Properties

Label 70.4.i.a.39.10
Level $70$
Weight $4$
Character 70.39
Analytic conductor $4.130$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,4,Mod(9,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.9"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 70.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.13013370040\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 39.10
Character \(\chi\) \(=\) 70.39
Dual form 70.4.i.a.9.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73205 - 1.00000i) q^{2} +(2.65661 + 1.53379i) q^{3} +(2.00000 - 3.46410i) q^{4} +(10.0503 + 4.89820i) q^{5} +6.13518 q^{6} +(-1.78031 + 18.4345i) q^{7} -8.00000i q^{8} +(-8.79495 - 15.2333i) q^{9} +(22.3058 - 1.56633i) q^{10} +(24.7508 - 42.8697i) q^{11} +(10.6264 - 6.13518i) q^{12} +44.6154i q^{13} +(15.3509 + 33.7098i) q^{14} +(19.1868 + 28.4276i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(-34.0272 - 19.6456i) q^{17} +(-30.4666 - 17.5899i) q^{18} +(-28.1578 - 48.7708i) q^{19} +(37.0684 - 25.0187i) q^{20} +(-33.0043 + 46.2426i) q^{21} -99.0033i q^{22} +(-79.3801 + 45.8301i) q^{23} +(12.2704 - 21.2529i) q^{24} +(77.0153 + 98.4563i) q^{25} +(44.6154 + 77.2761i) q^{26} -136.783i q^{27} +(60.2983 + 43.0362i) q^{28} -281.845 q^{29} +(61.6601 + 30.0513i) q^{30} +(-35.2827 + 61.1114i) q^{31} +(-27.7128 - 16.0000i) q^{32} +(131.507 - 75.9254i) q^{33} -78.5824 q^{34} +(-108.188 + 176.551i) q^{35} -70.3596 q^{36} +(-170.684 + 98.5446i) q^{37} +(-97.5416 - 56.3157i) q^{38} +(-68.4308 + 118.526i) q^{39} +(39.1856 - 80.4020i) q^{40} +399.021 q^{41} +(-10.9225 + 113.099i) q^{42} -203.567i q^{43} +(-99.0033 - 171.479i) q^{44} +(-13.7758 - 196.178i) q^{45} +(-91.6603 + 158.760i) q^{46} +(-59.3217 + 34.2494i) q^{47} -49.0814i q^{48} +(-336.661 - 65.6384i) q^{49} +(231.851 + 93.5161i) q^{50} +(-60.2646 - 104.381i) q^{51} +(154.552 + 89.2307i) q^{52} +(534.758 + 308.743i) q^{53} +(-136.783 - 236.916i) q^{54} +(458.736 - 309.617i) q^{55} +(147.476 + 14.2425i) q^{56} -172.753i q^{57} +(-488.169 + 281.845i) q^{58} +(240.256 - 416.136i) q^{59} +(136.850 - 9.60969i) q^{60} +(11.7487 + 20.3493i) q^{61} +141.131i q^{62} +(296.476 - 135.010i) q^{63} -64.0000 q^{64} +(-218.535 + 448.396i) q^{65} +(151.851 - 263.013i) q^{66} +(218.346 + 126.062i) q^{67} +(-136.109 + 78.5824i) q^{68} -281.176 q^{69} +(-10.8368 + 413.984i) q^{70} +835.640 q^{71} +(-121.866 + 70.3596i) q^{72} +(223.249 + 128.893i) q^{73} +(-197.089 + 341.369i) q^{74} +(53.5878 + 379.686i) q^{75} -225.263 q^{76} +(746.216 + 532.590i) q^{77} +273.723i q^{78} +(-386.850 - 670.044i) q^{79} +(-12.5306 - 178.446i) q^{80} +(-27.6658 + 47.9185i) q^{81} +(691.125 - 399.021i) q^{82} -1341.21i q^{83} +(94.1805 + 206.816i) q^{84} +(-245.754 - 364.115i) q^{85} +(-203.567 - 352.588i) q^{86} +(-748.752 - 432.292i) q^{87} +(-342.957 - 198.007i) q^{88} +(650.558 + 1126.80i) q^{89} +(-220.038 - 326.014i) q^{90} +(-822.462 - 79.4293i) q^{91} +366.641i q^{92} +(-187.465 + 108.233i) q^{93} +(-68.4988 + 118.643i) q^{94} +(-44.1043 - 628.082i) q^{95} +(-49.0814 - 85.0115i) q^{96} +323.729i q^{97} +(-648.752 + 222.972i) q^{98} -870.729 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 48 q^{4} - 8 q^{5} + 56 q^{6} + 62 q^{9} + 12 q^{10} - 62 q^{11} - 84 q^{14} + 172 q^{15} - 192 q^{16} + 186 q^{19} - 64 q^{20} + 350 q^{21} + 112 q^{24} + 126 q^{25} - 236 q^{26} - 676 q^{29} + 28 q^{30}+ \cdots - 17092 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.00000i 0.612372 0.353553i
\(3\) 2.65661 + 1.53379i 0.511265 + 0.295179i 0.733353 0.679848i \(-0.237954\pi\)
−0.222089 + 0.975027i \(0.571287\pi\)
\(4\) 2.00000 3.46410i 0.250000 0.433013i
\(5\) 10.0503 + 4.89820i 0.898922 + 0.438108i
\(6\) 6.13518 0.417446
\(7\) −1.78031 + 18.4345i −0.0961279 + 0.995369i
\(8\) 8.00000i 0.353553i
\(9\) −8.79495 15.2333i −0.325739 0.564196i
\(10\) 22.3058 1.56633i 0.705370 0.0495316i
\(11\) 24.7508 42.8697i 0.678423 1.17506i −0.297033 0.954867i \(-0.595997\pi\)
0.975456 0.220196i \(-0.0706696\pi\)
\(12\) 10.6264 6.13518i 0.255632 0.147589i
\(13\) 44.6154i 0.951852i 0.879485 + 0.475926i \(0.157887\pi\)
−0.879485 + 0.475926i \(0.842113\pi\)
\(14\) 15.3509 + 33.7098i 0.293050 + 0.643523i
\(15\) 19.1868 + 28.4276i 0.330267 + 0.489332i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −34.0272 19.6456i −0.485459 0.280280i 0.237230 0.971454i \(-0.423761\pi\)
−0.722689 + 0.691174i \(0.757094\pi\)
\(18\) −30.4666 17.5899i −0.398947 0.230332i
\(19\) −28.1578 48.7708i −0.339992 0.588884i 0.644439 0.764656i \(-0.277091\pi\)
−0.984431 + 0.175772i \(0.943758\pi\)
\(20\) 37.0684 25.0187i 0.414437 0.279718i
\(21\) −33.0043 + 46.2426i −0.342959 + 0.480522i
\(22\) 99.0033i 0.959435i
\(23\) −79.3801 + 45.8301i −0.719648 + 0.415489i −0.814623 0.579991i \(-0.803056\pi\)
0.0949751 + 0.995480i \(0.469723\pi\)
\(24\) 12.2704 21.2529i 0.104362 0.180759i
\(25\) 77.0153 + 98.4563i 0.616122 + 0.787651i
\(26\) 44.6154 + 77.2761i 0.336530 + 0.582888i
\(27\) 136.783i 0.974963i
\(28\) 60.2983 + 43.0362i 0.406975 + 0.290467i
\(29\) −281.845 −1.80473 −0.902367 0.430969i \(-0.858172\pi\)
−0.902367 + 0.430969i \(0.858172\pi\)
\(30\) 61.6601 + 30.0513i 0.375252 + 0.182887i
\(31\) −35.2827 + 61.1114i −0.204418 + 0.354063i −0.949947 0.312411i \(-0.898864\pi\)
0.745529 + 0.666473i \(0.232197\pi\)
\(32\) −27.7128 16.0000i −0.153093 0.0883883i
\(33\) 131.507 75.9254i 0.693708 0.400512i
\(34\) −78.5824 −0.396376
\(35\) −108.188 + 176.551i −0.522491 + 0.852645i
\(36\) −70.3596 −0.325739
\(37\) −170.684 + 98.5446i −0.758387 + 0.437855i −0.828716 0.559669i \(-0.810928\pi\)
0.0703292 + 0.997524i \(0.477595\pi\)
\(38\) −97.5416 56.3157i −0.416404 0.240411i
\(39\) −68.4308 + 118.526i −0.280967 + 0.486649i
\(40\) 39.1856 80.4020i 0.154895 0.317817i
\(41\) 399.021 1.51992 0.759959 0.649971i \(-0.225219\pi\)
0.759959 + 0.649971i \(0.225219\pi\)
\(42\) −10.9225 + 113.099i −0.0401282 + 0.415513i
\(43\) 203.567i 0.721946i −0.932576 0.360973i \(-0.882445\pi\)
0.932576 0.360973i \(-0.117555\pi\)
\(44\) −99.0033 171.479i −0.339211 0.587531i
\(45\) −13.7758 196.178i −0.0456348 0.649877i
\(46\) −91.6603 + 158.760i −0.293795 + 0.508868i
\(47\) −59.3217 + 34.2494i −0.184106 + 0.106293i −0.589220 0.807972i \(-0.700565\pi\)
0.405115 + 0.914266i \(0.367232\pi\)
\(48\) 49.0814i 0.147589i
\(49\) −336.661 65.6384i −0.981519 0.191365i
\(50\) 231.851 + 93.5161i 0.655773 + 0.264503i
\(51\) −60.2646 104.381i −0.165465 0.286595i
\(52\) 154.552 + 89.2307i 0.412164 + 0.237963i
\(53\) 534.758 + 308.743i 1.38594 + 0.800172i 0.992855 0.119331i \(-0.0380750\pi\)
0.393084 + 0.919503i \(0.371408\pi\)
\(54\) −136.783 236.916i −0.344701 0.597040i
\(55\) 458.736 309.617i 1.12465 0.759068i
\(56\) 147.476 + 14.2425i 0.351916 + 0.0339863i
\(57\) 172.753i 0.401434i
\(58\) −488.169 + 281.845i −1.10517 + 0.638070i
\(59\) 240.256 416.136i 0.530147 0.918242i −0.469234 0.883074i \(-0.655470\pi\)
0.999381 0.0351685i \(-0.0111968\pi\)
\(60\) 136.850 9.60969i 0.294454 0.0206768i
\(61\) 11.7487 + 20.3493i 0.0246601 + 0.0427125i 0.878092 0.478492i \(-0.158816\pi\)
−0.853432 + 0.521204i \(0.825483\pi\)
\(62\) 141.131i 0.289091i
\(63\) 296.476 135.010i 0.592896 0.269995i
\(64\) −64.0000 −0.125000
\(65\) −218.535 + 448.396i −0.417014 + 0.855641i
\(66\) 151.851 263.013i 0.283205 0.490525i
\(67\) 218.346 + 126.062i 0.398137 + 0.229865i 0.685680 0.727903i \(-0.259505\pi\)
−0.287543 + 0.957768i \(0.592838\pi\)
\(68\) −136.109 + 78.5824i −0.242729 + 0.140140i
\(69\) −281.176 −0.490574
\(70\) −10.8368 + 413.984i −0.0185035 + 0.706865i
\(71\) 835.640 1.39679 0.698396 0.715711i \(-0.253897\pi\)
0.698396 + 0.715711i \(0.253897\pi\)
\(72\) −121.866 + 70.3596i −0.199473 + 0.115166i
\(73\) 223.249 + 128.893i 0.357936 + 0.206654i 0.668175 0.744004i \(-0.267076\pi\)
−0.310239 + 0.950659i \(0.600409\pi\)
\(74\) −197.089 + 341.369i −0.309610 + 0.536261i
\(75\) 53.5878 + 379.686i 0.0825039 + 0.584564i
\(76\) −225.263 −0.339992
\(77\) 746.216 + 532.590i 1.10441 + 0.788237i
\(78\) 273.723i 0.397347i
\(79\) −386.850 670.044i −0.550937 0.954251i −0.998207 0.0598520i \(-0.980937\pi\)
0.447270 0.894399i \(-0.352396\pi\)
\(80\) −12.5306 178.446i −0.0175121 0.249386i
\(81\) −27.6658 + 47.9185i −0.0379503 + 0.0657318i
\(82\) 691.125 399.021i 0.930756 0.537372i
\(83\) 1341.21i 1.77369i −0.462065 0.886846i \(-0.652891\pi\)
0.462065 0.886846i \(-0.347109\pi\)
\(84\) 94.1805 + 206.816i 0.122333 + 0.268636i
\(85\) −245.754 364.115i −0.313597 0.464633i
\(86\) −203.567 352.588i −0.255246 0.442100i
\(87\) −748.752 432.292i −0.922697 0.532719i
\(88\) −342.957 198.007i −0.415448 0.239859i
\(89\) 650.558 + 1126.80i 0.774821 + 1.34203i 0.934895 + 0.354924i \(0.115493\pi\)
−0.160075 + 0.987105i \(0.551173\pi\)
\(90\) −220.038 326.014i −0.257712 0.381833i
\(91\) −822.462 79.4293i −0.947444 0.0914995i
\(92\) 366.641i 0.415489i
\(93\) −187.465 + 108.233i −0.209024 + 0.120680i
\(94\) −68.4988 + 118.643i −0.0751608 + 0.130182i
\(95\) −44.1043 628.082i −0.0476317 0.678314i
\(96\) −49.0814 85.0115i −0.0521808 0.0903797i
\(97\) 323.729i 0.338862i 0.985542 + 0.169431i \(0.0541931\pi\)
−0.985542 + 0.169431i \(0.945807\pi\)
\(98\) −648.752 + 222.972i −0.668713 + 0.229832i
\(99\) −870.729 −0.883955
\(100\) 495.093 69.8761i 0.495093 0.0698761i
\(101\) −590.509 + 1022.79i −0.581761 + 1.00764i 0.413510 + 0.910500i \(0.364303\pi\)
−0.995271 + 0.0971395i \(0.969031\pi\)
\(102\) −208.763 120.529i −0.202653 0.117002i
\(103\) −633.967 + 366.021i −0.606472 + 0.350147i −0.771583 0.636128i \(-0.780535\pi\)
0.165111 + 0.986275i \(0.447202\pi\)
\(104\) 356.923 0.336530
\(105\) −558.208 + 303.088i −0.518814 + 0.281699i
\(106\) 1234.97 1.13161
\(107\) −1158.78 + 669.021i −1.04695 + 0.604455i −0.921793 0.387682i \(-0.873276\pi\)
−0.125154 + 0.992137i \(0.539942\pi\)
\(108\) −473.832 273.567i −0.422171 0.243741i
\(109\) −25.8786 + 44.8230i −0.0227405 + 0.0393877i −0.877172 0.480177i \(-0.840572\pi\)
0.854431 + 0.519565i \(0.173906\pi\)
\(110\) 484.938 995.008i 0.420336 0.862457i
\(111\) −604.589 −0.516982
\(112\) 269.678 122.807i 0.227520 0.103609i
\(113\) 471.803i 0.392774i 0.980526 + 0.196387i \(0.0629209\pi\)
−0.980526 + 0.196387i \(0.937079\pi\)
\(114\) −172.753 299.218i −0.141928 0.245827i
\(115\) −1022.28 + 71.7849i −0.828937 + 0.0582085i
\(116\) −563.690 + 976.339i −0.451183 + 0.781472i
\(117\) 679.639 392.390i 0.537031 0.310055i
\(118\) 961.025i 0.749742i
\(119\) 422.736 592.298i 0.325648 0.456268i
\(120\) 227.421 153.494i 0.173005 0.116767i
\(121\) −559.706 969.439i −0.420515 0.728354i
\(122\) 40.6987 + 23.4974i 0.0302023 + 0.0174373i
\(123\) 1060.04 + 612.017i 0.777081 + 0.448648i
\(124\) 141.131 + 244.446i 0.102209 + 0.177031i
\(125\) 291.765 + 1366.75i 0.208770 + 0.977965i
\(126\) 378.501 530.321i 0.267615 0.374958i
\(127\) 202.294i 0.141344i −0.997500 0.0706721i \(-0.977486\pi\)
0.997500 0.0706721i \(-0.0225144\pi\)
\(128\) −110.851 + 64.0000i −0.0765466 + 0.0441942i
\(129\) 312.230 540.798i 0.213103 0.369106i
\(130\) 69.8822 + 995.179i 0.0471467 + 0.671408i
\(131\) 584.478 + 1012.35i 0.389817 + 0.675184i 0.992425 0.122854i \(-0.0392048\pi\)
−0.602607 + 0.798038i \(0.705871\pi\)
\(132\) 607.403i 0.400512i
\(133\) 949.195 432.248i 0.618839 0.281810i
\(134\) 504.248 0.325078
\(135\) 669.993 1374.71i 0.427139 0.876416i
\(136\) −157.165 + 272.217i −0.0990939 + 0.171636i
\(137\) 127.061 + 73.3588i 0.0792377 + 0.0457479i 0.539095 0.842245i \(-0.318766\pi\)
−0.459858 + 0.887993i \(0.652100\pi\)
\(138\) −487.011 + 281.176i −0.300414 + 0.173444i
\(139\) 2505.64 1.52896 0.764479 0.644648i \(-0.222996\pi\)
0.764479 + 0.644648i \(0.222996\pi\)
\(140\) 395.214 + 727.878i 0.238583 + 0.439406i
\(141\) −210.126 −0.125502
\(142\) 1447.37 835.640i 0.855357 0.493841i
\(143\) 1912.65 + 1104.27i 1.11849 + 0.645758i
\(144\) −140.719 + 243.733i −0.0814347 + 0.141049i
\(145\) −2832.61 1380.53i −1.62231 0.790669i
\(146\) 515.571 0.292253
\(147\) −793.701 690.744i −0.445329 0.387562i
\(148\) 788.357i 0.437855i
\(149\) 1054.09 + 1825.74i 0.579559 + 1.00383i 0.995530 + 0.0944481i \(0.0301087\pi\)
−0.415970 + 0.909378i \(0.636558\pi\)
\(150\) 472.503 + 604.047i 0.257198 + 0.328802i
\(151\) 1107.75 1918.68i 0.597004 1.03404i −0.396256 0.918140i \(-0.629691\pi\)
0.993261 0.115902i \(-0.0369758\pi\)
\(152\) −390.166 + 225.263i −0.208202 + 0.120205i
\(153\) 691.128i 0.365192i
\(154\) 1825.07 + 176.257i 0.954992 + 0.0922285i
\(155\) −653.936 + 441.364i −0.338874 + 0.228717i
\(156\) 273.723 + 474.103i 0.140483 + 0.243324i
\(157\) −1958.97 1131.01i −0.995816 0.574935i −0.0888082 0.996049i \(-0.528306\pi\)
−0.907008 + 0.421114i \(0.861639\pi\)
\(158\) −1340.09 773.700i −0.674757 0.389571i
\(159\) 947.097 + 1640.42i 0.472388 + 0.818200i
\(160\) −200.150 296.547i −0.0988951 0.146526i
\(161\) −703.534 1544.92i −0.344387 0.756255i
\(162\) 110.663i 0.0536698i
\(163\) 75.9641 43.8579i 0.0365029 0.0210750i −0.481638 0.876371i \(-0.659958\pi\)
0.518140 + 0.855296i \(0.326624\pi\)
\(164\) 798.043 1382.25i 0.379980 0.658144i
\(165\) 1693.57 118.924i 0.799057 0.0561103i
\(166\) −1341.21 2323.04i −0.627095 1.08616i
\(167\) 1851.38i 0.857868i 0.903336 + 0.428934i \(0.141111\pi\)
−0.903336 + 0.428934i \(0.858889\pi\)
\(168\) 369.941 + 264.035i 0.169890 + 0.121254i
\(169\) 206.469 0.0939779
\(170\) −789.773 384.912i −0.356311 0.173655i
\(171\) −495.293 + 857.873i −0.221497 + 0.383645i
\(172\) −705.177 407.134i −0.312612 0.180486i
\(173\) 1595.29 921.039i 0.701083 0.404771i −0.106668 0.994295i \(-0.534018\pi\)
0.807751 + 0.589524i \(0.200685\pi\)
\(174\) −1729.17 −0.753379
\(175\) −1952.10 + 1244.45i −0.843229 + 0.537554i
\(176\) −792.026 −0.339211
\(177\) 1276.53 737.008i 0.542092 0.312977i
\(178\) 2253.60 + 1301.12i 0.948958 + 0.547881i
\(179\) 374.266 648.248i 0.156279 0.270683i −0.777245 0.629198i \(-0.783383\pi\)
0.933524 + 0.358515i \(0.116717\pi\)
\(180\) −707.132 344.635i −0.292814 0.142709i
\(181\) −1393.90 −0.572418 −0.286209 0.958167i \(-0.592395\pi\)
−0.286209 + 0.958167i \(0.592395\pi\)
\(182\) −1503.97 + 684.886i −0.612539 + 0.278940i
\(183\) 72.0803i 0.0291166i
\(184\) 366.641 + 635.041i 0.146898 + 0.254434i
\(185\) −2198.11 + 154.353i −0.873559 + 0.0613419i
\(186\) −216.466 + 374.930i −0.0853335 + 0.147802i
\(187\) −1684.40 + 972.489i −0.658693 + 0.380297i
\(188\) 273.995i 0.106293i
\(189\) 2521.53 + 243.518i 0.970448 + 0.0937211i
\(190\) −704.473 1043.77i −0.268989 0.398541i
\(191\) 479.087 + 829.803i 0.181495 + 0.314358i 0.942390 0.334517i \(-0.108573\pi\)
−0.760895 + 0.648875i \(0.775240\pi\)
\(192\) −170.023 98.1629i −0.0639081 0.0368974i
\(193\) −3963.83 2288.52i −1.47836 0.853530i −0.478656 0.878002i \(-0.658876\pi\)
−0.999700 + 0.0244729i \(0.992209\pi\)
\(194\) 323.729 + 560.714i 0.119806 + 0.207510i
\(195\) −1268.31 + 856.025i −0.465772 + 0.314365i
\(196\) −900.700 + 1034.95i −0.328243 + 0.377169i
\(197\) 3429.27i 1.24023i −0.784511 0.620115i \(-0.787086\pi\)
0.784511 0.620115i \(-0.212914\pi\)
\(198\) −1508.15 + 870.729i −0.541309 + 0.312525i
\(199\) −73.0079 + 126.453i −0.0260070 + 0.0450454i −0.878736 0.477308i \(-0.841613\pi\)
0.852729 + 0.522354i \(0.174946\pi\)
\(200\) 787.651 616.122i 0.278477 0.217832i
\(201\) 386.707 + 669.795i 0.135702 + 0.235043i
\(202\) 2362.04i 0.822734i
\(203\) 501.772 5195.67i 0.173485 1.79638i
\(204\) −482.117 −0.165465
\(205\) 4010.27 + 1954.49i 1.36629 + 0.665889i
\(206\) −732.042 + 1267.93i −0.247591 + 0.428840i
\(207\) 1396.29 + 806.147i 0.468835 + 0.270682i
\(208\) 618.209 356.923i 0.206082 0.118981i
\(209\) −2787.72 −0.922634
\(210\) −663.755 + 1083.17i −0.218112 + 0.355933i
\(211\) −705.410 −0.230154 −0.115077 0.993357i \(-0.536711\pi\)
−0.115077 + 0.993357i \(0.536711\pi\)
\(212\) 2139.03 1234.97i 0.692969 0.400086i
\(213\) 2219.97 + 1281.70i 0.714131 + 0.412304i
\(214\) −1338.04 + 2317.56i −0.427414 + 0.740303i
\(215\) 997.112 2045.90i 0.316290 0.648973i
\(216\) −1094.27 −0.344701
\(217\) −1063.74 759.216i −0.332773 0.237507i
\(218\) 103.514i 0.0321600i
\(219\) 395.390 + 684.836i 0.122000 + 0.211310i
\(220\) −155.071 2208.34i −0.0475223 0.676756i
\(221\) 876.496 1518.13i 0.266785 0.462085i
\(222\) −1047.18 + 604.589i −0.316586 + 0.182781i
\(223\) 2232.07i 0.670271i 0.942170 + 0.335135i \(0.108782\pi\)
−0.942170 + 0.335135i \(0.891218\pi\)
\(224\) 344.289 482.387i 0.102696 0.143888i
\(225\) 822.469 2039.11i 0.243694 0.604182i
\(226\) 471.803 + 817.186i 0.138867 + 0.240524i
\(227\) 4732.79 + 2732.48i 1.38382 + 0.798947i 0.992609 0.121355i \(-0.0387239\pi\)
0.391208 + 0.920302i \(0.372057\pi\)
\(228\) −598.435 345.507i −0.173826 0.100359i
\(229\) 971.944 + 1683.46i 0.280471 + 0.485790i 0.971501 0.237036i \(-0.0761760\pi\)
−0.691030 + 0.722826i \(0.742843\pi\)
\(230\) −1698.85 + 1146.61i −0.487038 + 0.328719i
\(231\) 1165.52 + 2559.43i 0.331973 + 0.728996i
\(232\) 2254.76i 0.638070i
\(233\) −2864.16 + 1653.62i −0.805311 + 0.464946i −0.845325 0.534253i \(-0.820593\pi\)
0.0400141 + 0.999199i \(0.487260\pi\)
\(234\) 784.780 1359.28i 0.219242 0.379738i
\(235\) −763.959 + 53.6457i −0.212065 + 0.0148913i
\(236\) −961.025 1664.54i −0.265074 0.459121i
\(237\) 2373.39i 0.650500i
\(238\) 139.901 1448.63i 0.0381028 0.394540i
\(239\) −6107.99 −1.65311 −0.826554 0.562857i \(-0.809702\pi\)
−0.826554 + 0.562857i \(0.809702\pi\)
\(240\) 240.411 493.281i 0.0646602 0.132671i
\(241\) 1981.30 3431.71i 0.529571 0.917245i −0.469834 0.882755i \(-0.655686\pi\)
0.999405 0.0344896i \(-0.0109805\pi\)
\(242\) −1938.88 1119.41i −0.515024 0.297349i
\(243\) −3345.36 + 1931.44i −0.883148 + 0.509886i
\(244\) 93.9895 0.0246601
\(245\) −3062.02 2308.71i −0.798470 0.602034i
\(246\) 2448.07 0.634484
\(247\) 2175.93 1256.27i 0.560530 0.323622i
\(248\) 488.892 + 282.262i 0.125180 + 0.0722727i
\(249\) 2057.13 3563.06i 0.523556 0.906826i
\(250\) 1872.10 + 2075.51i 0.473608 + 0.525067i
\(251\) −3.92299 −0.000986522 −0.000493261 1.00000i \(-0.500157\pi\)
−0.000493261 1.00000i \(0.500157\pi\)
\(252\) 125.262 1297.04i 0.0313126 0.324230i
\(253\) 4537.33i 1.12751i
\(254\) −202.294 350.384i −0.0499727 0.0865553i
\(255\) −94.3940 1344.25i −0.0231811 0.330118i
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −190.175 + 109.797i −0.0461586 + 0.0266497i −0.522902 0.852393i \(-0.675151\pi\)
0.476743 + 0.879043i \(0.341817\pi\)
\(258\) 1248.92i 0.301373i
\(259\) −1512.75 3321.92i −0.362925 0.796965i
\(260\) 1116.22 + 1653.82i 0.266250 + 0.394483i
\(261\) 2478.81 + 4293.42i 0.587872 + 1.01822i
\(262\) 2024.69 + 1168.96i 0.477427 + 0.275643i
\(263\) −4735.18 2733.86i −1.11020 0.640977i −0.171322 0.985215i \(-0.554804\pi\)
−0.938882 + 0.344238i \(0.888137\pi\)
\(264\) −607.403 1052.05i −0.141602 0.245263i
\(265\) 3862.17 + 5722.30i 0.895289 + 1.32648i
\(266\) 1211.81 1697.87i 0.279325 0.391365i
\(267\) 3991.29i 0.914843i
\(268\) 873.383 504.248i 0.199069 0.114932i
\(269\) −145.866 + 252.647i −0.0330616 + 0.0572644i −0.882083 0.471094i \(-0.843859\pi\)
0.849021 + 0.528359i \(0.177192\pi\)
\(270\) −214.247 3051.06i −0.0482914 0.687709i
\(271\) −1330.51 2304.51i −0.298239 0.516565i 0.677494 0.735528i \(-0.263066\pi\)
−0.975733 + 0.218963i \(0.929733\pi\)
\(272\) 628.659i 0.140140i
\(273\) −2063.13 1472.50i −0.457386 0.326446i
\(274\) 293.435 0.0646973
\(275\) 6126.98 864.746i 1.34353 0.189622i
\(276\) −562.352 + 974.023i −0.122644 + 0.212425i
\(277\) 3899.41 + 2251.33i 0.845824 + 0.488336i 0.859240 0.511574i \(-0.170937\pi\)
−0.0134159 + 0.999910i \(0.504271\pi\)
\(278\) 4339.89 2505.64i 0.936292 0.540568i
\(279\) 1241.24 0.266348
\(280\) 1412.41 + 865.507i 0.301455 + 0.184728i
\(281\) −462.388 −0.0981628 −0.0490814 0.998795i \(-0.515629\pi\)
−0.0490814 + 0.998795i \(0.515629\pi\)
\(282\) −363.949 + 210.126i −0.0768542 + 0.0443718i
\(283\) 6188.37 + 3572.86i 1.29986 + 0.750474i 0.980380 0.197118i \(-0.0631584\pi\)
0.319480 + 0.947593i \(0.396492\pi\)
\(284\) 1671.28 2894.74i 0.349198 0.604829i
\(285\) 846.181 1736.22i 0.175872 0.360858i
\(286\) 4417.07 0.913240
\(287\) −710.383 + 7355.75i −0.146107 + 1.51288i
\(288\) 562.877i 0.115166i
\(289\) −1684.60 2917.81i −0.342886 0.593897i
\(290\) −6286.76 + 441.461i −1.27300 + 0.0893913i
\(291\) −496.533 + 860.021i −0.100025 + 0.173248i
\(292\) 892.996 515.571i 0.178968 0.103327i
\(293\) 8656.21i 1.72594i −0.505254 0.862971i \(-0.668601\pi\)
0.505254 0.862971i \(-0.331399\pi\)
\(294\) −2065.48 402.703i −0.409731 0.0798848i
\(295\) 4452.95 3005.45i 0.878851 0.593166i
\(296\) 788.357 + 1365.47i 0.154805 + 0.268130i
\(297\) −5863.86 3385.50i −1.14564 0.661437i
\(298\) 3651.47 + 2108.18i 0.709812 + 0.409810i
\(299\) −2044.73 3541.57i −0.395484 0.684998i
\(300\) 1422.45 + 573.738i 0.273750 + 0.110416i
\(301\) 3752.65 + 362.413i 0.718603 + 0.0693991i
\(302\) 4431.01i 0.844291i
\(303\) −3137.50 + 1811.44i −0.594868 + 0.343447i
\(304\) −450.525 + 780.333i −0.0849981 + 0.147221i
\(305\) 18.4023 + 262.063i 0.00345479 + 0.0491990i
\(306\) 691.128 + 1197.07i 0.129115 + 0.223634i
\(307\) 4296.26i 0.798699i 0.916799 + 0.399349i \(0.130764\pi\)
−0.916799 + 0.399349i \(0.869236\pi\)
\(308\) 3337.38 1519.79i 0.617418 0.281162i
\(309\) −2245.60 −0.413424
\(310\) −691.287 + 1418.40i −0.126653 + 0.259870i
\(311\) −1967.56 + 3407.92i −0.358747 + 0.621368i −0.987752 0.156034i \(-0.950129\pi\)
0.629005 + 0.777401i \(0.283463\pi\)
\(312\) 948.205 + 547.446i 0.172056 + 0.0993367i
\(313\) −9092.34 + 5249.47i −1.64195 + 0.947979i −0.661807 + 0.749674i \(0.730210\pi\)
−0.980140 + 0.198304i \(0.936457\pi\)
\(314\) −4524.05 −0.813080
\(315\) 3640.97 + 95.3092i 0.651254 + 0.0170478i
\(316\) −3094.80 −0.550937
\(317\) 4977.20 2873.59i 0.881853 0.509138i 0.0105840 0.999944i \(-0.496631\pi\)
0.871269 + 0.490806i \(0.163298\pi\)
\(318\) 3280.84 + 1894.19i 0.578554 + 0.334029i
\(319\) −6975.89 + 12082.6i −1.22437 + 2.12068i
\(320\) −643.216 313.485i −0.112365 0.0547635i
\(321\) −4104.56 −0.713690
\(322\) −2763.48 1972.35i −0.478270 0.341351i
\(323\) 2212.71i 0.381172i
\(324\) 110.663 + 191.674i 0.0189751 + 0.0328659i
\(325\) −4392.66 + 3436.06i −0.749727 + 0.586457i
\(326\) 87.7158 151.928i 0.0149022 0.0258114i
\(327\) −137.499 + 79.3848i −0.0232529 + 0.0134250i
\(328\) 3192.17i 0.537372i
\(329\) −525.759 1154.54i −0.0881035 0.193471i
\(330\) 2814.43 1899.55i 0.469483 0.316870i
\(331\) −4704.04 8147.64i −0.781141 1.35298i −0.931277 0.364311i \(-0.881305\pi\)
0.150136 0.988665i \(-0.452029\pi\)
\(332\) −4646.07 2682.41i −0.768031 0.443423i
\(333\) 3002.32 + 1733.39i 0.494072 + 0.285253i
\(334\) 1851.38 + 3206.68i 0.303302 + 0.525335i
\(335\) 1576.95 + 2336.46i 0.257189 + 0.381058i
\(336\) 904.791 + 87.3803i 0.146906 + 0.0141875i
\(337\) 4501.95i 0.727706i −0.931456 0.363853i \(-0.881461\pi\)
0.931456 0.363853i \(-0.118539\pi\)
\(338\) 357.615 206.469i 0.0575495 0.0332262i
\(339\) −723.649 + 1253.40i −0.115939 + 0.200812i
\(340\) −1752.84 + 123.086i −0.279591 + 0.0196331i
\(341\) 1746.55 + 3025.12i 0.277364 + 0.480408i
\(342\) 1981.17i 0.313244i
\(343\) 1809.37 6089.32i 0.284831 0.958578i
\(344\) −1628.54 −0.255246
\(345\) −2825.89 1377.26i −0.440988 0.214925i
\(346\) 1842.08 3190.57i 0.286216 0.495741i
\(347\) −4324.38 2496.68i −0.669005 0.386250i 0.126695 0.991942i \(-0.459563\pi\)
−0.795700 + 0.605692i \(0.792897\pi\)
\(348\) −2995.01 + 1729.17i −0.461348 + 0.266360i
\(349\) −6675.06 −1.02381 −0.511903 0.859044i \(-0.671059\pi\)
−0.511903 + 0.859044i \(0.671059\pi\)
\(350\) −2136.69 + 4107.56i −0.326316 + 0.627310i
\(351\) 6102.65 0.928020
\(352\) −1371.83 + 792.026i −0.207724 + 0.119929i
\(353\) 2458.93 + 1419.66i 0.370752 + 0.214054i 0.673787 0.738926i \(-0.264667\pi\)
−0.303035 + 0.952979i \(0.598000\pi\)
\(354\) 1474.02 2553.07i 0.221308 0.383317i
\(355\) 8398.40 + 4093.13i 1.25561 + 0.611946i
\(356\) 5204.47 0.774821
\(357\) 2031.51 925.116i 0.301173 0.137149i
\(358\) 1497.06i 0.221012i
\(359\) −4242.21 7347.72i −0.623663 1.08022i −0.988798 0.149262i \(-0.952310\pi\)
0.365134 0.930955i \(-0.381023\pi\)
\(360\) −1569.42 + 110.206i −0.229766 + 0.0161344i
\(361\) 1843.77 3193.51i 0.268811 0.465594i
\(362\) −2414.30 + 1393.90i −0.350533 + 0.202380i
\(363\) 3433.90i 0.496509i
\(364\) −1920.07 + 2690.23i −0.276481 + 0.387380i
\(365\) 1612.37 + 2388.92i 0.231220 + 0.342581i
\(366\) 72.0803 + 124.847i 0.0102943 + 0.0178302i
\(367\) −9803.17 5659.86i −1.39434 0.805020i −0.400544 0.916277i \(-0.631179\pi\)
−0.993792 + 0.111257i \(0.964512\pi\)
\(368\) 1270.08 + 733.282i 0.179912 + 0.103872i
\(369\) −3509.37 6078.41i −0.495096 0.857532i
\(370\) −3652.89 + 2465.46i −0.513256 + 0.346414i
\(371\) −6643.56 + 9308.34i −0.929693 + 1.30260i
\(372\) 865.863i 0.120680i
\(373\) −9791.45 + 5653.09i −1.35920 + 0.784735i −0.989516 0.144423i \(-0.953868\pi\)
−0.369684 + 0.929157i \(0.620534\pi\)
\(374\) −1944.98 + 3368.80i −0.268910 + 0.465766i
\(375\) −1321.20 + 4078.42i −0.181938 + 0.561624i
\(376\) 273.995 + 474.574i 0.0375804 + 0.0650912i
\(377\) 12574.6i 1.71784i
\(378\) 4610.94 2099.75i 0.627411 0.285713i
\(379\) 10626.4 1.44022 0.720109 0.693861i \(-0.244092\pi\)
0.720109 + 0.693861i \(0.244092\pi\)
\(380\) −2263.95 1103.38i −0.305627 0.148953i
\(381\) 310.278 537.417i 0.0417218 0.0722644i
\(382\) 1659.61 + 958.174i 0.222285 + 0.128336i
\(383\) 6566.96 3791.44i 0.876126 0.505832i 0.00674681 0.999977i \(-0.497852\pi\)
0.869379 + 0.494146i \(0.164519\pi\)
\(384\) −392.651 −0.0521808
\(385\) 4890.93 + 9007.78i 0.647442 + 1.19241i
\(386\) −9154.08 −1.20707
\(387\) −3101.00 + 1790.36i −0.407319 + 0.235166i
\(388\) 1121.43 + 647.457i 0.146732 + 0.0847156i
\(389\) 1606.41 2782.39i 0.209379 0.362655i −0.742140 0.670245i \(-0.766189\pi\)
0.951519 + 0.307590i \(0.0995225\pi\)
\(390\) −1340.75 + 2750.99i −0.174081 + 0.357184i
\(391\) 3601.44 0.465813
\(392\) −525.107 + 2693.29i −0.0676579 + 0.347019i
\(393\) 3585.88i 0.460264i
\(394\) −3429.27 5939.67i −0.438488 0.759483i
\(395\) −605.933 8628.98i −0.0771843 1.09917i
\(396\) −1741.46 + 3016.29i −0.220989 + 0.382764i
\(397\) 11414.9 6590.40i 1.44307 0.833155i 0.445014 0.895524i \(-0.353199\pi\)
0.998053 + 0.0623685i \(0.0198654\pi\)
\(398\) 292.031i 0.0367794i
\(399\) 3184.62 + 307.555i 0.399575 + 0.0385890i
\(400\) 748.128 1854.81i 0.0935161 0.231851i
\(401\) 3597.12 + 6230.39i 0.447959 + 0.775887i 0.998253 0.0590837i \(-0.0188179\pi\)
−0.550295 + 0.834971i \(0.685485\pi\)
\(402\) 1339.59 + 773.413i 0.166201 + 0.0959561i
\(403\) −2726.51 1574.15i −0.337015 0.194576i
\(404\) 2362.04 + 4091.17i 0.290880 + 0.503820i
\(405\) −512.762 + 346.081i −0.0629120 + 0.0424615i
\(406\) −4326.57 9500.93i −0.528877 1.16139i
\(407\) 9756.24i 1.18820i
\(408\) −835.051 + 482.117i −0.101326 + 0.0585009i
\(409\) −544.577 + 943.234i −0.0658376 + 0.114034i −0.897065 0.441898i \(-0.854305\pi\)
0.831228 + 0.555932i \(0.187639\pi\)
\(410\) 8900.47 624.997i 1.07210 0.0752839i
\(411\) 225.035 + 389.771i 0.0270076 + 0.0467786i
\(412\) 2928.17i 0.350147i
\(413\) 7243.53 + 5169.85i 0.863028 + 0.615961i
\(414\) 3224.59 0.382802
\(415\) 6569.49 13479.5i 0.777069 1.59441i
\(416\) 713.846 1236.42i 0.0841326 0.145722i
\(417\) 6656.50 + 3843.13i 0.781703 + 0.451316i
\(418\) −4828.47 + 2787.72i −0.564996 + 0.326200i
\(419\) 12514.5 1.45913 0.729563 0.683914i \(-0.239724\pi\)
0.729563 + 0.683914i \(0.239724\pi\)
\(420\) −66.4858 + 2539.86i −0.00772423 + 0.295078i
\(421\) −827.022 −0.0957401 −0.0478701 0.998854i \(-0.515243\pi\)
−0.0478701 + 0.998854i \(0.515243\pi\)
\(422\) −1221.81 + 705.410i −0.140940 + 0.0813716i
\(423\) 1043.46 + 602.444i 0.119941 + 0.0692478i
\(424\) 2469.94 4278.07i 0.282903 0.490003i
\(425\) −686.379 4863.20i −0.0783395 0.555059i
\(426\) 5126.80 0.583085
\(427\) −396.046 + 180.353i −0.0448853 + 0.0204400i
\(428\) 5352.17i 0.604455i
\(429\) 3387.44 + 5867.21i 0.381228 + 0.660307i
\(430\) −318.852 4540.71i −0.0357591 0.509239i
\(431\) 840.220 1455.30i 0.0939025 0.162644i −0.815248 0.579113i \(-0.803399\pi\)
0.909150 + 0.416469i \(0.136732\pi\)
\(432\) −1895.33 + 1094.27i −0.211086 + 0.121870i
\(433\) 7421.56i 0.823689i −0.911254 0.411845i \(-0.864885\pi\)
0.911254 0.411845i \(-0.135115\pi\)
\(434\) −2601.68 251.257i −0.287752 0.0277897i
\(435\) −5407.69 8012.18i −0.596044 0.883114i
\(436\) 103.514 + 179.292i 0.0113703 + 0.0196939i
\(437\) 4470.35 + 2580.96i 0.489349 + 0.282526i
\(438\) 1369.67 + 790.781i 0.149419 + 0.0862671i
\(439\) 2399.11 + 4155.39i 0.260828 + 0.451767i 0.966462 0.256809i \(-0.0826711\pi\)
−0.705634 + 0.708576i \(0.749338\pi\)
\(440\) −2476.93 3669.89i −0.268371 0.397625i
\(441\) 1961.03 + 5705.74i 0.211751 + 0.616104i
\(442\) 3505.98i 0.377291i
\(443\) −13800.6 + 7967.80i −1.48011 + 0.854541i −0.999746 0.0225292i \(-0.992828\pi\)
−0.480362 + 0.877070i \(0.659495\pi\)
\(444\) −1209.18 + 2094.36i −0.129246 + 0.223860i
\(445\) 1018.99 + 14511.2i 0.108550 + 1.54583i
\(446\) 2232.07 + 3866.06i 0.236977 + 0.410455i
\(447\) 6467.03i 0.684295i
\(448\) 113.940 1179.81i 0.0120160 0.124421i
\(449\) 9352.06 0.982964 0.491482 0.870888i \(-0.336455\pi\)
0.491482 + 0.870888i \(0.336455\pi\)
\(450\) −614.557 4354.32i −0.0643789 0.456143i
\(451\) 9876.10 17105.9i 1.03115 1.78600i
\(452\) 1634.37 + 943.606i 0.170076 + 0.0981935i
\(453\) 5885.73 3398.13i 0.610455 0.352446i
\(454\) 10929.9 1.12988
\(455\) −7876.89 4826.87i −0.811592 0.497334i
\(456\) −1382.03 −0.141928
\(457\) −7428.09 + 4288.61i −0.760331 + 0.438977i −0.829415 0.558633i \(-0.811326\pi\)
0.0690835 + 0.997611i \(0.477993\pi\)
\(458\) 3366.91 + 1943.89i 0.343506 + 0.198323i
\(459\) −2687.19 + 4654.36i −0.273262 + 0.473304i
\(460\) −1795.88 + 3684.84i −0.182029 + 0.373492i
\(461\) −8463.98 −0.855113 −0.427556 0.903989i \(-0.640625\pi\)
−0.427556 + 0.903989i \(0.640625\pi\)
\(462\) 4578.17 + 3267.54i 0.461030 + 0.329047i
\(463\) 4297.74i 0.431388i −0.976461 0.215694i \(-0.930799\pi\)
0.976461 0.215694i \(-0.0692014\pi\)
\(464\) 2254.76 + 3905.36i 0.225592 + 0.390736i
\(465\) −2414.22 + 169.528i −0.240767 + 0.0169068i
\(466\) −3307.25 + 5728.32i −0.328767 + 0.569441i
\(467\) 892.116 515.064i 0.0883988 0.0510371i −0.455149 0.890415i \(-0.650414\pi\)
0.543548 + 0.839378i \(0.317081\pi\)
\(468\) 3139.12i 0.310055i
\(469\) −2712.61 + 3800.66i −0.267072 + 0.374197i
\(470\) −1269.57 + 856.876i −0.124598 + 0.0840952i
\(471\) −3469.49 6009.33i −0.339417 0.587888i
\(472\) −3329.09 1922.05i −0.324648 0.187435i
\(473\) −8726.85 5038.45i −0.848332 0.489785i
\(474\) −2373.39 4110.84i −0.229986 0.398348i
\(475\) 2633.21 6528.42i 0.254358 0.630619i
\(476\) −1206.31 2649.00i −0.116158 0.255077i
\(477\) 10861.5i 1.04259i
\(478\) −10579.3 + 6107.99i −1.01232 + 0.584462i
\(479\) 2568.74 4449.19i 0.245029 0.424402i −0.717111 0.696959i \(-0.754536\pi\)
0.962140 + 0.272557i \(0.0878692\pi\)
\(480\) −76.8775 1094.80i −0.00731034 0.104105i
\(481\) −4396.60 7615.14i −0.416773 0.721872i
\(482\) 7925.20i 0.748927i
\(483\) 500.582 5183.34i 0.0471579 0.488303i
\(484\) −4477.65 −0.420515
\(485\) −1585.69 + 3253.55i −0.148458 + 0.304611i
\(486\) −3862.89 + 6690.72i −0.360544 + 0.624480i
\(487\) 455.995 + 263.269i 0.0424294 + 0.0244966i 0.521065 0.853517i \(-0.325535\pi\)
−0.478635 + 0.878014i \(0.658868\pi\)
\(488\) 162.795 93.9895i 0.0151012 0.00871866i
\(489\) 269.076 0.0248835
\(490\) −7612.29 936.792i −0.701812 0.0863673i
\(491\) −1546.87 −0.142178 −0.0710889 0.997470i \(-0.522647\pi\)
−0.0710889 + 0.997470i \(0.522647\pi\)
\(492\) 4240.18 2448.07i 0.388540 0.224324i
\(493\) 9590.38 + 5537.01i 0.876124 + 0.505830i
\(494\) 2512.54 4351.85i 0.228835 0.396355i
\(495\) −8751.04 4265.00i −0.794606 0.387268i
\(496\) 1129.05 0.102209
\(497\) −1487.70 + 15404.6i −0.134271 + 1.39032i
\(498\) 8228.54i 0.740421i
\(499\) 4746.42 + 8221.04i 0.425809 + 0.737524i 0.996496 0.0836446i \(-0.0266561\pi\)
−0.570686 + 0.821168i \(0.693323\pi\)
\(500\) 5318.08 + 1722.79i 0.475664 + 0.154091i
\(501\) −2839.64 + 4918.39i −0.253225 + 0.438598i
\(502\) −6.79482 + 3.92299i −0.000604119 + 0.000348788i
\(503\) 9819.97i 0.870479i −0.900315 0.435239i \(-0.856664\pi\)
0.900315 0.435239i \(-0.143336\pi\)
\(504\) −1080.08 2371.81i −0.0954578 0.209620i
\(505\) −10944.6 + 7386.89i −0.964413 + 0.650915i
\(506\) 4537.33 + 7858.89i 0.398635 + 0.690455i
\(507\) 548.509 + 316.682i 0.0480476 + 0.0277403i
\(508\) −700.768 404.589i −0.0612039 0.0353361i
\(509\) −1319.03 2284.62i −0.114862 0.198947i 0.802863 0.596164i \(-0.203309\pi\)
−0.917725 + 0.397217i \(0.869976\pi\)
\(510\) −1507.74 2233.91i −0.130910 0.193959i
\(511\) −2773.53 + 3886.01i −0.240105 + 0.336413i
\(512\) 512.000i 0.0441942i
\(513\) −6671.04 + 3851.53i −0.574140 + 0.331480i
\(514\) −219.595 + 380.349i −0.0188442 + 0.0326391i
\(515\) −8164.37 + 573.308i −0.698573 + 0.0490543i
\(516\) −1248.92 2163.19i −0.106552 0.184553i
\(517\) 3390.80i 0.288448i
\(518\) −5942.08 4240.98i −0.504015 0.359726i
\(519\) 5650.74 0.477919
\(520\) 3587.17 + 1748.28i 0.302515 + 0.147437i
\(521\) −2213.18 + 3833.33i −0.186106 + 0.322344i −0.943949 0.330093i \(-0.892920\pi\)
0.757843 + 0.652437i \(0.226253\pi\)
\(522\) 8586.85 + 4957.62i 0.719993 + 0.415688i
\(523\) 784.415 452.882i 0.0655833 0.0378645i −0.466850 0.884337i \(-0.654611\pi\)
0.532433 + 0.846472i \(0.321278\pi\)
\(524\) 4675.82 0.389817
\(525\) −7094.72 + 311.905i −0.589788 + 0.0259288i
\(526\) −10935.4 −0.906478
\(527\) 2401.14 1386.30i 0.198473 0.114589i
\(528\) −2104.11 1214.81i −0.173427 0.100128i
\(529\) −1882.70 + 3260.92i −0.154738 + 0.268014i
\(530\) 12411.8 + 6049.14i 1.01723 + 0.495769i
\(531\) −8452.16 −0.690758
\(532\) 401.038 4152.60i 0.0326827 0.338418i
\(533\) 17802.5i 1.44674i
\(534\) 3991.29 + 6913.12i 0.323446 + 0.560225i
\(535\) −14923.0 + 1047.90i −1.20594 + 0.0846820i
\(536\) 1008.50 1746.77i 0.0812694 0.140763i
\(537\) 1988.56 1148.09i 0.159800 0.0922606i
\(538\) 583.462i 0.0467562i
\(539\) −11146.5 + 12807.9i −0.890751 + 1.02352i
\(540\) −3422.15 5070.34i −0.272714 0.404061i
\(541\) −9810.32 16992.0i −0.779628 1.35035i −0.932157 0.362056i \(-0.882075\pi\)
0.152529 0.988299i \(-0.451258\pi\)
\(542\) −4609.02 2661.02i −0.365267 0.210887i
\(543\) −3703.05 2137.96i −0.292657 0.168966i
\(544\) 628.659 + 1088.87i 0.0495470 + 0.0858178i
\(545\) −479.638 + 323.724i −0.0376980 + 0.0254437i
\(546\) −5045.95 487.313i −0.395507 0.0381961i
\(547\) 6717.26i 0.525062i −0.964923 0.262531i \(-0.915443\pi\)
0.964923 0.262531i \(-0.0845573\pi\)
\(548\) 508.244 293.435i 0.0396188 0.0228740i
\(549\) 206.658 357.943i 0.0160655 0.0278263i
\(550\) 9747.50 7624.77i 0.755699 0.591129i
\(551\) 7936.14 + 13745.8i 0.613595 + 1.06278i
\(552\) 2249.41i 0.173444i
\(553\) 13040.6 5938.49i 1.00279 0.456655i
\(554\) 9005.31 0.690612
\(555\) −6076.27 2961.40i −0.464727 0.226494i
\(556\) 5011.27 8679.78i 0.382240 0.662058i
\(557\) −11348.4 6551.98i −0.863277 0.498413i 0.00183114 0.999998i \(-0.499417\pi\)
−0.865108 + 0.501585i \(0.832750\pi\)
\(558\) 2149.89 1241.24i 0.163104 0.0941681i
\(559\) 9082.21 0.687186
\(560\) 3311.87 + 86.6945i 0.249914 + 0.00654199i
\(561\) −5966.40 −0.449022
\(562\) −800.879 + 462.388i −0.0601122 + 0.0347058i
\(563\) 14418.2 + 8324.35i 1.07932 + 0.623143i 0.930712 0.365754i \(-0.119189\pi\)
0.148604 + 0.988897i \(0.452522\pi\)
\(564\) −420.253 + 727.899i −0.0313756 + 0.0543441i
\(565\) −2310.98 + 4741.74i −0.172078 + 0.353073i
\(566\) 14291.4 1.06133
\(567\) −834.099 595.314i −0.0617793 0.0440932i
\(568\) 6685.12i 0.493841i
\(569\) 7348.85 + 12728.6i 0.541441 + 0.937803i 0.998822 + 0.0485321i \(0.0154543\pi\)
−0.457381 + 0.889271i \(0.651212\pi\)
\(570\) −270.588 3853.39i −0.0198837 0.283160i
\(571\) −1498.89 + 2596.15i −0.109854 + 0.190272i −0.915711 0.401838i \(-0.868372\pi\)
0.805857 + 0.592110i \(0.201705\pi\)
\(572\) 7650.58 4417.07i 0.559243 0.322879i
\(573\) 2939.28i 0.214294i
\(574\) 6125.34 + 13450.9i 0.445412 + 0.978102i
\(575\) −10625.8 4285.85i −0.770651 0.310839i
\(576\) 562.877 + 974.931i 0.0407173 + 0.0705245i
\(577\) 4220.38 + 2436.64i 0.304500 + 0.175803i 0.644463 0.764636i \(-0.277081\pi\)
−0.339963 + 0.940439i \(0.610414\pi\)
\(578\) −5835.63 3369.20i −0.419948 0.242457i
\(579\) −7020.24 12159.4i −0.503888 0.872759i
\(580\) −10447.5 + 7051.39i −0.747948 + 0.504816i
\(581\) 24724.4 + 2387.77i 1.76548 + 0.170501i
\(582\) 1986.13i 0.141457i
\(583\) 26471.4 15283.3i 1.88050 1.08571i
\(584\) 1031.14 1785.99i 0.0730634 0.126549i
\(585\) 8752.55 614.610i 0.618587 0.0434376i
\(586\) −8656.21 14993.0i −0.610213 1.05692i
\(587\) 23971.4i 1.68553i 0.538283 + 0.842764i \(0.319073\pi\)
−0.538283 + 0.842764i \(0.680927\pi\)
\(588\) −3980.21 + 1367.97i −0.279152 + 0.0959426i
\(589\) 3973.94 0.278002
\(590\) 4707.29 9658.55i 0.328468 0.673960i
\(591\) 5259.80 9110.24i 0.366090 0.634086i
\(592\) 2730.95 + 1576.71i 0.189597 + 0.109464i
\(593\) −1352.44 + 780.834i −0.0936564 + 0.0540726i −0.546097 0.837722i \(-0.683887\pi\)
0.452440 + 0.891795i \(0.350554\pi\)
\(594\) −13542.0 −0.935413
\(595\) 7149.80 3882.11i 0.492627 0.267480i
\(596\) 8432.71 0.579559
\(597\) −387.907 + 223.958i −0.0265929 + 0.0153534i
\(598\) −7083.15 4089.46i −0.484367 0.279649i
\(599\) 8700.70 15070.1i 0.593491 1.02796i −0.400267 0.916398i \(-0.631083\pi\)
0.993758 0.111557i \(-0.0355839\pi\)
\(600\) 3037.49 428.703i 0.206675 0.0291695i
\(601\) −26823.7 −1.82057 −0.910283 0.413987i \(-0.864136\pi\)
−0.910283 + 0.413987i \(0.864136\pi\)
\(602\) 6862.20 3124.94i 0.464589 0.211566i
\(603\) 4434.84i 0.299503i
\(604\) −4431.01 7674.74i −0.298502 0.517021i
\(605\) −876.682 12484.7i −0.0589127 0.838965i
\(606\) −3622.88 + 6275.01i −0.242854 + 0.420635i
\(607\) −19677.3 + 11360.7i −1.31578 + 0.759665i −0.983046 0.183357i \(-0.941304\pi\)
−0.332731 + 0.943022i \(0.607970\pi\)
\(608\) 1802.10i 0.120205i
\(609\) 9302.10 13033.2i 0.618949 0.867215i
\(610\) 293.937 + 435.505i 0.0195101 + 0.0289067i
\(611\) −1528.05 2646.66i −0.101176 0.175241i
\(612\) 2394.14 + 1382.26i 0.158133 + 0.0912980i
\(613\) 19859.3 + 11465.8i 1.30850 + 0.755462i 0.981846 0.189682i \(-0.0607457\pi\)
0.326653 + 0.945144i \(0.394079\pi\)
\(614\) 4296.26 + 7441.34i 0.282383 + 0.489101i
\(615\) 7655.93 + 11343.2i 0.501979 + 0.743745i
\(616\) 4260.72 5969.73i 0.278684 0.390466i
\(617\) 4299.04i 0.280507i −0.990116 0.140253i \(-0.955208\pi\)
0.990116 0.140253i \(-0.0447918\pi\)
\(618\) −3889.50 + 2245.60i −0.253169 + 0.146167i
\(619\) −2660.95 + 4608.89i −0.172783 + 0.299268i −0.939392 0.342846i \(-0.888609\pi\)
0.766609 + 0.642114i \(0.221942\pi\)
\(620\) 221.057 + 3148.03i 0.0143191 + 0.203916i
\(621\) 6268.81 + 10857.9i 0.405086 + 0.701630i
\(622\) 7870.25i 0.507345i
\(623\) −21930.2 + 9986.65i −1.41030 + 0.642226i
\(624\) 2189.79 0.140483
\(625\) −3762.29 + 15165.3i −0.240787 + 0.970578i
\(626\) −10498.9 + 18184.7i −0.670322 + 1.16103i
\(627\) −7405.88 4275.79i −0.471710 0.272342i
\(628\) −7835.89 + 4524.05i −0.497908 + 0.287467i
\(629\) 7743.87 0.490888
\(630\) 6401.65 3475.88i 0.404838 0.219814i
\(631\) 19486.3 1.22938 0.614688 0.788771i \(-0.289282\pi\)
0.614688 + 0.788771i \(0.289282\pi\)
\(632\) −5360.35 + 3094.80i −0.337379 + 0.194786i
\(633\) −1874.00 1081.95i −0.117670 0.0679365i
\(634\) 5747.17 9954.40i 0.360015 0.623564i
\(635\) 990.878 2033.11i 0.0619241 0.127057i
\(636\) 7576.77 0.472388
\(637\) 2928.48 15020.3i 0.182152 0.934261i
\(638\) 27903.6i 1.73152i
\(639\) −7349.41 12729.6i −0.454989 0.788065i
\(640\) −1427.57 + 100.245i −0.0881712 + 0.00619145i
\(641\) 14287.3 24746.4i 0.880368 1.52484i 0.0294367 0.999567i \(-0.490629\pi\)
0.850932 0.525276i \(-0.176038\pi\)
\(642\) −7109.31 + 4104.56i −0.437044 + 0.252327i
\(643\) 6347.10i 0.389277i −0.980875 0.194639i \(-0.937647\pi\)
0.980875 0.194639i \(-0.0623534\pi\)
\(644\) −6758.84 652.736i −0.413565 0.0399401i
\(645\) 5786.93 3905.80i 0.353271 0.238435i
\(646\) 2212.71 + 3832.53i 0.134765 + 0.233419i
\(647\) −2294.70 1324.85i −0.139434 0.0805024i 0.428660 0.903466i \(-0.358986\pi\)
−0.568094 + 0.822963i \(0.692319\pi\)
\(648\) 383.348 + 221.326i 0.0232397 + 0.0134175i
\(649\) −11893.1 20599.4i −0.719328 1.24591i
\(650\) −4172.25 + 10344.1i −0.251768 + 0.624199i
\(651\) −1661.47 3648.51i −0.100028 0.219656i
\(652\) 350.863i 0.0210750i
\(653\) 6115.54 3530.81i 0.366493 0.211595i −0.305432 0.952214i \(-0.598801\pi\)
0.671925 + 0.740619i \(0.265468\pi\)
\(654\) −158.770 + 274.997i −0.00949294 + 0.0164423i
\(655\) 915.483 + 13037.2i 0.0546120 + 0.777720i
\(656\) −3192.17 5529.00i −0.189990 0.329072i
\(657\) 4534.42i 0.269261i
\(658\) −2065.18 1473.96i −0.122354 0.0873269i
\(659\) −11227.0 −0.663646 −0.331823 0.943342i \(-0.607664\pi\)
−0.331823 + 0.943342i \(0.607664\pi\)
\(660\) 2975.18 6104.55i 0.175468 0.360029i
\(661\) −14375.0 + 24898.2i −0.845873 + 1.46509i 0.0389881 + 0.999240i \(0.487587\pi\)
−0.884861 + 0.465855i \(0.845747\pi\)
\(662\) −16295.3 9408.09i −0.956698 0.552350i
\(663\) 4657.01 2688.73i 0.272796 0.157499i
\(664\) −10729.6 −0.627095
\(665\) 11656.9 + 305.141i 0.679752 + 0.0177938i
\(666\) 6933.56 0.403408
\(667\) 22372.9 12917.0i 1.29877 0.749847i
\(668\) 6413.36 + 3702.76i 0.371468 + 0.214467i
\(669\) −3423.54 + 5929.74i −0.197850 + 0.342686i
\(670\) 5067.82 + 2469.91i 0.292220 + 0.142419i
\(671\) 1163.16 0.0669199
\(672\) 1654.52 753.444i 0.0949772 0.0432511i
\(673\) 4440.57i 0.254341i −0.991881 0.127170i \(-0.959411\pi\)
0.991881 0.127170i \(-0.0405895\pi\)
\(674\) −4501.95 7797.61i −0.257283 0.445627i
\(675\) 13467.2 10534.4i 0.767930 0.600696i
\(676\) 412.939 715.231i 0.0234945 0.0406936i
\(677\) 14124.7 8154.92i 0.801857 0.462953i −0.0422629 0.999107i \(-0.513457\pi\)
0.844120 + 0.536154i \(0.180123\pi\)
\(678\) 2894.59i 0.163962i
\(679\) −5967.77 576.338i −0.337293 0.0325741i
\(680\) −2912.92 + 1966.03i −0.164273 + 0.110873i
\(681\) 8382.13 + 14518.3i 0.471665 + 0.816948i
\(682\) 6050.23 + 3493.10i 0.339700 + 0.196126i
\(683\) −4214.46 2433.22i −0.236108 0.136317i 0.377279 0.926100i \(-0.376860\pi\)
−0.613387 + 0.789783i \(0.710193\pi\)
\(684\) 1981.17 + 3431.49i 0.110749 + 0.191822i
\(685\) 917.671 + 1359.65i 0.0511860 + 0.0758385i
\(686\) −2955.39 12356.4i −0.164486 0.687709i
\(687\) 5963.05i 0.331157i
\(688\) −2820.71 + 1628.54i −0.156306 + 0.0902432i
\(689\) −13774.7 + 23858.4i −0.761645 + 1.31921i
\(690\) −6271.85 + 440.413i −0.346036 + 0.0242989i
\(691\) 7513.56 + 13013.9i 0.413646 + 0.716455i 0.995285 0.0969914i \(-0.0309219\pi\)
−0.581640 + 0.813447i \(0.697589\pi\)
\(692\) 7368.31i 0.404771i
\(693\) 1550.17 16051.4i 0.0849727 0.879861i
\(694\) −9986.72 −0.546240
\(695\) 25182.3 + 12273.1i 1.37441 + 0.669849i
\(696\) −3458.34 + 5990.01i −0.188345 + 0.326223i
\(697\) −13577.6 7839.01i −0.737858 0.426003i
\(698\) −11561.5 + 6675.06i −0.626950 + 0.361970i
\(699\) −10145.3 −0.548970
\(700\) 406.710 + 9251.19i 0.0219603 + 0.499518i
\(701\) −10821.8 −0.583073 −0.291536 0.956560i \(-0.594166\pi\)
−0.291536 + 0.956560i \(0.594166\pi\)
\(702\) 10570.1 6102.65i 0.568294 0.328105i
\(703\) 9612.20 + 5549.61i 0.515691 + 0.297735i
\(704\) −1584.05 + 2743.66i −0.0848029 + 0.146883i
\(705\) −2111.82 1029.24i −0.112817 0.0549836i
\(706\) 5678.64 0.302718
\(707\) −17803.3 12706.6i −0.947049 0.675929i
\(708\) 5896.06i 0.312977i
\(709\) 10251.4 + 17755.9i 0.543016 + 0.940532i 0.998729 + 0.0504047i \(0.0160511\pi\)
−0.455713 + 0.890127i \(0.650616\pi\)
\(710\) 18639.6 1308.88i 0.985255 0.0691853i
\(711\) −6804.65 + 11786.0i −0.358923 + 0.621673i
\(712\) 9014.40 5204.47i 0.474479 0.273940i
\(713\) 6468.05i 0.339734i
\(714\) 2593.56 3633.86i 0.135940 0.190467i
\(715\) 13813.7 + 20466.7i 0.722520 + 1.07050i
\(716\) −1497.06 2592.99i −0.0781396 0.135342i
\(717\) −16226.5 9368.40i −0.845176 0.487963i
\(718\) −14695.4 8484.41i −0.763828 0.440997i
\(719\) 136.829 + 236.995i 0.00709717 + 0.0122927i 0.869552 0.493841i \(-0.164408\pi\)
−0.862455 + 0.506134i \(0.831074\pi\)
\(720\) −2608.11 + 1760.31i −0.134998 + 0.0911149i
\(721\) −5618.75 12338.5i −0.290226 0.637322i
\(722\) 7375.09i 0.380156i
\(723\) 10527.1 6077.81i 0.541503 0.312637i
\(724\) −2787.80 + 4828.61i −0.143105 + 0.247864i
\(725\) −21706.4 27749.4i −1.11194 1.42150i
\(726\) −3433.90 5947.68i −0.175542 0.304049i
\(727\) 1244.59i 0.0634931i −0.999496 0.0317465i \(-0.989893\pi\)
0.999496 0.0317465i \(-0.0101069\pi\)
\(728\) −635.435 + 6579.69i −0.0323500 + 0.334972i
\(729\) −10355.8 −0.526129
\(730\) 5181.63 + 2525.37i 0.262713 + 0.128039i
\(731\) −3999.20 + 6926.81i −0.202347 + 0.350475i
\(732\) 249.694 + 144.161i 0.0126078 + 0.00727914i
\(733\) −13556.1 + 7826.61i −0.683091 + 0.394383i −0.801019 0.598640i \(-0.795708\pi\)
0.117928 + 0.993022i \(0.462375\pi\)
\(734\) −22639.5 −1.13847
\(735\) −4593.50 10829.9i −0.230522 0.543491i
\(736\) 2933.13 0.146898
\(737\) 10808.5 6240.28i 0.540211 0.311891i
\(738\) −12156.8 7018.74i −0.606367 0.350086i
\(739\) −2683.14 + 4647.34i −0.133560 + 0.231333i −0.925047 0.379854i \(-0.875974\pi\)
0.791486 + 0.611187i \(0.209308\pi\)
\(740\) −3861.53 + 7923.19i −0.191828 + 0.393598i
\(741\) 7707.46 0.382106
\(742\) −2198.64 + 22766.1i −0.108780 + 1.12637i
\(743\) 7927.48i 0.391428i 0.980661 + 0.195714i \(0.0627024\pi\)
−0.980661 + 0.195714i \(0.937298\pi\)
\(744\) 865.863 + 1499.72i 0.0426668 + 0.0739010i
\(745\) 1651.05 + 23512.3i 0.0811942 + 1.15627i
\(746\) −11306.2 + 19582.9i −0.554891 + 0.961100i
\(747\) −20431.0 + 11795.8i −1.00071 + 0.577760i
\(748\) 7779.91i 0.380297i
\(749\) −10270.1 22552.6i −0.501015 1.10020i
\(750\) 1790.03 + 8385.24i 0.0871501 + 0.408248i
\(751\) −3693.26 6396.92i −0.179453 0.310821i 0.762240 0.647294i \(-0.224099\pi\)
−0.941693 + 0.336473i \(0.890766\pi\)
\(752\) 949.148 + 547.991i 0.0460264 + 0.0265734i
\(753\) −10.4219 6.01707i −0.000504374 0.000291201i
\(754\) −12574.6 21779.9i −0.607348 1.05196i
\(755\) 20531.3 13857.3i 0.989683 0.667970i
\(756\) 5886.64 8247.82i 0.283194 0.396786i
\(757\) 13406.0i 0.643659i 0.946798 + 0.321829i \(0.104298\pi\)
−0.946798 + 0.321829i \(0.895702\pi\)
\(758\) 18405.5 10626.4i 0.881949 0.509194i
\(759\) −6959.34 + 12053.9i −0.332817 + 0.576456i
\(760\) −5024.65 + 352.835i −0.239820 + 0.0168403i
\(761\) 12942.5 + 22417.0i 0.616510 + 1.06783i 0.990117 + 0.140240i \(0.0447875\pi\)
−0.373607 + 0.927587i \(0.621879\pi\)
\(762\) 1241.11i 0.0590036i
\(763\) −780.217 556.857i −0.0370193 0.0264215i
\(764\) 3832.69 0.181495
\(765\) −3385.28 + 6946.01i −0.159994 + 0.328279i
\(766\) 7582.88 13133.9i 0.357677 0.619515i
\(767\) 18566.1 + 10719.1i 0.874031 + 0.504622i
\(768\) −680.092 + 392.651i −0.0319541 + 0.0184487i
\(769\) −11600.6 −0.543991 −0.271996 0.962299i \(-0.587684\pi\)
−0.271996 + 0.962299i \(0.587684\pi\)
\(770\) 17479.1 + 10711.0i 0.818057 + 0.501296i
\(771\) −673.626 −0.0314657
\(772\) −15855.3 + 9154.08i −0.739178 + 0.426765i
\(773\) −24462.9 14123.7i −1.13825 0.657170i −0.192255 0.981345i \(-0.561580\pi\)
−0.945997 + 0.324175i \(0.894913\pi\)
\(774\) −3580.72 + 6201.99i −0.166287 + 0.288018i
\(775\) −8734.12 + 1232.71i −0.404824 + 0.0571358i
\(776\) 2589.83 0.119806
\(777\) 1076.36 11145.3i 0.0496964 0.514588i
\(778\) 6425.65i 0.296106i
\(779\) −11235.6 19460.6i −0.516760 0.895055i
\(780\) 428.740 + 6105.60i 0.0196812 + 0.280276i
\(781\) 20682.8 35823.6i 0.947616 1.64132i
\(782\) 6237.88 3601.44i 0.285251 0.164690i
\(783\) 38551.7i 1.75955i
\(784\) 1783.78 + 5190.02i 0.0812580 + 0.236426i
\(785\) −14148.3 20962.4i −0.643277 0.953097i
\(786\) 3585.88 + 6210.92i 0.162728 + 0.281853i
\(787\) 9097.82 + 5252.63i 0.412074 + 0.237911i 0.691680 0.722204i \(-0.256871\pi\)
−0.279606 + 0.960115i \(0.590204\pi\)
\(788\) −11879.3 6858.54i −0.537036 0.310058i
\(789\) −8386.36 14525.6i −0.378406 0.655418i
\(790\) −9678.49 14339.9i −0.435880 0.645811i
\(791\) −8697.45 839.957i −0.390955 0.0377566i
\(792\) 6965.83i 0.312525i
\(793\) −907.893 + 524.172i −0.0406560 + 0.0234728i
\(794\) 13180.8 22829.8i 0.589130 1.02040i
\(795\) 1483.46 + 21125.7i 0.0661798 + 0.942455i
\(796\) 292.031 + 505.813i 0.0130035 + 0.0225227i
\(797\) 2165.99i 0.0962651i 0.998841 + 0.0481325i \(0.0153270\pi\)
−0.998841 + 0.0481325i \(0.984673\pi\)
\(798\) 5823.48 2651.92i 0.258332 0.117640i
\(799\) 2691.40 0.119168
\(800\) −559.009 3960.75i −0.0247049 0.175042i
\(801\) 11443.3 19820.3i 0.504778 0.874302i
\(802\) 12460.8 + 7194.23i 0.548635 + 0.316755i
\(803\) 11051.2 6380.41i 0.485664 0.280398i
\(804\) 3093.65 0.135702
\(805\) 496.653 18972.9i 0.0217450 0.830693i
\(806\) −6296.60 −0.275172
\(807\) −775.016 + 447.456i −0.0338065 + 0.0195182i
\(808\) 8182.33 + 4724.07i 0.356254 + 0.205683i
\(809\) 2674.33 4632.08i 0.116223 0.201304i −0.802045 0.597264i \(-0.796255\pi\)
0.918268 + 0.395959i \(0.129588\pi\)
\(810\) −542.050 + 1112.19i −0.0235132 + 0.0482450i
\(811\) −33841.2 −1.46526 −0.732629 0.680628i \(-0.761707\pi\)
−0.732629 + 0.680628i \(0.761707\pi\)
\(812\) −16994.8 12129.5i −0.734482 0.524215i
\(813\) 8162.92i 0.352135i
\(814\) 9756.24 + 16898.3i 0.420093 + 0.727623i
\(815\) 978.284 68.6958i 0.0420464 0.00295253i
\(816\) −964.234 + 1670.10i −0.0413664 + 0.0716486i
\(817\) −9928.13 + 5732.01i −0.425142 + 0.245456i
\(818\) 2178.31i 0.0931084i
\(819\) 6023.54 + 13227.4i 0.256996 + 0.564349i
\(820\) 14791.1 9983.00i 0.629910 0.425148i
\(821\) −7290.73 12627.9i −0.309925 0.536806i 0.668421 0.743783i \(-0.266971\pi\)
−0.978346 + 0.206978i \(0.933637\pi\)
\(822\) 779.543 + 450.069i 0.0330775 + 0.0190973i
\(823\) 2665.86 + 1539.13i 0.112911 + 0.0651894i 0.555392 0.831589i \(-0.312568\pi\)
−0.442481 + 0.896778i \(0.645902\pi\)
\(824\) 2928.17 + 5071.74i 0.123796 + 0.214420i
\(825\) 17603.3 + 7100.24i 0.742873 + 0.299635i
\(826\) 17716.0 + 1710.93i 0.746270 + 0.0720711i
\(827\) 40275.0i 1.69347i 0.532017 + 0.846734i \(0.321434\pi\)
−0.532017 + 0.846734i \(0.678566\pi\)
\(828\) 5585.15 3224.59i 0.234417 0.135341i
\(829\) 14593.5 25276.6i 0.611402 1.05898i −0.379603 0.925150i \(-0.623939\pi\)
0.991004 0.133829i \(-0.0427274\pi\)
\(830\) −2100.76 29916.6i −0.0878537 1.25111i
\(831\) 6906.15 + 11961.8i 0.288293 + 0.499339i
\(832\) 2855.38i 0.118981i
\(833\) 10166.1 + 8847.39i 0.422851 + 0.368000i
\(834\) 15372.5 0.638258
\(835\) −9068.42 + 18606.8i −0.375839 + 0.771157i
\(836\) −5575.44 + 9656.94i −0.230659 + 0.399512i
\(837\) 8359.04 + 4826.09i 0.345198 + 0.199300i
\(838\) 21675.8 12514.5i 0.893528 0.515879i
\(839\) −9396.07 −0.386637 −0.193318 0.981136i \(-0.561925\pi\)
−0.193318 + 0.981136i \(0.561925\pi\)
\(840\) 2424.71 + 4465.66i 0.0995957 + 0.183428i
\(841\) 55047.5 2.25706
\(842\) −1432.44 + 827.022i −0.0586286 + 0.0338493i
\(843\) −1228.38 709.208i −0.0501872 0.0289756i
\(844\) −1410.82 + 2443.61i −0.0575384 + 0.0996595i
\(845\) 2075.07 + 1011.33i 0.0844788 + 0.0411725i
\(846\) 2409.77 0.0979312
\(847\) 18867.6 8591.99i 0.765404 0.348553i
\(848\) 9879.77i 0.400086i
\(849\) 10960.1 + 18983.4i 0.443049 + 0.767383i
\(850\) −6052.05 7736.93i −0.244216 0.312205i
\(851\) 9032.63 15645.0i 0.363848 0.630203i
\(852\) 8879.88 5126.80i 0.357065 0.206152i
\(853\) 20167.0i 0.809502i 0.914427 + 0.404751i \(0.132642\pi\)
−0.914427 + 0.404751i \(0.867358\pi\)
\(854\) −505.619 + 708.426i −0.0202599 + 0.0283862i
\(855\) −9179.86 + 6195.80i −0.367187 + 0.247827i
\(856\) 5352.17 + 9270.23i 0.213707 + 0.370152i
\(857\) 36788.3 + 21239.7i 1.46635 + 0.846599i 0.999292 0.0376269i \(-0.0119799\pi\)
0.467060 + 0.884226i \(0.345313\pi\)
\(858\) 11734.4 + 6774.87i 0.466908 + 0.269569i
\(859\) 10521.8 + 18224.4i 0.417929 + 0.723873i 0.995731 0.0923032i \(-0.0294229\pi\)
−0.577802 + 0.816177i \(0.696090\pi\)
\(860\) −5092.98 7545.90i −0.201941 0.299201i
\(861\) −13169.4 + 18451.8i −0.521269 + 0.730355i
\(862\) 3360.88i 0.132798i
\(863\) −7318.91 + 4225.57i −0.288689 + 0.166675i −0.637350 0.770574i \(-0.719970\pi\)
0.348662 + 0.937249i \(0.386636\pi\)
\(864\) −2188.54 + 3790.66i −0.0861754 + 0.149260i
\(865\) 20544.5 1442.65i 0.807553 0.0567069i
\(866\) −7421.56 12854.5i −0.291218 0.504405i
\(867\) 10335.3i 0.404851i
\(868\) −4757.49 + 2166.49i −0.186037 + 0.0847181i
\(869\) −38299.4 −1.49507
\(870\) −17378.6 8469.81i −0.677229 0.330061i
\(871\) −5624.30 + 9741.58i −0.218797 + 0.378968i
\(872\) 358.584 + 207.028i 0.0139257 + 0.00803999i
\(873\) 4931.45 2847.18i 0.191185 0.110381i
\(874\) 10323.8 0.399552
\(875\) −25714.7 + 2945.29i −0.993504 + 0.113793i
\(876\) 3163.12 0.122000
\(877\) −29818.1 + 17215.5i −1.14810 + 0.662856i −0.948424 0.317005i \(-0.897323\pi\)
−0.199677 + 0.979862i \(0.563989\pi\)
\(878\) 8310.78 + 4798.23i 0.319448 + 0.184433i
\(879\) 13276.8 22996.2i 0.509462 0.882414i
\(880\) −7960.07 3879.50i −0.304925 0.148611i
\(881\) −11602.4 −0.443695 −0.221848 0.975081i \(-0.571209\pi\)
−0.221848 + 0.975081i \(0.571209\pi\)
\(882\) 9102.34 + 7921.61i 0.347496 + 0.302420i
\(883\) 37934.8i 1.44576i −0.690974 0.722880i \(-0.742818\pi\)
0.690974 0.722880i \(-0.257182\pi\)
\(884\) −3505.98 6072.54i −0.133392 0.231043i
\(885\) 16439.5 1154.39i 0.624416 0.0438469i
\(886\) −15935.6 + 27601.3i −0.604252 + 1.04659i
\(887\) 22028.5 12718.1i 0.833871 0.481436i −0.0213052 0.999773i \(-0.506782\pi\)
0.855176 + 0.518337i \(0.173449\pi\)
\(888\) 4836.71i 0.182781i
\(889\) 3729.19 + 360.147i 0.140690 + 0.0135871i
\(890\) 16276.1 + 24115.1i 0.613008 + 0.908249i
\(891\) 1369.50 + 2372.04i 0.0514927 + 0.0891879i
\(892\) 7732.12 + 4464.14i 0.290236 + 0.167568i
\(893\) 3340.74 + 1928.78i 0.125189 + 0.0722779i
\(894\) 6467.03 + 11201.2i 0.241935 + 0.419043i
\(895\) 6936.72 4681.83i 0.259071 0.174856i
\(896\) −982.457 2157.43i −0.0366313 0.0804404i
\(897\) 12544.8i 0.466954i
\(898\) 16198.2 9352.06i 0.601940 0.347530i
\(899\) 9944.25 17223.9i 0.368920 0.638988i
\(900\) −5418.76 6927.34i −0.200695 0.256568i
\(901\) −12130.9 21011.3i −0.448544 0.776901i
\(902\) 39504.4i 1.45826i
\(903\) 9413.47 + 6718.59i 0.346911 + 0.247598i
\(904\) 3774.42 0.138867
\(905\) −14009.0 6827.60i −0.514560 0.250781i
\(906\) 6796.26 11771.5i 0.249217 0.431657i
\(907\) −5223.74 3015.93i −0.191236 0.110410i 0.401325 0.915936i \(-0.368550\pi\)
−0.592561 + 0.805525i \(0.701883\pi\)
\(908\) 18931.2 10929.9i 0.691909 0.399474i
\(909\) 20774.0 0.758008
\(910\) −18470.0 483.489i −0.672830 0.0176126i
\(911\) −21631.5 −0.786699 −0.393349 0.919389i \(-0.628684\pi\)
−0.393349 + 0.919389i \(0.628684\pi\)
\(912\) −2393.74 + 1382.03i −0.0869130 + 0.0501793i
\(913\) −57497.0 33195.9i −2.08420 1.20331i
\(914\) −8577.22 + 14856.2i −0.310404 + 0.537635i
\(915\) −353.064 + 724.426i −0.0127562 + 0.0261735i
\(916\) 7775.56 0.280471
\(917\) −19702.6 + 8972.26i −0.709529 + 0.323108i
\(918\) 10748.8i 0.386451i
\(919\) −14122.3 24460.6i −0.506913 0.877999i −0.999968 0.00800113i \(-0.997453\pi\)
0.493055 0.869998i \(-0.335880\pi\)
\(920\) 574.279 + 8178.21i 0.0205798 + 0.293073i
\(921\) −6589.58 + 11413.5i −0.235759 + 0.408347i
\(922\) −14660.0 + 8463.98i −0.523647 + 0.302328i
\(923\) 37282.4i 1.32954i
\(924\) 11197.2 + 1081.37i 0.398658 + 0.0385004i
\(925\) −22847.6 9215.50i −0.812136 0.327572i
\(926\) −4297.74 7443.90i −0.152519 0.264170i
\(927\) 11151.4 + 6438.27i 0.395103 + 0.228113i
\(928\) 7810.71 + 4509.52i 0.276292 + 0.159517i
\(929\) 22472.1 + 38922.8i 0.793633 + 1.37461i 0.923703 + 0.383109i \(0.125146\pi\)
−0.130070 + 0.991505i \(0.541520\pi\)
\(930\) −4012.02 + 2707.85i −0.141462 + 0.0954772i
\(931\) 6278.41 + 18267.5i 0.221017 + 0.643063i
\(932\) 13229.0i 0.464946i
\(933\) −10454.1 + 6035.68i −0.366829 + 0.211789i
\(934\) 1030.13 1784.23i 0.0360886 0.0625074i
\(935\) −21692.1 + 1523.23i −0.758725 + 0.0532782i
\(936\) −3139.12 5437.11i −0.109621 0.189869i
\(937\) 3777.71i 0.131710i 0.997829 + 0.0658551i \(0.0209775\pi\)
−0.997829 + 0.0658551i \(0.979022\pi\)
\(938\) −897.720 + 9295.56i −0.0312490 + 0.323572i
\(939\) −32206.4 −1.11929
\(940\) −1342.08 + 2753.72i −0.0465680 + 0.0955495i
\(941\) 176.423 305.573i 0.00611182 0.0105860i −0.862953 0.505284i \(-0.831388\pi\)
0.869065 + 0.494698i \(0.164721\pi\)
\(942\) −12018.7 6938.97i −0.415699 0.240004i
\(943\) −31674.4 + 18287.2i −1.09381 + 0.631509i
\(944\) −7688.20 −0.265074
\(945\) 24149.3 + 14798.4i 0.831297 + 0.509409i
\(946\) −20153.8 −0.692660
\(947\) 11721.5 6767.42i 0.402215 0.232219i −0.285224 0.958461i \(-0.592068\pi\)
0.687439 + 0.726242i \(0.258735\pi\)
\(948\) −8221.68 4746.79i −0.281675 0.162625i
\(949\) −5750.60 + 9960.34i −0.196704 + 0.340702i
\(950\) −1967.56 13940.8i −0.0671959 0.476103i
\(951\) 17630.0 0.601147
\(952\) −4738.39 3381.89i −0.161315 0.115134i
\(953\) 51886.1i 1.76365i −0.471579 0.881824i \(-0.656316\pi\)
0.471579 0.881824i \(-0.343684\pi\)
\(954\) −10861.5 18812.7i −0.368610 0.638452i
\(955\) 750.406 + 10686.4i 0.0254268 + 0.362098i
\(956\) −12216.0 + 21158.7i −0.413277 + 0.715817i
\(957\) −37064.4 + 21399.2i −1.25196 + 0.722818i
\(958\) 10275.0i 0.346523i
\(959\) −1578.54 + 2211.71i −0.0531530 + 0.0744731i
\(960\) −1227.95 1819.37i −0.0412834 0.0611665i
\(961\) 12405.8 + 21487.4i 0.416426 + 0.721272i
\(962\) −15230.3 8793.21i −0.510441 0.294703i
\(963\) 20382.8 + 11768.0i 0.682063 + 0.393789i
\(964\) −7925.20 13726.8i −0.264786 0.458622i
\(965\) −28627.9 42415.8i −0.954989 1.41494i
\(966\) −4316.31 9478.39i −0.143763 0.315696i
\(967\) 45517.8i 1.51371i −0.653585 0.756853i \(-0.726736\pi\)
0.653585 0.756853i \(-0.273264\pi\)
\(968\) −7755.51 + 4477.65i −0.257512 + 0.148675i
\(969\) −3393.84 + 5878.31i −0.112514 + 0.194880i
\(970\) 507.064 + 7221.01i 0.0167844 + 0.239023i
\(971\) −11699.1 20263.5i −0.386656 0.669708i 0.605341 0.795966i \(-0.293037\pi\)
−0.991997 + 0.126258i \(0.959703\pi\)
\(972\) 15451.6i 0.509886i
\(973\) −4460.82 + 46190.1i −0.146976 + 1.52188i
\(974\) 1053.07 0.0346434
\(975\) −16939.8 + 2390.84i −0.556419 + 0.0785315i
\(976\) 187.979 325.589i 0.00616502 0.0106781i
\(977\) 29725.3 + 17161.9i 0.973386 + 0.561985i 0.900267 0.435339i \(-0.143371\pi\)
0.0731191 + 0.997323i \(0.476705\pi\)
\(978\) 466.054 269.076i 0.0152380 0.00879766i
\(979\) 64407.4 2.10262
\(980\) −14121.7 + 5989.72i −0.460306 + 0.195239i
\(981\) 910.402 0.0296299
\(982\) −2679.26 + 1546.87i −0.0870658 + 0.0502675i
\(983\) −32178.9 18578.5i −1.04410 0.602809i −0.123106 0.992394i \(-0.539285\pi\)
−0.920991 + 0.389584i \(0.872619\pi\)
\(984\) 4896.13 8480.35i 0.158621 0.274740i
\(985\) 16797.3 34465.1i 0.543355 1.11487i
\(986\) 22148.0 0.715352
\(987\) 374.091 3873.57i 0.0120643 0.124921i
\(988\) 10050.2i 0.323622i
\(989\) 9329.50 + 16159.2i 0.299961 + 0.519547i
\(990\) −19422.3 + 1363.84i −0.623515 + 0.0437837i
\(991\) 5271.25 9130.08i 0.168968 0.292660i −0.769090 0.639141i \(-0.779290\pi\)
0.938057 + 0.346481i \(0.112623\pi\)
\(992\) 1955.57 1129.05i 0.0625900 0.0361364i
\(993\) 28860.2i 0.922306i
\(994\) 12827.8 + 28169.3i 0.409330 + 0.898868i
\(995\) −1353.14 + 913.281i −0.0431130 + 0.0290985i
\(996\) −8228.54 14252.2i −0.261778 0.453413i
\(997\) −31398.6 18128.0i −0.997394 0.575846i −0.0899181 0.995949i \(-0.528661\pi\)
−0.907476 + 0.420103i \(0.861994\pi\)
\(998\) 16442.1 + 9492.84i 0.521508 + 0.301093i
\(999\) 13479.3 + 23346.8i 0.426892 + 0.739399i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.4.i.a.39.10 yes 24
5.2 odd 4 350.4.e.o.151.4 12
5.3 odd 4 350.4.e.n.151.3 12
5.4 even 2 inner 70.4.i.a.39.3 yes 24
7.2 even 3 inner 70.4.i.a.9.3 24
7.3 odd 6 490.4.c.e.99.10 12
7.4 even 3 490.4.c.f.99.9 12
35.2 odd 12 350.4.e.o.51.4 12
35.3 even 12 2450.4.a.cx.1.3 6
35.4 even 6 490.4.c.f.99.4 12
35.9 even 6 inner 70.4.i.a.9.10 yes 24
35.17 even 12 2450.4.a.cw.1.4 6
35.18 odd 12 2450.4.a.cy.1.4 6
35.23 odd 12 350.4.e.n.51.3 12
35.24 odd 6 490.4.c.e.99.3 12
35.32 odd 12 2450.4.a.cv.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.4.i.a.9.3 24 7.2 even 3 inner
70.4.i.a.9.10 yes 24 35.9 even 6 inner
70.4.i.a.39.3 yes 24 5.4 even 2 inner
70.4.i.a.39.10 yes 24 1.1 even 1 trivial
350.4.e.n.51.3 12 35.23 odd 12
350.4.e.n.151.3 12 5.3 odd 4
350.4.e.o.51.4 12 35.2 odd 12
350.4.e.o.151.4 12 5.2 odd 4
490.4.c.e.99.3 12 35.24 odd 6
490.4.c.e.99.10 12 7.3 odd 6
490.4.c.f.99.4 12 35.4 even 6
490.4.c.f.99.9 12 7.4 even 3
2450.4.a.cv.1.3 6 35.32 odd 12
2450.4.a.cw.1.4 6 35.17 even 12
2450.4.a.cx.1.3 6 35.3 even 12
2450.4.a.cy.1.4 6 35.18 odd 12