3729.19 360.147i −0.140690 0.0135871i
\(890\) 0 0
\(891\) 1369.50 + 2372.04i 0.0514927 + 0.0891879i
\(892\) 4464.14 7732.12i 0.167568 0.290236i
\(893\) −1928.78 + 3340.74i −0.0722779 + 0.125189i
\(894\) −6467.03 11201.2i −0.241935 0.419043i
\(895\) 0 0
\(896\) −982.457 2157.43i −0.0366313 0.0804404i
\(897\) −12544.8 −0.466954
\(898\) 9352.06 + 16198.2i 0.347530 + 0.601940i
\(899\) −9944.25 + 17223.9i −0.368920 + 0.638988i
\(900\) 0 0
\(901\) −12130.9 21011.3i −0.448544 0.776901i
\(902\) −39504.4 −1.45826
\(903\) −6718.59 + 9413.47i −0.247598 + 0.346911i
\(904\) −3774.42 −0.138867
\(905\) 0 0
\(906\) 6796.26 11771.5i 0.249217 0.431657i
\(907\) −3015.93 + 5223.74i −0.110410 + 0.191236i −0.915936 0.401325i \(-0.868550\pi\)
0.805525 + 0.592561i \(0.201883\pi\)
\(908\) 10929.9 + 18931.2i 0.399474 + 0.691909i
\(909\) −20774.0 −0.758008
\(910\) 0 0
\(911\) −21631.5 −0.786699 −0.393349 0.919389i \(-0.628684\pi\)
−0.393349 + 0.919389i \(0.628684\pi\)
\(912\) 1382.03 + 2393.74i 0.0501793 + 0.0869130i
\(913\) 33195.9 57497.0i 1.20331 2.08420i
\(914\) 8577.22 14856.2i 0.310404 0.537635i
\(915\) 0 0
\(916\) 7775.56 0.280471
\(917\) 8972.26 + 19702.6i 0.323108 + 0.709529i
\(918\) −10748.8 −0.386451
\(919\) 14122.3 + 24460.6i 0.506913 + 0.877999i 0.999968 + 0.00800113i \(0.00254687\pi\)
−0.493055 + 0.869998i \(0.664120\pi\)
\(920\) 0 0
\(921\) −6589.58 + 11413.5i −0.235759 + 0.408347i
\(922\) 8463.98 + 14660.0i 0.302328 + 0.523647i
\(923\) −37282.4 −1.32954
\(924\) −11197.2 1081.37i −0.398658 0.0385004i
\(925\) 0 0
\(926\) −4297.74 7443.90i −0.152519 0.264170i
\(927\) 6438.27 11151.4i 0.228113 0.395103i
\(928\) −4509.52 + 7810.71i −0.159517 + 0.276292i
\(929\) −22472.1 38922.8i −0.793633 1.37461i −0.923703 0.383109i \(-0.874854\pi\)
0.130070 0.991505i \(-0.458480\pi\)
\(930\) 0 0
\(931\) 6278.41 + 18267.5i 0.221017 + 0.643063i
\(932\) 13229.0 0.464946
\(933\) −6035.68 10454.1i −0.211789 0.366829i
\(934\) −1030.13 + 1784.23i −0.0360886 + 0.0625074i
\(935\) 0 0
\(936\) −3139.12 5437.11i −0.109621 0.189869i
\(937\) 3777.71 0.131710 0.0658551 0.997829i \(-0.479022\pi\)
0.0658551 + 0.997829i \(0.479022\pi\)
\(938\) −9295.56 897.720i −0.323572 0.0312490i
\(939\) 32206.4 1.11929
\(940\) 0 0
\(941\) 176.423 305.573i 0.00611182 0.0105860i −0.862953 0.505284i \(-0.831388\pi\)
0.869065 + 0.494698i \(0.164721\pi\)
\(942\) −6938.97 + 12018.7i −0.240004 + 0.415699i
\(943\) −18287.2 31674.4i −0.631509 1.09381i
\(944\) 7688.20 0.265074
\(945\) 0 0
\(946\) −20153.8 −0.692660
\(947\) −6767.42 11721.5i −0.232219 0.402215i 0.726242 0.687439i \(-0.241265\pi\)
−0.958461 + 0.285224i \(0.907932\pi\)
\(948\) 4746.79 8221.68i 0.162625 0.281675i
\(949\) 5750.60 9960.34i 0.196704 0.340702i
\(950\) 0 0
\(951\) 17630.0 0.601147
\(952\) −3381.89 + 4738.39i −0.115134 + 0.161315i
\(953\) 51886.1 1.76365 0.881824 0.471579i \(-0.156316\pi\)
0.881824 + 0.471579i \(0.156316\pi\)
\(954\) 10861.5 + 18812.7i 0.368610 + 0.638452i
\(955\) 0 0
\(956\) −12216.0 + 21158.7i −0.413277 + 0.715817i
\(957\) 21399.2 + 37064.4i 0.722818 + 1.25196i
\(958\) 10275.0 0.346523
\(959\) 1578.54 2211.71i 0.0531530 0.0744731i
\(960\) 0 0
\(961\) 12405.8 + 21487.4i 0.416426 + 0.721272i
\(962\) −8793.21 + 15230.3i −0.294703 + 0.510441i
\(963\) −11768.0 + 20382.8i −0.393789 + 0.682063i
\(964\) 7925.20 + 13726.8i 0.264786 + 0.458622i
\(965\) 0 0
\(966\) −4316.31 9478.39i −0.143763 0.315696i
\(967\) −45517.8 −1.51371 −0.756853 0.653585i \(-0.773264\pi\)
−0.756853 + 0.653585i \(0.773264\pi\)
\(968\) −4477.65 7755.51i −0.148675 0.257512i
\(969\) 3393.84 5878.31i 0.112514 0.194880i
\(970\) 0 0
\(971\) −11699.1 20263.5i −0.386656 0.669708i 0.605341 0.795966i \(-0.293037\pi\)
−0.991997 + 0.126258i \(0.959703\pi\)
\(972\) 15451.6 0.509886
\(973\) −46190.1 4460.82i −1.52188 0.146976i
\(974\) −1053.07 −0.0346434
\(975\) 0 0
\(976\) 187.979 325.589i 0.00616502 0.0106781i
\(977\) 17161.9 29725.3i 0.561985 0.973386i −0.435339 0.900267i \(-0.643371\pi\)
0.997323 0.0731191i \(-0.0232953\pi\)
\(978\) 269.076 + 466.054i 0.00879766 + 0.0152380i
\(979\) −64407.4 −2.10262
\(980\) 0 0
\(981\) 910.402 0.0296299
\(982\) 1546.87 + 2679.26i 0.0502675 + 0.0870658i
\(983\) 18578.5 32178.9i 0.602809 1.04410i −0.389584 0.920991i \(-0.627381\pi\)
0.992394 0.123106i \(-0.0392854\pi\)
\(984\) −4896.13 + 8480.35i −0.158621 + 0.274740i
\(985\) 0 0
\(986\) 22148.0 0.715352
\(987\) −3873.57 374.091i −0.124921 0.0120643i
\(988\) 10050.2 0.323622
\(989\) −9329.50 16159.2i −0.299961 0.519547i
\(990\) 0 0
\(991\) 5271.25 9130.08i 0.168968 0.292660i −0.769090 0.639141i \(-0.779290\pi\)
0.938057 + 0.346481i \(0.112623\pi\)
\(992\) −1129.05 1955.57i −0.0361364 0.0625900i
\(993\) 28860.2 0.922306
\(994\) −12827.8 28169.3i −0.409330 0.898868i
\(995\) 0 0
\(996\) −8228.54 14252.2i −0.261778 0.453413i
\(997\) −18128.0 + 31398.6i −0.575846 + 0.997394i 0.420103 + 0.907476i \(0.361994\pi\)
−0.995949 + 0.0899181i \(0.971339\pi\)
\(998\) −9492.84 + 16442.1i −0.301093 + 0.521508i
\(999\) −13479.3 23346.8i −0.426892 0.739399i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.4.e.n.151.3 12
5.2 odd 4 70.4.i.a.39.10 yes 24
5.3 odd 4 70.4.i.a.39.3 yes 24
5.4 even 2 350.4.e.o.151.4 12
7.2 even 3 inner 350.4.e.n.51.3 12
7.3 odd 6 2450.4.a.cx.1.3 6
7.4 even 3 2450.4.a.cy.1.4 6
35.2 odd 12 70.4.i.a.9.3 24
35.3 even 12 490.4.c.e.99.3 12
35.4 even 6 2450.4.a.cv.1.3 6
35.9 even 6 350.4.e.o.51.4 12
35.17 even 12 490.4.c.e.99.10 12
35.18 odd 12 490.4.c.f.99.4 12
35.23 odd 12 70.4.i.a.9.10 yes 24
35.24 odd 6 2450.4.a.cw.1.4 6
35.32 odd 12 490.4.c.f.99.9 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.4.i.a.9.3 24 35.2 odd 12
70.4.i.a.9.10 yes 24 35.23 odd 12
70.4.i.a.39.3 yes 24 5.3 odd 4
70.4.i.a.39.10 yes 24 5.2 odd 4
350.4.e.n.51.3 12 7.2 even 3 inner
350.4.e.n.151.3 12 1.1 even 1 trivial
350.4.e.o.51.4 12 35.9 even 6
350.4.e.o.151.4 12 5.4 even 2
490.4.c.e.99.3 12 35.3 even 12
490.4.c.e.99.10 12 35.17 even 12
490.4.c.f.99.4 12 35.18 odd 12
490.4.c.f.99.9 12 35.32 odd 12
2450.4.a.cv.1.3 6 35.4 even 6
2450.4.a.cw.1.4 6 35.24 odd 6
2450.4.a.cx.1.3 6 7.3 odd 6
2450.4.a.cy.1.4 6 7.4 even 3