Properties

Label 70.4
Level 70
Weight 4
Dimension 126
Nonzero newspaces 6
Newform subspaces 16
Sturm bound 1152
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 16 \)
Sturm bound: \(1152\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(70))\).

Total New Old
Modular forms 480 126 354
Cusp forms 384 126 258
Eisenstein series 96 0 96

Trace form

\( 126 q - 4 q^{2} - 8 q^{3} + 8 q^{4} + 34 q^{5} + 88 q^{6} + 100 q^{7} - 16 q^{8} - 250 q^{9} - 136 q^{10} + 4 q^{11} - 32 q^{12} - 16 q^{13} - 152 q^{14} + 172 q^{15} - 96 q^{16} + 168 q^{17} + 188 q^{18}+ \cdots - 5056 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(70))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
70.4.a \(\chi_{70}(1, \cdot)\) 70.4.a.a 1 1
70.4.a.b 1
70.4.a.c 1
70.4.a.d 1
70.4.a.e 1
70.4.a.f 1
70.4.c \(\chi_{70}(29, \cdot)\) 70.4.c.a 2 1
70.4.c.b 6
70.4.e \(\chi_{70}(11, \cdot)\) 70.4.e.a 2 2
70.4.e.b 2
70.4.e.c 2
70.4.e.d 4
70.4.e.e 6
70.4.g \(\chi_{70}(13, \cdot)\) 70.4.g.a 24 2
70.4.i \(\chi_{70}(9, \cdot)\) 70.4.i.a 24 2
70.4.k \(\chi_{70}(3, \cdot)\) 70.4.k.a 48 4

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(70))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(70)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 2}\)