Properties

Label 2450.4
Level 2450
Weight 4
Dimension 156015
Nonzero newspaces 24
Sturm bound 1411200
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(1411200\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(2450))\).

Total New Old
Modular forms 532560 156015 376545
Cusp forms 525840 156015 369825
Eisenstein series 6720 0 6720

Trace form

\( 156015 q - 4 q^{2} - 8 q^{3} + 8 q^{4} + 5 q^{5} + 88 q^{6} + 48 q^{7} - 16 q^{8} - 250 q^{9} - 50 q^{10} + 4 q^{11} - 32 q^{12} - 16 q^{13} - 132 q^{14} + 80 q^{15} - 96 q^{16} + 808 q^{17} + 638 q^{18}+ \cdots - 69580 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(2450))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2450.4.a \(\chi_{2450}(1, \cdot)\) 2450.4.a.a 1 1
2450.4.a.b 1
2450.4.a.c 1
2450.4.a.d 1
2450.4.a.e 1
2450.4.a.f 1
2450.4.a.g 1
2450.4.a.h 1
2450.4.a.i 1
2450.4.a.j 1
2450.4.a.k 1
2450.4.a.l 1
2450.4.a.m 1
2450.4.a.n 1
2450.4.a.o 1
2450.4.a.p 1
2450.4.a.q 1
2450.4.a.r 1
2450.4.a.s 1
2450.4.a.t 1
2450.4.a.u 1
2450.4.a.v 1
2450.4.a.w 1
2450.4.a.x 1
2450.4.a.y 1
2450.4.a.z 1
2450.4.a.ba 1
2450.4.a.bb 1
2450.4.a.bc 1
2450.4.a.bd 1
2450.4.a.be 1
2450.4.a.bf 1
2450.4.a.bg 1
2450.4.a.bh 1
2450.4.a.bi 1
2450.4.a.bj 1
2450.4.a.bk 1
2450.4.a.bl 1
2450.4.a.bm 1
2450.4.a.bn 1
2450.4.a.bo 1
2450.4.a.bp 1
2450.4.a.bq 1
2450.4.a.br 2
2450.4.a.bs 2
2450.4.a.bt 2
2450.4.a.bu 2
2450.4.a.bv 2
2450.4.a.bw 2
2450.4.a.bx 2
2450.4.a.by 2
2450.4.a.bz 2
2450.4.a.ca 2
2450.4.a.cb 3
2450.4.a.cc 3
2450.4.a.cd 3
2450.4.a.ce 3
2450.4.a.cf 3
2450.4.a.cg 3
2450.4.a.ch 3
2450.4.a.ci 3
2450.4.a.cj 4
2450.4.a.ck 4
2450.4.a.cl 4
2450.4.a.cm 4
2450.4.a.cn 4
2450.4.a.co 4
2450.4.a.cp 4
2450.4.a.cq 4
2450.4.a.cr 4
2450.4.a.cs 4
2450.4.a.ct 4
2450.4.a.cu 4
2450.4.a.cv 6
2450.4.a.cw 6
2450.4.a.cx 6
2450.4.a.cy 6
2450.4.a.cz 8
2450.4.a.da 8
2450.4.a.db 10
2450.4.a.dc 10
2450.4.c \(\chi_{2450}(99, \cdot)\) n/a 184 1
2450.4.e \(\chi_{2450}(851, \cdot)\) n/a 380 2
2450.4.g \(\chi_{2450}(293, \cdot)\) n/a 360 2
2450.4.h \(\chi_{2450}(491, \cdot)\) n/a 1228 4
2450.4.j \(\chi_{2450}(949, \cdot)\) n/a 360 2
2450.4.l \(\chi_{2450}(351, \cdot)\) n/a 1596 6
2450.4.n \(\chi_{2450}(589, \cdot)\) n/a 1232 4
2450.4.p \(\chi_{2450}(607, \cdot)\) n/a 720 4
2450.4.t \(\chi_{2450}(449, \cdot)\) n/a 1512 6
2450.4.u \(\chi_{2450}(361, \cdot)\) n/a 2400 8
2450.4.v \(\chi_{2450}(97, \cdot)\) n/a 2400 8
2450.4.x \(\chi_{2450}(51, \cdot)\) n/a 3192 12
2450.4.z \(\chi_{2450}(307, \cdot)\) n/a 3024 12
2450.4.bb \(\chi_{2450}(79, \cdot)\) n/a 2400 8
2450.4.bd \(\chi_{2450}(71, \cdot)\) n/a 10080 24
2450.4.be \(\chi_{2450}(149, \cdot)\) n/a 3024 12
2450.4.bi \(\chi_{2450}(117, \cdot)\) n/a 4800 16
2450.4.bj \(\chi_{2450}(29, \cdot)\) n/a 10080 24
2450.4.bm \(\chi_{2450}(143, \cdot)\) n/a 6048 24
2450.4.bo \(\chi_{2450}(11, \cdot)\) n/a 20160 48
2450.4.bp \(\chi_{2450}(13, \cdot)\) n/a 20160 48
2450.4.bt \(\chi_{2450}(9, \cdot)\) n/a 20160 48
2450.4.bv \(\chi_{2450}(3, \cdot)\) n/a 40320 96

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(2450))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(2450)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(175))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(245))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(350))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(490))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(1225))\)\(^{\oplus 2}\)