Properties

Label 2450.4.a.cv.1.3
Level $2450$
Weight $4$
Character 2450.1
Self dual yes
Analytic conductor $144.555$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2450,4,Mod(1,2450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2450.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-12,-7,24,0,14,0,-48,31,0,31] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.554679514\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 92x^{4} + 26x^{3} + 2116x^{2} + 80x - 7800 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.06759\) of defining polynomial
Character \(\chi\) \(=\) 2450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -3.06759 q^{3} +4.00000 q^{4} +6.13518 q^{6} -8.00000 q^{8} -17.5899 q^{9} -49.5016 q^{11} -12.2704 q^{12} +44.6154 q^{13} +16.0000 q^{16} -39.2912 q^{17} +35.1798 q^{18} -56.3157 q^{19} +99.0033 q^{22} -91.6603 q^{23} +24.5407 q^{24} -89.2307 q^{26} +136.783 q^{27} +281.845 q^{29} +70.5654 q^{31} -32.0000 q^{32} +151.851 q^{33} +78.5824 q^{34} -70.3596 q^{36} +197.089 q^{37} +112.631 q^{38} -136.862 q^{39} +399.021 q^{41} -203.567 q^{43} -198.007 q^{44} +183.321 q^{46} +68.4988 q^{47} -49.0814 q^{48} +120.529 q^{51} +178.461 q^{52} -617.486 q^{53} -273.567 q^{54} +172.753 q^{57} -563.690 q^{58} +480.513 q^{59} -23.4974 q^{61} -141.131 q^{62} +64.0000 q^{64} -303.701 q^{66} +252.124 q^{67} -157.165 q^{68} +281.176 q^{69} +835.640 q^{71} +140.719 q^{72} -257.786 q^{73} -394.179 q^{74} -225.263 q^{76} +273.723 q^{78} -773.700 q^{79} +55.3315 q^{81} -798.043 q^{82} -1341.21 q^{83} +407.134 q^{86} -864.584 q^{87} +396.013 q^{88} +1301.12 q^{89} -366.641 q^{92} -216.466 q^{93} -136.998 q^{94} +98.1629 q^{96} -323.729 q^{97} +870.729 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} - 7 q^{3} + 24 q^{4} + 14 q^{6} - 48 q^{8} + 31 q^{9} + 31 q^{11} - 28 q^{12} - 59 q^{13} + 96 q^{16} - 68 q^{17} - 62 q^{18} + 93 q^{19} - 62 q^{22} + 94 q^{23} + 56 q^{24} + 118 q^{26}+ \cdots + 4273 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −3.06759 −0.590358 −0.295179 0.955442i \(-0.595379\pi\)
−0.295179 + 0.955442i \(0.595379\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 6.13518 0.417446
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) −17.5899 −0.651478
\(10\) 0 0
\(11\) −49.5016 −1.35685 −0.678423 0.734672i \(-0.737336\pi\)
−0.678423 + 0.734672i \(0.737336\pi\)
\(12\) −12.2704 −0.295179
\(13\) 44.6154 0.951852 0.475926 0.879485i \(-0.342113\pi\)
0.475926 + 0.879485i \(0.342113\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −39.2912 −0.560560 −0.280280 0.959918i \(-0.590427\pi\)
−0.280280 + 0.959918i \(0.590427\pi\)
\(18\) 35.1798 0.460664
\(19\) −56.3157 −0.679984 −0.339992 0.940428i \(-0.610424\pi\)
−0.339992 + 0.940428i \(0.610424\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 99.0033 0.959435
\(23\) −91.6603 −0.830978 −0.415489 0.909598i \(-0.636390\pi\)
−0.415489 + 0.909598i \(0.636390\pi\)
\(24\) 24.5407 0.208723
\(25\) 0 0
\(26\) −89.2307 −0.673061
\(27\) 136.783 0.974963
\(28\) 0 0
\(29\) 281.845 1.80473 0.902367 0.430969i \(-0.141828\pi\)
0.902367 + 0.430969i \(0.141828\pi\)
\(30\) 0 0
\(31\) 70.5654 0.408836 0.204418 0.978884i \(-0.434470\pi\)
0.204418 + 0.978884i \(0.434470\pi\)
\(32\) −32.0000 −0.176777
\(33\) 151.851 0.801025
\(34\) 78.5824 0.396376
\(35\) 0 0
\(36\) −70.3596 −0.325739
\(37\) 197.089 0.875710 0.437855 0.899046i \(-0.355738\pi\)
0.437855 + 0.899046i \(0.355738\pi\)
\(38\) 112.631 0.480822
\(39\) −136.862 −0.561933
\(40\) 0 0
\(41\) 399.021 1.51992 0.759959 0.649971i \(-0.225219\pi\)
0.759959 + 0.649971i \(0.225219\pi\)
\(42\) 0 0
\(43\) −203.567 −0.721946 −0.360973 0.932576i \(-0.617555\pi\)
−0.360973 + 0.932576i \(0.617555\pi\)
\(44\) −198.007 −0.678423
\(45\) 0 0
\(46\) 183.321 0.587590
\(47\) 68.4988 0.212587 0.106293 0.994335i \(-0.466102\pi\)
0.106293 + 0.994335i \(0.466102\pi\)
\(48\) −49.0814 −0.147589
\(49\) 0 0
\(50\) 0 0
\(51\) 120.529 0.330931
\(52\) 178.461 0.475926
\(53\) −617.486 −1.60034 −0.800172 0.599771i \(-0.795258\pi\)
−0.800172 + 0.599771i \(0.795258\pi\)
\(54\) −273.567 −0.689403
\(55\) 0 0
\(56\) 0 0
\(57\) 172.753 0.401434
\(58\) −563.690 −1.27614
\(59\) 480.513 1.06029 0.530147 0.847905i \(-0.322137\pi\)
0.530147 + 0.847905i \(0.322137\pi\)
\(60\) 0 0
\(61\) −23.4974 −0.0493202 −0.0246601 0.999696i \(-0.507850\pi\)
−0.0246601 + 0.999696i \(0.507850\pi\)
\(62\) −141.131 −0.289091
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −303.701 −0.566410
\(67\) 252.124 0.459729 0.229865 0.973223i \(-0.426172\pi\)
0.229865 + 0.973223i \(0.426172\pi\)
\(68\) −157.165 −0.280280
\(69\) 281.176 0.490574
\(70\) 0 0
\(71\) 835.640 1.39679 0.698396 0.715711i \(-0.253897\pi\)
0.698396 + 0.715711i \(0.253897\pi\)
\(72\) 140.719 0.230332
\(73\) −257.786 −0.413309 −0.206654 0.978414i \(-0.566258\pi\)
−0.206654 + 0.978414i \(0.566258\pi\)
\(74\) −394.179 −0.619221
\(75\) 0 0
\(76\) −225.263 −0.339992
\(77\) 0 0
\(78\) 273.723 0.397347
\(79\) −773.700 −1.10187 −0.550937 0.834547i \(-0.685730\pi\)
−0.550937 + 0.834547i \(0.685730\pi\)
\(80\) 0 0
\(81\) 55.3315 0.0759006
\(82\) −798.043 −1.07474
\(83\) −1341.21 −1.77369 −0.886846 0.462065i \(-0.847109\pi\)
−0.886846 + 0.462065i \(0.847109\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 407.134 0.510493
\(87\) −864.584 −1.06544
\(88\) 396.013 0.479717
\(89\) 1301.12 1.54964 0.774821 0.632181i \(-0.217840\pi\)
0.774821 + 0.632181i \(0.217840\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −366.641 −0.415489
\(93\) −216.466 −0.241360
\(94\) −136.998 −0.150322
\(95\) 0 0
\(96\) 98.1629 0.104362
\(97\) −323.729 −0.338862 −0.169431 0.985542i \(-0.554193\pi\)
−0.169431 + 0.985542i \(0.554193\pi\)
\(98\) 0 0
\(99\) 870.729 0.883955
\(100\) 0 0
\(101\) 1181.02 1.16352 0.581761 0.813360i \(-0.302364\pi\)
0.581761 + 0.813360i \(0.302364\pi\)
\(102\) −241.059 −0.234003
\(103\) −732.042 −0.700294 −0.350147 0.936695i \(-0.613868\pi\)
−0.350147 + 0.936695i \(0.613868\pi\)
\(104\) −356.923 −0.336530
\(105\) 0 0
\(106\) 1234.97 1.13161
\(107\) 1338.04 1.20891 0.604455 0.796639i \(-0.293391\pi\)
0.604455 + 0.796639i \(0.293391\pi\)
\(108\) 547.134 0.487481
\(109\) −51.7571 −0.0454810 −0.0227405 0.999741i \(-0.507239\pi\)
−0.0227405 + 0.999741i \(0.507239\pi\)
\(110\) 0 0
\(111\) −604.589 −0.516982
\(112\) 0 0
\(113\) 471.803 0.392774 0.196387 0.980526i \(-0.437079\pi\)
0.196387 + 0.980526i \(0.437079\pi\)
\(114\) −345.507 −0.283857
\(115\) 0 0
\(116\) 1127.38 0.902367
\(117\) −784.780 −0.620110
\(118\) −961.025 −0.749742
\(119\) 0 0
\(120\) 0 0
\(121\) 1119.41 0.841031
\(122\) 46.9948 0.0348746
\(123\) −1224.03 −0.897296
\(124\) 282.262 0.204418
\(125\) 0 0
\(126\) 0 0
\(127\) 202.294 0.141344 0.0706721 0.997500i \(-0.477486\pi\)
0.0706721 + 0.997500i \(0.477486\pi\)
\(128\) −128.000 −0.0883883
\(129\) 624.460 0.426206
\(130\) 0 0
\(131\) −1168.96 −0.779635 −0.389817 0.920892i \(-0.627462\pi\)
−0.389817 + 0.920892i \(0.627462\pi\)
\(132\) 607.403 0.400512
\(133\) 0 0
\(134\) −504.248 −0.325078
\(135\) 0 0
\(136\) 314.330 0.198188
\(137\) 146.718 0.0914958 0.0457479 0.998953i \(-0.485433\pi\)
0.0457479 + 0.998953i \(0.485433\pi\)
\(138\) −562.352 −0.346888
\(139\) −2505.64 −1.52896 −0.764479 0.644648i \(-0.777004\pi\)
−0.764479 + 0.644648i \(0.777004\pi\)
\(140\) 0 0
\(141\) −210.126 −0.125502
\(142\) −1671.28 −0.987681
\(143\) −2208.53 −1.29152
\(144\) −281.438 −0.162869
\(145\) 0 0
\(146\) 515.571 0.292253
\(147\) 0 0
\(148\) 788.357 0.437855
\(149\) 2108.18 1.15912 0.579559 0.814930i \(-0.303225\pi\)
0.579559 + 0.814930i \(0.303225\pi\)
\(150\) 0 0
\(151\) −2215.51 −1.19401 −0.597004 0.802238i \(-0.703642\pi\)
−0.597004 + 0.802238i \(0.703642\pi\)
\(152\) 450.525 0.240411
\(153\) 691.128 0.365192
\(154\) 0 0
\(155\) 0 0
\(156\) −547.446 −0.280967
\(157\) −2262.03 −1.14987 −0.574935 0.818199i \(-0.694972\pi\)
−0.574935 + 0.818199i \(0.694972\pi\)
\(158\) 1547.40 0.779143
\(159\) 1894.19 0.944775
\(160\) 0 0
\(161\) 0 0
\(162\) −110.663 −0.0536698
\(163\) 87.7158 0.0421499 0.0210750 0.999778i \(-0.493291\pi\)
0.0210750 + 0.999778i \(0.493291\pi\)
\(164\) 1596.09 0.759959
\(165\) 0 0
\(166\) 2682.41 1.25419
\(167\) −1851.38 −0.857868 −0.428934 0.903336i \(-0.641111\pi\)
−0.428934 + 0.903336i \(0.641111\pi\)
\(168\) 0 0
\(169\) −206.469 −0.0939779
\(170\) 0 0
\(171\) 990.587 0.442995
\(172\) −814.268 −0.360973
\(173\) 1842.08 0.809541 0.404771 0.914418i \(-0.367351\pi\)
0.404771 + 0.914418i \(0.367351\pi\)
\(174\) 1729.17 0.753379
\(175\) 0 0
\(176\) −792.026 −0.339211
\(177\) −1474.02 −0.625953
\(178\) −2602.23 −1.09576
\(179\) 748.532 0.312558 0.156279 0.987713i \(-0.450050\pi\)
0.156279 + 0.987713i \(0.450050\pi\)
\(180\) 0 0
\(181\) −1393.90 −0.572418 −0.286209 0.958167i \(-0.592395\pi\)
−0.286209 + 0.958167i \(0.592395\pi\)
\(182\) 0 0
\(183\) 72.0803 0.0291166
\(184\) 733.282 0.293795
\(185\) 0 0
\(186\) 432.931 0.170667
\(187\) 1944.98 0.760593
\(188\) 273.995 0.106293
\(189\) 0 0
\(190\) 0 0
\(191\) −958.174 −0.362990 −0.181495 0.983392i \(-0.558094\pi\)
−0.181495 + 0.983392i \(0.558094\pi\)
\(192\) −196.326 −0.0737947
\(193\) 4577.04 1.70706 0.853530 0.521044i \(-0.174457\pi\)
0.853530 + 0.521044i \(0.174457\pi\)
\(194\) 647.457 0.239612
\(195\) 0 0
\(196\) 0 0
\(197\) 3429.27 1.24023 0.620115 0.784511i \(-0.287086\pi\)
0.620115 + 0.784511i \(0.287086\pi\)
\(198\) −1741.46 −0.625050
\(199\) −146.016 −0.0520140 −0.0260070 0.999662i \(-0.508279\pi\)
−0.0260070 + 0.999662i \(0.508279\pi\)
\(200\) 0 0
\(201\) −773.413 −0.271405
\(202\) −2362.04 −0.822734
\(203\) 0 0
\(204\) 482.117 0.165465
\(205\) 0 0
\(206\) 1464.08 0.495182
\(207\) 1612.29 0.541363
\(208\) 713.846 0.237963
\(209\) 2787.72 0.922634
\(210\) 0 0
\(211\) −705.410 −0.230154 −0.115077 0.993357i \(-0.536711\pi\)
−0.115077 + 0.993357i \(0.536711\pi\)
\(212\) −2469.94 −0.800172
\(213\) −2563.40 −0.824607
\(214\) −2676.08 −0.854829
\(215\) 0 0
\(216\) −1094.27 −0.344701
\(217\) 0 0
\(218\) 103.514 0.0321600
\(219\) 790.781 0.244000
\(220\) 0 0
\(221\) −1752.99 −0.533570
\(222\) 1209.18 0.365562
\(223\) 2232.07 0.670271 0.335135 0.942170i \(-0.391218\pi\)
0.335135 + 0.942170i \(0.391218\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −943.606 −0.277733
\(227\) 5464.96 1.59789 0.798947 0.601401i \(-0.205391\pi\)
0.798947 + 0.601401i \(0.205391\pi\)
\(228\) 691.014 0.200717
\(229\) 1943.89 0.560942 0.280471 0.959862i \(-0.409509\pi\)
0.280471 + 0.959862i \(0.409509\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2254.76 −0.638070
\(233\) −3307.25 −0.929893 −0.464946 0.885339i \(-0.653926\pi\)
−0.464946 + 0.885339i \(0.653926\pi\)
\(234\) 1569.56 0.438484
\(235\) 0 0
\(236\) 1922.05 0.530147
\(237\) 2373.39 0.650500
\(238\) 0 0
\(239\) 6107.99 1.65311 0.826554 0.562857i \(-0.190298\pi\)
0.826554 + 0.562857i \(0.190298\pi\)
\(240\) 0 0
\(241\) −3962.60 −1.05914 −0.529571 0.848265i \(-0.677647\pi\)
−0.529571 + 0.848265i \(0.677647\pi\)
\(242\) −2238.82 −0.594699
\(243\) −3862.89 −1.01977
\(244\) −93.9895 −0.0246601
\(245\) 0 0
\(246\) 2448.07 0.634484
\(247\) −2512.54 −0.647244
\(248\) −564.523 −0.144545
\(249\) 4114.27 1.04711
\(250\) 0 0
\(251\) −3.92299 −0.000986522 0 −0.000493261 1.00000i \(-0.500157\pi\)
−0.000493261 1.00000i \(0.500157\pi\)
\(252\) 0 0
\(253\) 4537.33 1.12751
\(254\) −404.589 −0.0999455
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 219.595 0.0532994 0.0266497 0.999645i \(-0.491516\pi\)
0.0266497 + 0.999645i \(0.491516\pi\)
\(258\) −1248.92 −0.301373
\(259\) 0 0
\(260\) 0 0
\(261\) −4957.62 −1.17574
\(262\) 2337.91 0.551285
\(263\) 5467.72 1.28195 0.640977 0.767560i \(-0.278529\pi\)
0.640977 + 0.767560i \(0.278529\pi\)
\(264\) −1214.81 −0.283205
\(265\) 0 0
\(266\) 0 0
\(267\) −3991.29 −0.914843
\(268\) 1008.50 0.229865
\(269\) −291.731 −0.0661233 −0.0330616 0.999453i \(-0.510526\pi\)
−0.0330616 + 0.999453i \(0.510526\pi\)
\(270\) 0 0
\(271\) 2661.02 0.596478 0.298239 0.954491i \(-0.403601\pi\)
0.298239 + 0.954491i \(0.403601\pi\)
\(272\) −628.659 −0.140140
\(273\) 0 0
\(274\) −293.435 −0.0646973
\(275\) 0 0
\(276\) 1124.70 0.245287
\(277\) 4502.66 0.976673 0.488336 0.872655i \(-0.337604\pi\)
0.488336 + 0.872655i \(0.337604\pi\)
\(278\) 5011.27 1.08114
\(279\) −1241.24 −0.266348
\(280\) 0 0
\(281\) −462.388 −0.0981628 −0.0490814 0.998795i \(-0.515629\pi\)
−0.0490814 + 0.998795i \(0.515629\pi\)
\(282\) 420.253 0.0887435
\(283\) −7145.71 −1.50095 −0.750474 0.660899i \(-0.770175\pi\)
−0.750474 + 0.660899i \(0.770175\pi\)
\(284\) 3342.56 0.698396
\(285\) 0 0
\(286\) 4417.07 0.913240
\(287\) 0 0
\(288\) 562.877 0.115166
\(289\) −3369.20 −0.685773
\(290\) 0 0
\(291\) 993.066 0.200050
\(292\) −1031.14 −0.206654
\(293\) −8656.21 −1.72594 −0.862971 0.505254i \(-0.831399\pi\)
−0.862971 + 0.505254i \(0.831399\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1576.71 −0.309610
\(297\) −6771.01 −1.32287
\(298\) −4216.36 −0.819621
\(299\) −4089.46 −0.790968
\(300\) 0 0
\(301\) 0 0
\(302\) 4431.01 0.844291
\(303\) −3622.88 −0.686894
\(304\) −901.051 −0.169996
\(305\) 0 0
\(306\) −1382.26 −0.258230
\(307\) −4296.26 −0.798699 −0.399349 0.916799i \(-0.630764\pi\)
−0.399349 + 0.916799i \(0.630764\pi\)
\(308\) 0 0
\(309\) 2245.60 0.413424
\(310\) 0 0
\(311\) 3935.13 0.717494 0.358747 0.933435i \(-0.383204\pi\)
0.358747 + 0.933435i \(0.383204\pi\)
\(312\) 1094.89 0.198673
\(313\) −10498.9 −1.89596 −0.947979 0.318334i \(-0.896877\pi\)
−0.947979 + 0.318334i \(0.896877\pi\)
\(314\) 4524.05 0.813080
\(315\) 0 0
\(316\) −3094.80 −0.550937
\(317\) −5747.17 −1.01828 −0.509138 0.860685i \(-0.670036\pi\)
−0.509138 + 0.860685i \(0.670036\pi\)
\(318\) −3788.39 −0.668057
\(319\) −13951.8 −2.44874
\(320\) 0 0
\(321\) −4104.56 −0.713690
\(322\) 0 0
\(323\) 2212.71 0.381172
\(324\) 221.326 0.0379503
\(325\) 0 0
\(326\) −175.432 −0.0298045
\(327\) 158.770 0.0268501
\(328\) −3192.17 −0.537372
\(329\) 0 0
\(330\) 0 0
\(331\) 9408.09 1.56228 0.781141 0.624355i \(-0.214638\pi\)
0.781141 + 0.624355i \(0.214638\pi\)
\(332\) −5364.82 −0.886846
\(333\) −3466.78 −0.570506
\(334\) 3702.76 0.606605
\(335\) 0 0
\(336\) 0 0
\(337\) 4501.95 0.727706 0.363853 0.931456i \(-0.381461\pi\)
0.363853 + 0.931456i \(0.381461\pi\)
\(338\) 412.939 0.0664524
\(339\) −1447.30 −0.231877
\(340\) 0 0
\(341\) −3493.10 −0.554728
\(342\) −1981.17 −0.313244
\(343\) 0 0
\(344\) 1628.54 0.255246
\(345\) 0 0
\(346\) −3684.16 −0.572432
\(347\) −4993.36 −0.772500 −0.386250 0.922394i \(-0.626230\pi\)
−0.386250 + 0.922394i \(0.626230\pi\)
\(348\) −3458.34 −0.532719
\(349\) 6675.06 1.02381 0.511903 0.859044i \(-0.328941\pi\)
0.511903 + 0.859044i \(0.328941\pi\)
\(350\) 0 0
\(351\) 6102.65 0.928020
\(352\) 1584.05 0.239859
\(353\) −2839.32 −0.428107 −0.214054 0.976822i \(-0.568667\pi\)
−0.214054 + 0.976822i \(0.568667\pi\)
\(354\) 2948.03 0.442616
\(355\) 0 0
\(356\) 5204.47 0.774821
\(357\) 0 0
\(358\) −1497.06 −0.221012
\(359\) −8484.41 −1.24733 −0.623663 0.781693i \(-0.714356\pi\)
−0.623663 + 0.781693i \(0.714356\pi\)
\(360\) 0 0
\(361\) −3687.54 −0.537621
\(362\) 2787.80 0.404761
\(363\) −3433.90 −0.496509
\(364\) 0 0
\(365\) 0 0
\(366\) −144.161 −0.0205885
\(367\) −11319.7 −1.61004 −0.805020 0.593247i \(-0.797846\pi\)
−0.805020 + 0.593247i \(0.797846\pi\)
\(368\) −1466.56 −0.207744
\(369\) −7018.74 −0.990193
\(370\) 0 0
\(371\) 0 0
\(372\) −865.863 −0.120680
\(373\) −11306.2 −1.56947 −0.784735 0.619832i \(-0.787201\pi\)
−0.784735 + 0.619832i \(0.787201\pi\)
\(374\) −3889.96 −0.537821
\(375\) 0 0
\(376\) −547.991 −0.0751608
\(377\) 12574.6 1.71784
\(378\) 0 0
\(379\) −10626.4 −1.44022 −0.720109 0.693861i \(-0.755908\pi\)
−0.720109 + 0.693861i \(0.755908\pi\)
\(380\) 0 0
\(381\) −620.556 −0.0834437
\(382\) 1916.35 0.256672
\(383\) 7582.88 1.01166 0.505832 0.862632i \(-0.331186\pi\)
0.505832 + 0.862632i \(0.331186\pi\)
\(384\) 392.651 0.0521808
\(385\) 0 0
\(386\) −9154.08 −1.20707
\(387\) 3580.72 0.470332
\(388\) −1294.91 −0.169431
\(389\) 3212.83 0.418758 0.209379 0.977835i \(-0.432856\pi\)
0.209379 + 0.977835i \(0.432856\pi\)
\(390\) 0 0
\(391\) 3601.44 0.465813
\(392\) 0 0
\(393\) 3585.88 0.460264
\(394\) −6858.54 −0.876976
\(395\) 0 0
\(396\) 3482.91 0.441977
\(397\) −13180.8 −1.66631 −0.833155 0.553039i \(-0.813468\pi\)
−0.833155 + 0.553039i \(0.813468\pi\)
\(398\) 292.031 0.0367794
\(399\) 0 0
\(400\) 0 0
\(401\) −7194.23 −0.895917 −0.447959 0.894054i \(-0.647849\pi\)
−0.447959 + 0.894054i \(0.647849\pi\)
\(402\) 1546.83 0.191912
\(403\) 3148.30 0.389152
\(404\) 4724.07 0.581761
\(405\) 0 0
\(406\) 0 0
\(407\) −9756.24 −1.18820
\(408\) −964.234 −0.117002
\(409\) −1089.15 −0.131675 −0.0658376 0.997830i \(-0.520972\pi\)
−0.0658376 + 0.997830i \(0.520972\pi\)
\(410\) 0 0
\(411\) −450.069 −0.0540153
\(412\) −2928.17 −0.350147
\(413\) 0 0
\(414\) −3224.59 −0.382802
\(415\) 0 0
\(416\) −1427.69 −0.168265
\(417\) 7686.26 0.902633
\(418\) −5575.44 −0.652401
\(419\) −12514.5 −1.45913 −0.729563 0.683914i \(-0.760276\pi\)
−0.729563 + 0.683914i \(0.760276\pi\)
\(420\) 0 0
\(421\) −827.022 −0.0957401 −0.0478701 0.998854i \(-0.515243\pi\)
−0.0478701 + 0.998854i \(0.515243\pi\)
\(422\) 1410.82 0.162743
\(423\) −1204.89 −0.138496
\(424\) 4939.89 0.565807
\(425\) 0 0
\(426\) 5126.80 0.583085
\(427\) 0 0
\(428\) 5352.17 0.604455
\(429\) 6774.87 0.762457
\(430\) 0 0
\(431\) −1680.44 −0.187805 −0.0939025 0.995581i \(-0.529934\pi\)
−0.0939025 + 0.995581i \(0.529934\pi\)
\(432\) 2188.54 0.243741
\(433\) −7421.56 −0.823689 −0.411845 0.911254i \(-0.635115\pi\)
−0.411845 + 0.911254i \(0.635115\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −207.028 −0.0227405
\(437\) 5161.91 0.565052
\(438\) −1581.56 −0.172534
\(439\) 4798.23 0.521656 0.260828 0.965385i \(-0.416004\pi\)
0.260828 + 0.965385i \(0.416004\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 3505.98 0.377291
\(443\) −15935.6 −1.70908 −0.854541 0.519384i \(-0.826161\pi\)
−0.854541 + 0.519384i \(0.826161\pi\)
\(444\) −2418.36 −0.258491
\(445\) 0 0
\(446\) −4464.14 −0.473953
\(447\) −6467.03 −0.684295
\(448\) 0 0
\(449\) −9352.06 −0.982964 −0.491482 0.870888i \(-0.663545\pi\)
−0.491482 + 0.870888i \(0.663545\pi\)
\(450\) 0 0
\(451\) −19752.2 −2.06230
\(452\) 1887.21 0.196387
\(453\) 6796.26 0.704892
\(454\) −10929.9 −1.12988
\(455\) 0 0
\(456\) −1382.03 −0.141928
\(457\) 8577.22 0.877955 0.438977 0.898498i \(-0.355341\pi\)
0.438977 + 0.898498i \(0.355341\pi\)
\(458\) −3887.78 −0.396646
\(459\) −5374.39 −0.546525
\(460\) 0 0
\(461\) −8463.98 −0.855113 −0.427556 0.903989i \(-0.640625\pi\)
−0.427556 + 0.903989i \(0.640625\pi\)
\(462\) 0 0
\(463\) −4297.74 −0.431388 −0.215694 0.976461i \(-0.569201\pi\)
−0.215694 + 0.976461i \(0.569201\pi\)
\(464\) 4509.52 0.451183
\(465\) 0 0
\(466\) 6614.50 0.657533
\(467\) −1030.13 −0.102074 −0.0510371 0.998697i \(-0.516253\pi\)
−0.0510371 + 0.998697i \(0.516253\pi\)
\(468\) −3139.12 −0.310055
\(469\) 0 0
\(470\) 0 0
\(471\) 6938.97 0.678834
\(472\) −3844.10 −0.374871
\(473\) 10076.9 0.979569
\(474\) −4746.79 −0.459973
\(475\) 0 0
\(476\) 0 0
\(477\) 10861.5 1.04259
\(478\) −12216.0 −1.16892
\(479\) 5137.48 0.490058 0.245029 0.969516i \(-0.421203\pi\)
0.245029 + 0.969516i \(0.421203\pi\)
\(480\) 0 0
\(481\) 8793.21 0.833546
\(482\) 7925.20 0.748927
\(483\) 0 0
\(484\) 4477.65 0.420515
\(485\) 0 0
\(486\) 7725.78 0.721087
\(487\) 526.537 0.0489932 0.0244966 0.999700i \(-0.492202\pi\)
0.0244966 + 0.999700i \(0.492202\pi\)
\(488\) 187.979 0.0174373
\(489\) −269.076 −0.0248835
\(490\) 0 0
\(491\) −1546.87 −0.142178 −0.0710889 0.997470i \(-0.522647\pi\)
−0.0710889 + 0.997470i \(0.522647\pi\)
\(492\) −4896.13 −0.448648
\(493\) −11074.0 −1.01166
\(494\) 5025.09 0.457671
\(495\) 0 0
\(496\) 1129.05 0.102209
\(497\) 0 0
\(498\) −8228.54 −0.740421
\(499\) 9492.84 0.851619 0.425809 0.904813i \(-0.359989\pi\)
0.425809 + 0.904813i \(0.359989\pi\)
\(500\) 0 0
\(501\) 5679.27 0.506449
\(502\) 7.84599 0.000697577 0
\(503\) −9819.97 −0.870479 −0.435239 0.900315i \(-0.643336\pi\)
−0.435239 + 0.900315i \(0.643336\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −9074.67 −0.797269
\(507\) 633.363 0.0554806
\(508\) 809.177 0.0706721
\(509\) −2638.05 −0.229724 −0.114862 0.993381i \(-0.536643\pi\)
−0.114862 + 0.993381i \(0.536643\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) −7703.06 −0.662960
\(514\) −439.189 −0.0376884
\(515\) 0 0
\(516\) 2497.84 0.213103
\(517\) −3390.80 −0.288448
\(518\) 0 0
\(519\) −5650.74 −0.477919
\(520\) 0 0
\(521\) 4426.35 0.372211 0.186106 0.982530i \(-0.440413\pi\)
0.186106 + 0.982530i \(0.440413\pi\)
\(522\) 9915.24 0.831376
\(523\) 905.764 0.0757291 0.0378645 0.999283i \(-0.487944\pi\)
0.0378645 + 0.999283i \(0.487944\pi\)
\(524\) −4675.82 −0.389817
\(525\) 0 0
\(526\) −10935.4 −0.906478
\(527\) −2772.60 −0.229177
\(528\) 2429.61 0.200256
\(529\) −3765.39 −0.309476
\(530\) 0 0
\(531\) −8452.16 −0.690758
\(532\) 0 0
\(533\) 17802.5 1.44674
\(534\) 7982.58 0.646892
\(535\) 0 0
\(536\) −2016.99 −0.162539
\(537\) −2296.19 −0.184521
\(538\) 583.462 0.0467562
\(539\) 0 0
\(540\) 0 0
\(541\) 19620.6 1.55926 0.779628 0.626243i \(-0.215408\pi\)
0.779628 + 0.626243i \(0.215408\pi\)
\(542\) −5322.04 −0.421774
\(543\) 4275.91 0.337932
\(544\) 1257.32 0.0990939
\(545\) 0 0
\(546\) 0 0
\(547\) 6717.26 0.525062 0.262531 0.964923i \(-0.415443\pi\)
0.262531 + 0.964923i \(0.415443\pi\)
\(548\) 586.870 0.0457479
\(549\) 413.316 0.0321310
\(550\) 0 0
\(551\) −15872.3 −1.22719
\(552\) −2249.41 −0.173444
\(553\) 0 0
\(554\) −9005.31 −0.690612
\(555\) 0 0
\(556\) −10022.5 −0.764479
\(557\) −13104.0 −0.996827 −0.498413 0.866940i \(-0.666084\pi\)
−0.498413 + 0.866940i \(0.666084\pi\)
\(558\) 2482.48 0.188336
\(559\) −9082.21 −0.687186
\(560\) 0 0
\(561\) −5966.40 −0.449022
\(562\) 924.776 0.0694116
\(563\) −16648.7 −1.24629 −0.623143 0.782108i \(-0.714145\pi\)
−0.623143 + 0.782108i \(0.714145\pi\)
\(564\) −840.505 −0.0627512
\(565\) 0 0
\(566\) 14291.4 1.06133
\(567\) 0 0
\(568\) −6685.12 −0.493841
\(569\) 14697.7 1.08288 0.541441 0.840739i \(-0.317879\pi\)
0.541441 + 0.840739i \(0.317879\pi\)
\(570\) 0 0
\(571\) 2997.78 0.219708 0.109854 0.993948i \(-0.464962\pi\)
0.109854 + 0.993948i \(0.464962\pi\)
\(572\) −8834.13 −0.645758
\(573\) 2939.28 0.214294
\(574\) 0 0
\(575\) 0 0
\(576\) −1125.75 −0.0814347
\(577\) 4873.27 0.351607 0.175803 0.984425i \(-0.443748\pi\)
0.175803 + 0.984425i \(0.443748\pi\)
\(578\) 6738.40 0.484915
\(579\) −14040.5 −1.00778
\(580\) 0 0
\(581\) 0 0
\(582\) −1986.13 −0.141457
\(583\) 30566.6 2.17142
\(584\) 2062.29 0.146127
\(585\) 0 0
\(586\) 17312.4 1.22043
\(587\) −23971.4 −1.68553 −0.842764 0.538283i \(-0.819073\pi\)
−0.842764 + 0.538283i \(0.819073\pi\)
\(588\) 0 0
\(589\) −3973.94 −0.278002
\(590\) 0 0
\(591\) −10519.6 −0.732180
\(592\) 3153.43 0.218928
\(593\) −1561.67 −0.108145 −0.0540726 0.998537i \(-0.517220\pi\)
−0.0540726 + 0.998537i \(0.517220\pi\)
\(594\) 13542.0 0.935413
\(595\) 0 0
\(596\) 8432.71 0.579559
\(597\) 447.916 0.0307069
\(598\) 8178.91 0.559299
\(599\) 17401.4 1.18698 0.593491 0.804841i \(-0.297749\pi\)
0.593491 + 0.804841i \(0.297749\pi\)
\(600\) 0 0
\(601\) −26823.7 −1.82057 −0.910283 0.413987i \(-0.864136\pi\)
−0.910283 + 0.413987i \(0.864136\pi\)
\(602\) 0 0
\(603\) −4434.84 −0.299503
\(604\) −8862.02 −0.597004
\(605\) 0 0
\(606\) 7245.76 0.485707
\(607\) 22721.4 1.51933 0.759665 0.650315i \(-0.225363\pi\)
0.759665 + 0.650315i \(0.225363\pi\)
\(608\) 1802.10 0.120205
\(609\) 0 0
\(610\) 0 0
\(611\) 3056.10 0.202351
\(612\) 2764.51 0.182596
\(613\) −22931.6 −1.51092 −0.755462 0.655192i \(-0.772588\pi\)
−0.755462 + 0.655192i \(0.772588\pi\)
\(614\) 8592.52 0.564765
\(615\) 0 0
\(616\) 0 0
\(617\) 4299.04 0.280507 0.140253 0.990116i \(-0.455208\pi\)
0.140253 + 0.990116i \(0.455208\pi\)
\(618\) −4491.21 −0.292335
\(619\) −5321.89 −0.345565 −0.172783 0.984960i \(-0.555276\pi\)
−0.172783 + 0.984960i \(0.555276\pi\)
\(620\) 0 0
\(621\) −12537.6 −0.810173
\(622\) −7870.25 −0.507345
\(623\) 0 0
\(624\) −2189.79 −0.140483
\(625\) 0 0
\(626\) 20997.9 1.34064
\(627\) −8551.58 −0.544684
\(628\) −9048.11 −0.574935
\(629\) −7743.87 −0.490888
\(630\) 0 0
\(631\) 19486.3 1.22938 0.614688 0.788771i \(-0.289282\pi\)
0.614688 + 0.788771i \(0.289282\pi\)
\(632\) 6189.60 0.389571
\(633\) 2163.91 0.135873
\(634\) 11494.3 0.720030
\(635\) 0 0
\(636\) 7576.77 0.472388
\(637\) 0 0
\(638\) 27903.6 1.73152
\(639\) −14698.8 −0.909979
\(640\) 0 0
\(641\) −28574.7 −1.76074 −0.880368 0.474290i \(-0.842705\pi\)
−0.880368 + 0.474290i \(0.842705\pi\)
\(642\) 8209.13 0.504655
\(643\) −6347.10 −0.389277 −0.194639 0.980875i \(-0.562353\pi\)
−0.194639 + 0.980875i \(0.562353\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −4425.42 −0.269529
\(647\) −2649.69 −0.161005 −0.0805024 0.996754i \(-0.525652\pi\)
−0.0805024 + 0.996754i \(0.525652\pi\)
\(648\) −442.652 −0.0268349
\(649\) −23786.2 −1.43866
\(650\) 0 0
\(651\) 0 0
\(652\) 350.863 0.0210750
\(653\) 7061.62 0.423189 0.211595 0.977358i \(-0.432134\pi\)
0.211595 + 0.977358i \(0.432134\pi\)
\(654\) −317.539 −0.0189859
\(655\) 0 0
\(656\) 6384.34 0.379980
\(657\) 4534.42 0.269261
\(658\) 0 0
\(659\) 11227.0 0.663646 0.331823 0.943342i \(-0.392336\pi\)
0.331823 + 0.943342i \(0.392336\pi\)
\(660\) 0 0
\(661\) 28750.0 1.69175 0.845873 0.533385i \(-0.179080\pi\)
0.845873 + 0.533385i \(0.179080\pi\)
\(662\) −18816.2 −1.10470
\(663\) 5377.46 0.314997
\(664\) 10729.6 0.627095
\(665\) 0 0
\(666\) 6933.56 0.403408
\(667\) −25834.0 −1.49969
\(668\) −7405.52 −0.428934
\(669\) −6847.07 −0.395700
\(670\) 0 0
\(671\) 1163.16 0.0669199
\(672\) 0 0
\(673\) −4440.57 −0.254341 −0.127170 0.991881i \(-0.540589\pi\)
−0.127170 + 0.991881i \(0.540589\pi\)
\(674\) −9003.90 −0.514566
\(675\) 0 0
\(676\) −825.878 −0.0469889
\(677\) −16309.8 −0.925905 −0.462953 0.886383i \(-0.653210\pi\)
−0.462953 + 0.886383i \(0.653210\pi\)
\(678\) 2894.59 0.163962
\(679\) 0 0
\(680\) 0 0
\(681\) −16764.3 −0.943330
\(682\) 6986.21 0.392252
\(683\) 4866.44 0.272634 0.136317 0.990665i \(-0.456473\pi\)
0.136317 + 0.990665i \(0.456473\pi\)
\(684\) 3962.35 0.221497
\(685\) 0 0
\(686\) 0 0
\(687\) −5963.05 −0.331157
\(688\) −3257.07 −0.180486
\(689\) −27549.4 −1.52329
\(690\) 0 0
\(691\) −15027.1 −0.827291 −0.413646 0.910438i \(-0.635745\pi\)
−0.413646 + 0.910438i \(0.635745\pi\)
\(692\) 7368.31 0.404771
\(693\) 0 0
\(694\) 9986.72 0.546240
\(695\) 0 0
\(696\) 6916.67 0.376689
\(697\) −15678.0 −0.852005
\(698\) −13350.1 −0.723939
\(699\) 10145.3 0.548970
\(700\) 0 0
\(701\) −10821.8 −0.583073 −0.291536 0.956560i \(-0.594166\pi\)
−0.291536 + 0.956560i \(0.594166\pi\)
\(702\) −12205.3 −0.656209
\(703\) −11099.2 −0.595469
\(704\) −3168.10 −0.169606
\(705\) 0 0
\(706\) 5678.64 0.302718
\(707\) 0 0
\(708\) −5896.06 −0.312977
\(709\) 20502.7 1.08603 0.543016 0.839722i \(-0.317282\pi\)
0.543016 + 0.839722i \(0.317282\pi\)
\(710\) 0 0
\(711\) 13609.3 0.717846
\(712\) −10408.9 −0.547881
\(713\) −6468.05 −0.339734
\(714\) 0 0
\(715\) 0 0
\(716\) 2994.13 0.156279
\(717\) −18736.8 −0.975926
\(718\) 16968.8 0.881993
\(719\) 273.658 0.0141943 0.00709717 0.999975i \(-0.497741\pi\)
0.00709717 + 0.999975i \(0.497741\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 7375.09 0.380156
\(723\) 12155.6 0.625273
\(724\) −5575.60 −0.286209
\(725\) 0 0
\(726\) 6867.79 0.351085
\(727\) 1244.59 0.0634931 0.0317465 0.999496i \(-0.489893\pi\)
0.0317465 + 0.999496i \(0.489893\pi\)
\(728\) 0 0
\(729\) 10355.8 0.526129
\(730\) 0 0
\(731\) 7998.39 0.404694
\(732\) 288.321 0.0145583
\(733\) −15653.2 −0.788765 −0.394383 0.918946i \(-0.629042\pi\)
−0.394383 + 0.918946i \(0.629042\pi\)
\(734\) 22639.5 1.13847
\(735\) 0 0
\(736\) 2933.13 0.146898
\(737\) −12480.6 −0.623782
\(738\) 14037.5 0.700172
\(739\) −5366.29 −0.267121 −0.133560 0.991041i \(-0.542641\pi\)
−0.133560 + 0.991041i \(0.542641\pi\)
\(740\) 0 0
\(741\) 7707.46 0.382106
\(742\) 0 0
\(743\) 7927.48 0.391428 0.195714 0.980661i \(-0.437298\pi\)
0.195714 + 0.980661i \(0.437298\pi\)
\(744\) 1731.73 0.0853335
\(745\) 0 0
\(746\) 22612.4 1.10978
\(747\) 23591.7 1.15552
\(748\) 7779.91 0.380297
\(749\) 0 0
\(750\) 0 0
\(751\) 7386.52 0.358906 0.179453 0.983767i \(-0.442567\pi\)
0.179453 + 0.983767i \(0.442567\pi\)
\(752\) 1095.98 0.0531467
\(753\) 12.0341 0.000582401 0
\(754\) −25149.2 −1.21470
\(755\) 0 0
\(756\) 0 0
\(757\) −13406.0 −0.643659 −0.321829 0.946798i \(-0.604298\pi\)
−0.321829 + 0.946798i \(0.604298\pi\)
\(758\) 21252.8 1.01839
\(759\) −13918.7 −0.665634
\(760\) 0 0
\(761\) −25885.0 −1.23302 −0.616510 0.787347i \(-0.711454\pi\)
−0.616510 + 0.787347i \(0.711454\pi\)
\(762\) 1241.11 0.0590036
\(763\) 0 0
\(764\) −3832.69 −0.181495
\(765\) 0 0
\(766\) −15165.8 −0.715354
\(767\) 21438.2 1.00924
\(768\) −785.303 −0.0368974
\(769\) 11600.6 0.543991 0.271996 0.962299i \(-0.412316\pi\)
0.271996 + 0.962299i \(0.412316\pi\)
\(770\) 0 0
\(771\) −673.626 −0.0314657
\(772\) 18308.2 0.853530
\(773\) 28247.3 1.31434 0.657170 0.753742i \(-0.271753\pi\)
0.657170 + 0.753742i \(0.271753\pi\)
\(774\) −7161.44 −0.332575
\(775\) 0 0
\(776\) 2589.83 0.119806
\(777\) 0 0
\(778\) −6425.65 −0.296106
\(779\) −22471.2 −1.03352
\(780\) 0 0
\(781\) −41365.6 −1.89523
\(782\) −7202.89 −0.329379
\(783\) 38551.7 1.75955
\(784\) 0 0
\(785\) 0 0
\(786\) −7171.75 −0.325456
\(787\) 10505.3 0.475822 0.237911 0.971287i \(-0.423537\pi\)
0.237911 + 0.971287i \(0.423537\pi\)
\(788\) 13717.1 0.620115
\(789\) −16772.7 −0.756812
\(790\) 0 0
\(791\) 0 0
\(792\) −6965.83 −0.312525
\(793\) −1048.34 −0.0469455
\(794\) 26361.6 1.17826
\(795\) 0 0
\(796\) −584.063 −0.0260070
\(797\) −2165.99 −0.0962651 −0.0481325 0.998841i \(-0.515327\pi\)
−0.0481325 + 0.998841i \(0.515327\pi\)
\(798\) 0 0
\(799\) −2691.40 −0.119168
\(800\) 0 0
\(801\) −22886.5 −1.00956
\(802\) 14388.5 0.633509
\(803\) 12760.8 0.560796
\(804\) −3093.65 −0.135702
\(805\) 0 0
\(806\) −6296.60 −0.275172
\(807\) 894.911 0.0390364
\(808\) −9448.14 −0.411367
\(809\) 5348.67 0.232446 0.116223 0.993223i \(-0.462921\pi\)
0.116223 + 0.993223i \(0.462921\pi\)
\(810\) 0 0
\(811\) −33841.2 −1.46526 −0.732629 0.680628i \(-0.761707\pi\)
−0.732629 + 0.680628i \(0.761707\pi\)
\(812\) 0 0
\(813\) −8162.92 −0.352135
\(814\) 19512.5 0.840187
\(815\) 0 0
\(816\) 1928.47 0.0827327
\(817\) 11464.0 0.490912
\(818\) 2178.31 0.0931084
\(819\) 0 0
\(820\) 0 0
\(821\) 14581.5 0.619850 0.309925 0.950761i \(-0.399696\pi\)
0.309925 + 0.950761i \(0.399696\pi\)
\(822\) 900.138 0.0381946
\(823\) −3078.27 −0.130379 −0.0651894 0.997873i \(-0.520765\pi\)
−0.0651894 + 0.997873i \(0.520765\pi\)
\(824\) 5856.34 0.247591
\(825\) 0 0
\(826\) 0 0
\(827\) −40275.0 −1.69347 −0.846734 0.532017i \(-0.821434\pi\)
−0.846734 + 0.532017i \(0.821434\pi\)
\(828\) 6449.18 0.270682
\(829\) 29186.9 1.22280 0.611402 0.791320i \(-0.290606\pi\)
0.611402 + 0.791320i \(0.290606\pi\)
\(830\) 0 0
\(831\) −13812.3 −0.576587
\(832\) 2855.38 0.118981
\(833\) 0 0
\(834\) −15372.5 −0.638258
\(835\) 0 0
\(836\) 11150.9 0.461317
\(837\) 9652.18 0.398600
\(838\) 25029.0 1.03176
\(839\) 9396.07 0.386637 0.193318 0.981136i \(-0.438075\pi\)
0.193318 + 0.981136i \(0.438075\pi\)
\(840\) 0 0
\(841\) 55047.5 2.25706
\(842\) 1654.04 0.0676985
\(843\) 1418.42 0.0579512
\(844\) −2821.64 −0.115077
\(845\) 0 0
\(846\) 2409.77 0.0979312
\(847\) 0 0
\(848\) −9879.77 −0.400086
\(849\) 21920.1 0.886097
\(850\) 0 0
\(851\) −18065.3 −0.727696
\(852\) −10253.6 −0.412304
\(853\) 20167.0 0.809502 0.404751 0.914427i \(-0.367358\pi\)
0.404751 + 0.914427i \(0.367358\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −10704.3 −0.427414
\(857\) 42479.4 1.69320 0.846599 0.532232i \(-0.178647\pi\)
0.846599 + 0.532232i \(0.178647\pi\)
\(858\) −13549.7 −0.539138
\(859\) 21043.7 0.835857 0.417929 0.908480i \(-0.362756\pi\)
0.417929 + 0.908480i \(0.362756\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 3360.88 0.132798
\(863\) −8451.15 −0.333349 −0.166675 0.986012i \(-0.553303\pi\)
−0.166675 + 0.986012i \(0.553303\pi\)
\(864\) −4377.07 −0.172351
\(865\) 0 0
\(866\) 14843.1 0.582436
\(867\) 10335.3 0.404851
\(868\) 0 0
\(869\) 38299.4 1.49507
\(870\) 0 0
\(871\) 11248.6 0.437594
\(872\) 414.057 0.0160800
\(873\) 5694.35 0.220761
\(874\) −10323.8 −0.399552
\(875\) 0 0
\(876\) 3163.12 0.122000
\(877\) 34430.9 1.32571 0.662856 0.748747i \(-0.269344\pi\)
0.662856 + 0.748747i \(0.269344\pi\)
\(878\) −9596.46 −0.368867
\(879\) 26553.7 1.01892
\(880\) 0 0
\(881\) −11602.4 −0.443695 −0.221848 0.975081i \(-0.571209\pi\)
−0.221848 + 0.975081i \(0.571209\pi\)
\(882\) 0 0
\(883\) −37934.8 −1.44576 −0.722880 0.690974i \(-0.757182\pi\)
−0.722880 + 0.690974i \(0.757182\pi\)
\(884\) −7011.96 −0.266785
\(885\) 0 0
\(886\) 31871.2 1.20850
\(887\) −25436.3 −0.962871 −0.481436 0.876481i \(-0.659885\pi\)
−0.481436 + 0.876481i \(0.659885\pi\)
\(888\) 4836.71 0.182781
\(889\) 0 0
\(890\) 0 0
\(891\) −2739.00 −0.102985
\(892\) 8928.28 0.335135
\(893\) −3857.56 −0.144556
\(894\) 12934.1 0.483870
\(895\) 0 0
\(896\) 0 0
\(897\) 12544.8 0.466954
\(898\) 18704.1 0.695061
\(899\) 19888.5 0.737840
\(900\) 0 0
\(901\) 24261.8 0.897088
\(902\) 39504.4 1.45826
\(903\) 0 0
\(904\) −3774.42 −0.138867
\(905\) 0 0
\(906\) −13592.5 −0.498434
\(907\) −6031.85 −0.220821 −0.110410 0.993886i \(-0.535217\pi\)
−0.110410 + 0.993886i \(0.535217\pi\)
\(908\) 21859.8 0.798947
\(909\) −20774.0 −0.758008
\(910\) 0 0
\(911\) −21631.5 −0.786699 −0.393349 0.919389i \(-0.628684\pi\)
−0.393349 + 0.919389i \(0.628684\pi\)
\(912\) 2764.05 0.100359
\(913\) 66391.9 2.40663
\(914\) −17154.4 −0.620808
\(915\) 0 0
\(916\) 7775.56 0.280471
\(917\) 0 0
\(918\) 10748.8 0.386451
\(919\) −28244.7 −1.01383 −0.506913 0.861997i \(-0.669214\pi\)
−0.506913 + 0.861997i \(0.669214\pi\)
\(920\) 0 0
\(921\) 13179.2 0.471518
\(922\) 16928.0 0.604656
\(923\) 37282.4 1.32954
\(924\) 0 0
\(925\) 0 0
\(926\) 8595.47 0.305038
\(927\) 12876.5 0.456226
\(928\) −9019.03 −0.319035
\(929\) 44944.2 1.58727 0.793633 0.608396i \(-0.208187\pi\)
0.793633 + 0.608396i \(0.208187\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −13229.0 −0.464946
\(933\) −12071.4 −0.423578
\(934\) 2060.25 0.0721773
\(935\) 0 0
\(936\) 6278.24 0.219242
\(937\) −3777.71 −0.131710 −0.0658551 0.997829i \(-0.520978\pi\)
−0.0658551 + 0.997829i \(0.520978\pi\)
\(938\) 0 0
\(939\) 32206.4 1.11929
\(940\) 0 0
\(941\) −352.846 −0.0122236 −0.00611182 0.999981i \(-0.501945\pi\)
−0.00611182 + 0.999981i \(0.501945\pi\)
\(942\) −13877.9 −0.480008
\(943\) −36574.4 −1.26302
\(944\) 7688.20 0.265074
\(945\) 0 0
\(946\) −20153.8 −0.692660
\(947\) −13534.8 −0.464438 −0.232219 0.972664i \(-0.574599\pi\)
−0.232219 + 0.972664i \(0.574599\pi\)
\(948\) 9493.58 0.325250
\(949\) −11501.2 −0.393409
\(950\) 0 0
\(951\) 17630.0 0.601147
\(952\) 0 0
\(953\) −51886.1 −1.76365 −0.881824 0.471579i \(-0.843684\pi\)
−0.881824 + 0.471579i \(0.843684\pi\)
\(954\) −21723.0 −0.737221
\(955\) 0 0
\(956\) 24432.0 0.826554
\(957\) 42798.3 1.44564
\(958\) −10275.0 −0.346523
\(959\) 0 0
\(960\) 0 0
\(961\) −24811.5 −0.832853
\(962\) −17586.4 −0.589406
\(963\) −23536.0 −0.787578
\(964\) −15850.4 −0.529571
\(965\) 0 0
\(966\) 0 0
\(967\) 45517.8 1.51371 0.756853 0.653585i \(-0.226736\pi\)
0.756853 + 0.653585i \(0.226736\pi\)
\(968\) −8955.30 −0.297349
\(969\) −6787.69 −0.225028
\(970\) 0 0
\(971\) 23398.3 0.773313 0.386656 0.922224i \(-0.373630\pi\)
0.386656 + 0.922224i \(0.373630\pi\)
\(972\) −15451.6 −0.509886
\(973\) 0 0
\(974\) −1053.07 −0.0346434
\(975\) 0 0
\(976\) −375.958 −0.0123300
\(977\) 34323.9 1.12397 0.561985 0.827148i \(-0.310038\pi\)
0.561985 + 0.827148i \(0.310038\pi\)
\(978\) 538.152 0.0175953
\(979\) −64407.4 −2.10262
\(980\) 0 0
\(981\) 910.402 0.0296299
\(982\) 3093.74 0.100535
\(983\) 37157.0 1.20562 0.602809 0.797885i \(-0.294048\pi\)
0.602809 + 0.797885i \(0.294048\pi\)
\(984\) 9792.27 0.317242
\(985\) 0 0
\(986\) 22148.0 0.715352
\(987\) 0 0
\(988\) −10050.2 −0.323622
\(989\) 18659.0 0.599921
\(990\) 0 0
\(991\) −10542.5 −0.337935 −0.168968 0.985622i \(-0.554043\pi\)
−0.168968 + 0.985622i \(0.554043\pi\)
\(992\) −2258.09 −0.0722727
\(993\) −28860.2 −0.922306
\(994\) 0 0
\(995\) 0 0
\(996\) 16457.1 0.523556
\(997\) −36255.9 −1.15169 −0.575846 0.817558i \(-0.695327\pi\)
−0.575846 + 0.817558i \(0.695327\pi\)
\(998\) −18985.7 −0.602185
\(999\) 26958.6 0.853785
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2450.4.a.cv.1.3 6
5.2 odd 4 490.4.c.f.99.4 12
5.3 odd 4 490.4.c.f.99.9 12
5.4 even 2 2450.4.a.cy.1.4 6
7.2 even 3 350.4.e.o.151.4 12
7.4 even 3 350.4.e.o.51.4 12
7.6 odd 2 2450.4.a.cw.1.4 6
35.2 odd 12 70.4.i.a.39.3 yes 24
35.4 even 6 350.4.e.n.51.3 12
35.9 even 6 350.4.e.n.151.3 12
35.13 even 4 490.4.c.e.99.10 12
35.18 odd 12 70.4.i.a.9.3 24
35.23 odd 12 70.4.i.a.39.10 yes 24
35.27 even 4 490.4.c.e.99.3 12
35.32 odd 12 70.4.i.a.9.10 yes 24
35.34 odd 2 2450.4.a.cx.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.4.i.a.9.3 24 35.18 odd 12
70.4.i.a.9.10 yes 24 35.32 odd 12
70.4.i.a.39.3 yes 24 35.2 odd 12
70.4.i.a.39.10 yes 24 35.23 odd 12
350.4.e.n.51.3 12 35.4 even 6
350.4.e.n.151.3 12 35.9 even 6
350.4.e.o.51.4 12 7.4 even 3
350.4.e.o.151.4 12 7.2 even 3
490.4.c.e.99.3 12 35.27 even 4
490.4.c.e.99.10 12 35.13 even 4
490.4.c.f.99.4 12 5.2 odd 4
490.4.c.f.99.9 12 5.3 odd 4
2450.4.a.cv.1.3 6 1.1 even 1 trivial
2450.4.a.cw.1.4 6 7.6 odd 2
2450.4.a.cx.1.3 6 35.34 odd 2
2450.4.a.cy.1.4 6 5.4 even 2