Properties

Label 35.4.f.b.27.2
Level $35$
Weight $4$
Character 35.27
Analytic conductor $2.065$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [35,4,Mod(13,35)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("35.13"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(35, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 35.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.06506685020\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 10654x^{12} + 22102125x^{8} + 5700572500x^{4} + 44626562500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 27.2
Root \(4.94129 - 4.94129i\) of defining polynomial
Character \(\chi\) \(=\) 35.27
Dual form 35.4.f.b.13.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.57033 - 3.57033i) q^{2} +(4.94129 + 4.94129i) q^{3} +17.4944i q^{4} +(-3.01167 + 10.7671i) q^{5} -35.2840i q^{6} +(18.5018 + 0.826888i) q^{7} +(33.8983 - 33.8983i) q^{8} +21.8328i q^{9} +(49.1946 - 27.6893i) q^{10} -30.6825 q^{11} +(-86.4452 + 86.4452i) q^{12} +(38.4644 + 38.4644i) q^{13} +(-63.1052 - 69.0097i) q^{14} +(-68.0848 + 38.3217i) q^{15} -102.100 q^{16} +(34.5683 - 34.5683i) q^{17} +(77.9500 - 77.9500i) q^{18} -22.1767 q^{19} +(-188.364 - 52.6875i) q^{20} +(87.3369 + 95.5087i) q^{21} +(109.546 + 109.546i) q^{22} +(-3.20638 + 3.20638i) q^{23} +335.002 q^{24} +(-106.860 - 64.8538i) q^{25} -274.661i q^{26} +(25.5329 - 25.5329i) q^{27} +(-14.4660 + 323.679i) q^{28} -179.259i q^{29} +(379.906 + 106.264i) q^{30} -37.6201i q^{31} +(93.3444 + 93.3444i) q^{32} +(-151.611 - 151.611i) q^{33} -246.840 q^{34} +(-64.6245 + 196.720i) q^{35} -381.952 q^{36} +(-135.426 - 135.426i) q^{37} +(79.1782 + 79.1782i) q^{38} +380.128i q^{39} +(262.895 + 467.076i) q^{40} +326.823i q^{41} +(29.1760 - 652.818i) q^{42} +(193.381 - 193.381i) q^{43} -536.773i q^{44} +(-235.075 - 65.7531i) q^{45} +22.8956 q^{46} +(91.5534 - 91.5534i) q^{47} +(-504.506 - 504.506i) q^{48} +(341.633 + 30.5978i) q^{49} +(149.975 + 613.073i) q^{50} +341.624 q^{51} +(-672.914 + 672.914i) q^{52} +(210.622 - 210.622i) q^{53} -182.321 q^{54} +(92.4056 - 330.360i) q^{55} +(655.209 - 599.149i) q^{56} +(-109.582 - 109.582i) q^{57} +(-640.012 + 640.012i) q^{58} +230.155 q^{59} +(-670.417 - 1191.11i) q^{60} -37.1467i q^{61} +(-134.316 + 134.316i) q^{62} +(-18.0532 + 403.945i) q^{63} +150.261i q^{64} +(-529.992 + 298.307i) q^{65} +1082.60i q^{66} +(325.340 + 325.340i) q^{67} +(604.753 + 604.753i) q^{68} -31.6873 q^{69} +(933.084 - 471.623i) q^{70} -474.107 q^{71} +(740.092 + 740.092i) q^{72} +(-642.183 - 642.183i) q^{73} +967.032i q^{74} +(-207.563 - 848.486i) q^{75} -387.970i q^{76} +(-567.681 - 25.3710i) q^{77} +(1357.18 - 1357.18i) q^{78} -636.110i q^{79} +(307.492 - 1099.32i) q^{80} +841.815 q^{81} +(1166.87 - 1166.87i) q^{82} +(993.219 + 993.219i) q^{83} +(-1670.87 + 1527.91i) q^{84} +(268.091 + 476.308i) q^{85} -1380.87 q^{86} +(885.770 - 885.770i) q^{87} +(-1040.08 + 1040.08i) q^{88} -1205.77 q^{89} +(604.534 + 1074.05i) q^{90} +(679.855 + 743.467i) q^{91} +(-56.0938 - 56.0938i) q^{92} +(185.892 - 185.892i) q^{93} -653.751 q^{94} +(66.7891 - 238.779i) q^{95} +922.484i q^{96} +(-917.344 + 917.344i) q^{97} +(-1110.50 - 1328.98i) q^{98} -669.883i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 32 q^{7} + 176 q^{8} - 152 q^{11} - 480 q^{15} - 504 q^{16} + 288 q^{18} + 328 q^{21} + 348 q^{22} - 72 q^{23} - 160 q^{25} - 528 q^{28} + 1780 q^{30} + 432 q^{32} + 160 q^{35} + 344 q^{36}+ \cdots + 3308 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/35\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.57033 3.57033i −1.26230 1.26230i −0.949975 0.312325i \(-0.898892\pi\)
−0.312325 0.949975i \(-0.601108\pi\)
\(3\) 4.94129 + 4.94129i 0.950952 + 0.950952i 0.998852 0.0478999i \(-0.0152528\pi\)
−0.0478999 + 0.998852i \(0.515253\pi\)
\(4\) 17.4944i 2.18681i
\(5\) −3.01167 + 10.7671i −0.269372 + 0.963036i
\(6\) 35.2840i 2.40078i
\(7\) 18.5018 + 0.826888i 0.999003 + 0.0446478i
\(8\) 33.8983 33.8983i 1.49811 1.49811i
\(9\) 21.8328i 0.808620i
\(10\) 49.1946 27.6893i 1.55567 0.875612i
\(11\) −30.6825 −0.841010 −0.420505 0.907290i \(-0.638147\pi\)
−0.420505 + 0.907290i \(0.638147\pi\)
\(12\) −86.4452 + 86.4452i −2.07955 + 2.07955i
\(13\) 38.4644 + 38.4644i 0.820624 + 0.820624i 0.986198 0.165573i \(-0.0529474\pi\)
−0.165573 + 0.986198i \(0.552947\pi\)
\(14\) −63.1052 69.0097i −1.20468 1.31740i
\(15\) −68.0848 + 38.3217i −1.17196 + 0.659641i
\(16\) −102.100 −1.59531
\(17\) 34.5683 34.5683i 0.493179 0.493179i −0.416127 0.909306i \(-0.636613\pi\)
0.909306 + 0.416127i \(0.136613\pi\)
\(18\) 77.9500 77.9500i 1.02072 1.02072i
\(19\) −22.1767 −0.267773 −0.133887 0.990997i \(-0.542746\pi\)
−0.133887 + 0.990997i \(0.542746\pi\)
\(20\) −188.364 52.6875i −2.10597 0.589065i
\(21\) 87.3369 + 95.5087i 0.907546 + 0.992462i
\(22\) 109.546 + 109.546i 1.06161 + 1.06161i
\(23\) −3.20638 + 3.20638i −0.0290685 + 0.0290685i −0.721492 0.692423i \(-0.756543\pi\)
0.692423 + 0.721492i \(0.256543\pi\)
\(24\) 335.002 2.84925
\(25\) −106.860 64.8538i −0.854877 0.518830i
\(26\) 274.661i 2.07175i
\(27\) 25.5329 25.5329i 0.181993 0.181993i
\(28\) −14.4660 + 323.679i −0.0976360 + 2.18463i
\(29\) 179.259i 1.14785i −0.818910 0.573923i \(-0.805421\pi\)
0.818910 0.573923i \(-0.194579\pi\)
\(30\) 379.906 + 106.264i 2.31203 + 0.646702i
\(31\) 37.6201i 0.217960i −0.994044 0.108980i \(-0.965242\pi\)
0.994044 0.108980i \(-0.0347585\pi\)
\(32\) 93.3444 + 93.3444i 0.515660 + 0.515660i
\(33\) −151.611 151.611i −0.799761 0.799761i
\(34\) −246.840 −1.24508
\(35\) −64.6245 + 196.720i −0.312101 + 0.950049i
\(36\) −381.952 −1.76830
\(37\) −135.426 135.426i −0.601728 0.601728i 0.339043 0.940771i \(-0.389897\pi\)
−0.940771 + 0.339043i \(0.889897\pi\)
\(38\) 79.1782 + 79.1782i 0.338010 + 0.338010i
\(39\) 380.128i 1.56075i
\(40\) 262.895 + 467.076i 1.03918 + 1.84628i
\(41\) 326.823i 1.24491i 0.782656 + 0.622454i \(0.213864\pi\)
−0.782656 + 0.622454i \(0.786136\pi\)
\(42\) 29.1760 652.818i 0.107189 2.39838i
\(43\) 193.381 193.381i 0.685823 0.685823i −0.275483 0.961306i \(-0.588838\pi\)
0.961306 + 0.275483i \(0.0888377\pi\)
\(44\) 536.773i 1.83913i
\(45\) −235.075 65.7531i −0.778731 0.217820i
\(46\) 22.8956 0.0733864
\(47\) 91.5534 91.5534i 0.284137 0.284137i −0.550620 0.834756i \(-0.685608\pi\)
0.834756 + 0.550620i \(0.185608\pi\)
\(48\) −504.506 504.506i −1.51707 1.51707i
\(49\) 341.633 + 30.5978i 0.996013 + 0.0892065i
\(50\) 149.975 + 613.073i 0.424192 + 1.73403i
\(51\) 341.624 0.937979
\(52\) −672.914 + 672.914i −1.79455 + 1.79455i
\(53\) 210.622 210.622i 0.545871 0.545871i −0.379373 0.925244i \(-0.623860\pi\)
0.925244 + 0.379373i \(0.123860\pi\)
\(54\) −182.321 −0.459459
\(55\) 92.4056 330.360i 0.226545 0.809923i
\(56\) 655.209 599.149i 1.56350 1.42972i
\(57\) −109.582 109.582i −0.254640 0.254640i
\(58\) −640.012 + 640.012i −1.44893 + 1.44893i
\(59\) 230.155 0.507858 0.253929 0.967223i \(-0.418277\pi\)
0.253929 + 0.967223i \(0.418277\pi\)
\(60\) −670.417 1191.11i −1.44251 2.56285i
\(61\) 37.1467i 0.0779696i −0.999240 0.0389848i \(-0.987588\pi\)
0.999240 0.0389848i \(-0.0124124\pi\)
\(62\) −134.316 + 134.316i −0.275131 + 0.275131i
\(63\) −18.0532 + 403.945i −0.0361031 + 0.807814i
\(64\) 150.261i 0.293478i
\(65\) −529.992 + 298.307i −1.01134 + 0.569238i
\(66\) 1082.60i 2.01908i
\(67\) 325.340 + 325.340i 0.593232 + 0.593232i 0.938503 0.345271i \(-0.112213\pi\)
−0.345271 + 0.938503i \(0.612213\pi\)
\(68\) 604.753 + 604.753i 1.07849 + 1.07849i
\(69\) −31.6873 −0.0552855
\(70\) 933.084 471.623i 1.59321 0.805282i
\(71\) −474.107 −0.792481 −0.396240 0.918147i \(-0.629685\pi\)
−0.396240 + 0.918147i \(0.629685\pi\)
\(72\) 740.092 + 740.092i 1.21140 + 1.21140i
\(73\) −642.183 642.183i −1.02961 1.02961i −0.999548 0.0300668i \(-0.990428\pi\)
−0.0300668 0.999548i \(-0.509572\pi\)
\(74\) 967.032i 1.51912i
\(75\) −207.563 848.486i −0.319565 1.30633i
\(76\) 387.970i 0.585568i
\(77\) −567.681 25.3710i −0.840172 0.0375492i
\(78\) 1357.18 1357.18i 1.97013 1.97013i
\(79\) 636.110i 0.905923i −0.891530 0.452962i \(-0.850367\pi\)
0.891530 0.452962i \(-0.149633\pi\)
\(80\) 307.492 1099.32i 0.429733 1.53634i
\(81\) 841.815 1.15475
\(82\) 1166.87 1166.87i 1.57145 1.57145i
\(83\) 993.219 + 993.219i 1.31349 + 1.31349i 0.918823 + 0.394670i \(0.129141\pi\)
0.394670 + 0.918823i \(0.370859\pi\)
\(84\) −1670.87 + 1527.91i −2.17032 + 1.98463i
\(85\) 268.091 + 476.308i 0.342100 + 0.607798i
\(86\) −1380.87 −1.73143
\(87\) 885.770 885.770i 1.09155 1.09155i
\(88\) −1040.08 + 1040.08i −1.25992 + 1.25992i
\(89\) −1205.77 −1.43608 −0.718041 0.696001i \(-0.754961\pi\)
−0.718041 + 0.696001i \(0.754961\pi\)
\(90\) 604.534 + 1074.05i 0.708038 + 1.25795i
\(91\) 679.855 + 743.467i 0.783167 + 0.856445i
\(92\) −56.0938 56.0938i −0.0635672 0.0635672i
\(93\) 185.892 185.892i 0.207270 0.207270i
\(94\) −653.751 −0.717332
\(95\) 66.7891 238.779i 0.0721307 0.257875i
\(96\) 922.484i 0.980736i
\(97\) −917.344 + 917.344i −0.960229 + 0.960229i −0.999239 0.0390103i \(-0.987579\pi\)
0.0390103 + 0.999239i \(0.487579\pi\)
\(98\) −1110.50 1328.98i −1.14466 1.36987i
\(99\) 669.883i 0.680058i
\(100\) 1134.58 1869.45i 1.13458 1.86945i
\(101\) 295.537i 0.291159i −0.989347 0.145580i \(-0.953495\pi\)
0.989347 0.145580i \(-0.0465047\pi\)
\(102\) −1219.71 1219.71i −1.18401 1.18401i
\(103\) −59.7442 59.7442i −0.0571531 0.0571531i 0.677953 0.735106i \(-0.262867\pi\)
−0.735106 + 0.677953i \(0.762867\pi\)
\(104\) 2607.76 2.45876
\(105\) −1291.38 + 652.721i −1.20024 + 0.606658i
\(106\) −1503.98 −1.37811
\(107\) 697.268 + 697.268i 0.629976 + 0.629976i 0.948062 0.318086i \(-0.103040\pi\)
−0.318086 + 0.948062i \(0.603040\pi\)
\(108\) 446.684 + 446.684i 0.397983 + 0.397983i
\(109\) 869.901i 0.764417i −0.924076 0.382208i \(-0.875164\pi\)
0.924076 0.382208i \(-0.124836\pi\)
\(110\) −1509.41 + 849.576i −1.30833 + 0.736399i
\(111\) 1338.36i 1.14443i
\(112\) −1889.03 84.4254i −1.59372 0.0712272i
\(113\) −787.832 + 787.832i −0.655867 + 0.655867i −0.954400 0.298532i \(-0.903503\pi\)
0.298532 + 0.954400i \(0.403503\pi\)
\(114\) 782.485i 0.642864i
\(115\) −24.8667 44.1798i −0.0201638 0.0358243i
\(116\) 3136.03 2.51011
\(117\) −839.785 + 839.785i −0.663574 + 0.663574i
\(118\) −821.728 821.728i −0.641070 0.641070i
\(119\) 668.159 610.991i 0.514706 0.470668i
\(120\) −1008.92 + 3607.00i −0.767510 + 2.74393i
\(121\) −389.586 −0.292702
\(122\) −132.626 + 132.626i −0.0984210 + 0.0984210i
\(123\) −1614.93 + 1614.93i −1.18385 + 1.18385i
\(124\) 658.142 0.476636
\(125\) 1020.11 955.247i 0.729933 0.683519i
\(126\) 1506.67 1377.76i 1.06528 0.974131i
\(127\) 691.381 + 691.381i 0.483072 + 0.483072i 0.906111 0.423039i \(-0.139037\pi\)
−0.423039 + 0.906111i \(0.639037\pi\)
\(128\) 1283.24 1283.24i 0.886117 0.886117i
\(129\) 1911.11 1.30437
\(130\) 2957.30 + 827.190i 1.99517 + 0.558072i
\(131\) 1847.22i 1.23200i 0.787746 + 0.616000i \(0.211248\pi\)
−0.787746 + 0.616000i \(0.788752\pi\)
\(132\) 2652.35 2652.35i 1.74892 1.74892i
\(133\) −410.309 18.3377i −0.267506 0.0119555i
\(134\) 2323.14i 1.49767i
\(135\) 198.018 + 351.811i 0.126242 + 0.224290i
\(136\) 2343.61i 1.47767i
\(137\) −1532.08 1532.08i −0.955432 0.955432i 0.0436159 0.999048i \(-0.486112\pi\)
−0.999048 + 0.0436159i \(0.986112\pi\)
\(138\) 113.134 + 113.134i 0.0697870 + 0.0697870i
\(139\) −160.189 −0.0977488 −0.0488744 0.998805i \(-0.515563\pi\)
−0.0488744 + 0.998805i \(0.515563\pi\)
\(140\) −3441.50 1130.57i −2.07757 0.682504i
\(141\) 904.784 0.540401
\(142\) 1692.72 + 1692.72i 1.00035 + 1.00035i
\(143\) −1180.18 1180.18i −0.690154 0.690154i
\(144\) 2229.13i 1.29000i
\(145\) 1930.09 + 539.869i 1.10542 + 0.309198i
\(146\) 4585.61i 2.59937i
\(147\) 1536.91 + 1839.30i 0.862330 + 1.03199i
\(148\) 2369.21 2369.21i 1.31586 1.31586i
\(149\) 398.652i 0.219187i 0.993976 + 0.109594i \(0.0349549\pi\)
−0.993976 + 0.109594i \(0.965045\pi\)
\(150\) −2288.30 + 3770.44i −1.24560 + 2.05237i
\(151\) −3472.49 −1.87144 −0.935718 0.352748i \(-0.885247\pi\)
−0.935718 + 0.352748i \(0.885247\pi\)
\(152\) −751.753 + 751.753i −0.401153 + 0.401153i
\(153\) 754.721 + 754.721i 0.398795 + 0.398795i
\(154\) 1936.22 + 2117.39i 1.01315 + 1.10795i
\(155\) 405.058 + 113.299i 0.209903 + 0.0587124i
\(156\) −6650.13 −3.41306
\(157\) −515.983 + 515.983i −0.262292 + 0.262292i −0.825985 0.563692i \(-0.809380\pi\)
0.563692 + 0.825985i \(0.309380\pi\)
\(158\) −2271.12 + 2271.12i −1.14355 + 1.14355i
\(159\) 2081.49 1.03819
\(160\) −1286.17 + 723.923i −0.635504 + 0.357695i
\(161\) −61.9750 + 56.6724i −0.0303374 + 0.0277417i
\(162\) −3005.55 3005.55i −1.45765 1.45765i
\(163\) −70.5300 + 70.5300i −0.0338916 + 0.0338916i −0.723850 0.689958i \(-0.757629\pi\)
0.689958 + 0.723850i \(0.257629\pi\)
\(164\) −5717.59 −2.72237
\(165\) 2089.01 1175.80i 0.985632 0.554765i
\(166\) 7092.23i 3.31605i
\(167\) −1207.85 + 1207.85i −0.559676 + 0.559676i −0.929215 0.369539i \(-0.879516\pi\)
0.369539 + 0.929215i \(0.379516\pi\)
\(168\) 6198.15 + 277.010i 2.84641 + 0.127213i
\(169\) 762.027i 0.346849i
\(170\) 743.401 2657.74i 0.335390 1.19906i
\(171\) 484.179i 0.216527i
\(172\) 3383.10 + 3383.10i 1.49976 + 1.49976i
\(173\) −800.716 800.716i −0.351892 0.351892i 0.508921 0.860813i \(-0.330044\pi\)
−0.860813 + 0.508921i \(0.830044\pi\)
\(174\) −6324.97 −2.75572
\(175\) −1923.47 1288.27i −0.830860 0.556481i
\(176\) 3132.68 1.34168
\(177\) 1137.26 + 1137.26i 0.482949 + 0.482949i
\(178\) 4304.99 + 4304.99i 1.81277 + 1.81277i
\(179\) 1435.34i 0.599343i 0.954042 + 0.299672i \(0.0968771\pi\)
−0.954042 + 0.299672i \(0.903123\pi\)
\(180\) 1150.31 4112.50i 0.476330 1.70293i
\(181\) 3536.87i 1.45245i −0.687458 0.726224i \(-0.741273\pi\)
0.687458 0.726224i \(-0.258727\pi\)
\(182\) 227.114 5081.72i 0.0924990 2.06968i
\(183\) 183.553 183.553i 0.0741453 0.0741453i
\(184\) 217.381i 0.0870954i
\(185\) 1866.00 1050.28i 0.741575 0.417397i
\(186\) −1327.39 −0.523273
\(187\) −1060.64 + 1060.64i −0.414769 + 0.414769i
\(188\) 1601.68 + 1601.68i 0.621352 + 0.621352i
\(189\) 493.517 451.291i 0.189937 0.173686i
\(190\) −1090.98 + 614.058i −0.416567 + 0.234466i
\(191\) 1402.92 0.531474 0.265737 0.964046i \(-0.414385\pi\)
0.265737 + 0.964046i \(0.414385\pi\)
\(192\) −742.482 + 742.482i −0.279084 + 0.279084i
\(193\) 3290.28 3290.28i 1.22715 1.22715i 0.262110 0.965038i \(-0.415582\pi\)
0.965038 0.262110i \(-0.0844184\pi\)
\(194\) 6550.43 2.42419
\(195\) −4092.87 1144.82i −1.50306 0.420422i
\(196\) −535.292 + 5976.67i −0.195077 + 2.17809i
\(197\) 1207.31 + 1207.31i 0.436636 + 0.436636i 0.890878 0.454242i \(-0.150090\pi\)
−0.454242 + 0.890878i \(0.650090\pi\)
\(198\) −2391.70 + 2391.70i −0.858438 + 0.858438i
\(199\) −1348.10 −0.480221 −0.240111 0.970746i \(-0.577184\pi\)
−0.240111 + 0.970746i \(0.577184\pi\)
\(200\) −5820.79 + 1423.93i −2.05796 + 0.503434i
\(201\) 3215.20i 1.12827i
\(202\) −1055.16 + 1055.16i −0.367530 + 0.367530i
\(203\) 148.227 3316.61i 0.0512487 1.14670i
\(204\) 5976.52i 2.05118i
\(205\) −3518.93 984.285i −1.19889 0.335344i
\(206\) 426.612i 0.144289i
\(207\) −70.0040 70.0040i −0.0235054 0.0235054i
\(208\) −3927.22 3927.22i −1.30915 1.30915i
\(209\) 680.437 0.225200
\(210\) 6941.07 + 2280.21i 2.28085 + 0.749284i
\(211\) −1242.22 −0.405298 −0.202649 0.979251i \(-0.564955\pi\)
−0.202649 + 0.979251i \(0.564955\pi\)
\(212\) 3684.71 + 3684.71i 1.19371 + 1.19371i
\(213\) −2342.70 2342.70i −0.753611 0.753611i
\(214\) 4978.95i 1.59044i
\(215\) 1499.75 + 2664.55i 0.475731 + 0.845214i
\(216\) 1731.04i 0.545289i
\(217\) 31.1076 696.038i 0.00973143 0.217743i
\(218\) −3105.83 + 3105.83i −0.964924 + 0.964924i
\(219\) 6346.43i 1.95823i
\(220\) 5779.47 + 1616.58i 1.77115 + 0.495410i
\(221\) 2659.30 0.809429
\(222\) −4778.39 + 4778.39i −1.44461 + 1.44461i
\(223\) −803.061 803.061i −0.241152 0.241152i 0.576174 0.817327i \(-0.304545\pi\)
−0.817327 + 0.576174i \(0.804545\pi\)
\(224\) 1649.85 + 1804.22i 0.492123 + 0.538169i
\(225\) 1415.94 2333.04i 0.419537 0.691271i
\(226\) 5625.63 1.65580
\(227\) 3190.90 3190.90i 0.932986 0.932986i −0.0649056 0.997891i \(-0.520675\pi\)
0.997891 + 0.0649056i \(0.0206746\pi\)
\(228\) 1917.07 1917.07i 0.556847 0.556847i
\(229\) −4312.63 −1.24448 −0.622242 0.782825i \(-0.713778\pi\)
−0.622242 + 0.782825i \(0.713778\pi\)
\(230\) −68.9541 + 246.519i −0.0197683 + 0.0706737i
\(231\) −2679.71 2930.44i −0.763256 0.834671i
\(232\) −6076.56 6076.56i −1.71959 1.71959i
\(233\) −4511.59 + 4511.59i −1.26852 + 1.26852i −0.321661 + 0.946855i \(0.604241\pi\)
−0.946855 + 0.321661i \(0.895759\pi\)
\(234\) 5996.61 1.67526
\(235\) 710.033 + 1261.49i 0.197095 + 0.350173i
\(236\) 4026.43i 1.11059i
\(237\) 3143.21 3143.21i 0.861490 0.861490i
\(238\) −4566.98 204.109i −1.24384 0.0555900i
\(239\) 1219.08i 0.329941i 0.986298 + 0.164971i \(0.0527529\pi\)
−0.986298 + 0.164971i \(0.947247\pi\)
\(240\) 6951.47 3912.65i 1.86965 1.05233i
\(241\) 2266.52i 0.605807i 0.953021 + 0.302904i \(0.0979560\pi\)
−0.953021 + 0.302904i \(0.902044\pi\)
\(242\) 1390.95 + 1390.95i 0.369477 + 0.369477i
\(243\) 3470.27 + 3470.27i 0.916123 + 0.916123i
\(244\) 649.860 0.170504
\(245\) −1358.33 + 3586.23i −0.354207 + 0.935167i
\(246\) 11531.6 2.98874
\(247\) −853.016 853.016i −0.219741 0.219741i
\(248\) −1275.25 1275.25i −0.326527 0.326527i
\(249\) 9815.57i 2.49814i
\(250\) −7052.67 231.587i −1.78420 0.0585875i
\(251\) 2913.88i 0.732758i −0.930466 0.366379i \(-0.880597\pi\)
0.930466 0.366379i \(-0.119403\pi\)
\(252\) −7066.79 315.832i −1.76653 0.0789505i
\(253\) 98.3796 98.3796i 0.0244469 0.0244469i
\(254\) 4936.91i 1.21956i
\(255\) −1028.86 + 3678.29i −0.252666 + 0.903308i
\(256\) −7961.05 −1.94362
\(257\) 2533.26 2533.26i 0.614866 0.614866i −0.329344 0.944210i \(-0.606828\pi\)
0.944210 + 0.329344i \(0.106828\pi\)
\(258\) −6823.28 6823.28i −1.64651 1.64651i
\(259\) −2393.65 2617.61i −0.574262 0.627994i
\(260\) −5218.72 9271.91i −1.24481 2.21161i
\(261\) 3913.71 0.928171
\(262\) 6595.16 6595.16i 1.55515 1.55515i
\(263\) 4347.32 4347.32i 1.01927 1.01927i 0.0194552 0.999811i \(-0.493807\pi\)
0.999811 0.0194552i \(-0.00619316\pi\)
\(264\) −10278.7 −2.39625
\(265\) 1633.46 + 2902.11i 0.378651 + 0.672736i
\(266\) 1399.47 + 1530.41i 0.322582 + 0.352765i
\(267\) −5958.06 5958.06i −1.36565 1.36565i
\(268\) −5691.64 + 5691.64i −1.29728 + 1.29728i
\(269\) 719.233 0.163020 0.0815100 0.996673i \(-0.474026\pi\)
0.0815100 + 0.996673i \(0.474026\pi\)
\(270\) 549.093 1963.07i 0.123766 0.442476i
\(271\) 5060.37i 1.13430i 0.823614 + 0.567151i \(0.191954\pi\)
−0.823614 + 0.567151i \(0.808046\pi\)
\(272\) −3529.43 + 3529.43i −0.786775 + 0.786775i
\(273\) −314.324 + 7033.05i −0.0696840 + 1.55919i
\(274\) 10940.0i 2.41209i
\(275\) 3278.72 + 1989.87i 0.718961 + 0.436342i
\(276\) 554.352i 0.120899i
\(277\) 365.718 + 365.718i 0.0793281 + 0.0793281i 0.745658 0.666329i \(-0.232136\pi\)
−0.666329 + 0.745658i \(0.732136\pi\)
\(278\) 571.928 + 571.928i 0.123388 + 0.123388i
\(279\) 821.349 0.176247
\(280\) 4477.80 + 8859.12i 0.955713 + 1.89083i
\(281\) 914.357 0.194114 0.0970569 0.995279i \(-0.469057\pi\)
0.0970569 + 0.995279i \(0.469057\pi\)
\(282\) −3230.37 3230.37i −0.682149 0.682149i
\(283\) 6608.81 + 6608.81i 1.38817 + 1.38817i 0.829155 + 0.559019i \(0.188822\pi\)
0.559019 + 0.829155i \(0.311178\pi\)
\(284\) 8294.24i 1.73300i
\(285\) 1509.90 849.850i 0.313820 0.176634i
\(286\) 8427.28i 1.74236i
\(287\) −270.246 + 6046.82i −0.0555824 + 1.24367i
\(288\) −2037.97 + 2037.97i −0.416973 + 0.416973i
\(289\) 2523.07i 0.513549i
\(290\) −4963.55 8818.56i −1.00507 1.78567i
\(291\) −9065.73 −1.82626
\(292\) 11234.6 11234.6i 2.25157 2.25157i
\(293\) −1637.54 1637.54i −0.326505 0.326505i 0.524751 0.851256i \(-0.324159\pi\)
−0.851256 + 0.524751i \(0.824159\pi\)
\(294\) 1079.62 12054.2i 0.214165 2.39120i
\(295\) −693.151 + 2478.10i −0.136803 + 0.489086i
\(296\) −9181.43 −1.80290
\(297\) −783.412 + 783.412i −0.153058 + 0.153058i
\(298\) 1423.32 1423.32i 0.276680 0.276680i
\(299\) −246.663 −0.0477087
\(300\) 14843.8 3631.20i 2.85669 0.698826i
\(301\) 3737.81 3418.00i 0.715760 0.654519i
\(302\) 12397.9 + 12397.9i 2.36232 + 2.36232i
\(303\) 1460.34 1460.34i 0.276878 0.276878i
\(304\) 2264.25 0.427182
\(305\) 399.961 + 111.874i 0.0750875 + 0.0210028i
\(306\) 5389.20i 1.00680i
\(307\) −2309.09 + 2309.09i −0.429273 + 0.429273i −0.888380 0.459108i \(-0.848169\pi\)
0.459108 + 0.888380i \(0.348169\pi\)
\(308\) 443.851 9931.26i 0.0821129 1.83729i
\(309\) 590.427i 0.108700i
\(310\) −1041.67 1850.70i −0.190849 0.339074i
\(311\) 4040.25i 0.736661i −0.929695 0.368331i \(-0.879929\pi\)
0.929695 0.368331i \(-0.120071\pi\)
\(312\) 12885.7 + 12885.7i 2.33817 + 2.33817i
\(313\) −2531.50 2531.50i −0.457153 0.457153i 0.440566 0.897720i \(-0.354778\pi\)
−0.897720 + 0.440566i \(0.854778\pi\)
\(314\) 3684.45 0.662184
\(315\) −4294.93 1410.93i −0.768229 0.252371i
\(316\) 11128.4 1.98108
\(317\) −2394.74 2394.74i −0.424297 0.424297i 0.462383 0.886680i \(-0.346994\pi\)
−0.886680 + 0.462383i \(0.846994\pi\)
\(318\) −7431.60 7431.60i −1.31051 1.31051i
\(319\) 5500.10i 0.965350i
\(320\) −1617.87 452.536i −0.282630 0.0790548i
\(321\) 6890.81i 1.19815i
\(322\) 423.610 + 18.9321i 0.0733132 + 0.00327654i
\(323\) −766.612 + 766.612i −0.132060 + 0.132060i
\(324\) 14727.1i 2.52522i
\(325\) −1615.73 6604.86i −0.275768 1.12730i
\(326\) 503.630 0.0855629
\(327\) 4298.44 4298.44i 0.726924 0.726924i
\(328\) 11078.7 + 11078.7i 1.86500 + 1.86500i
\(329\) 1769.61 1618.20i 0.296540 0.271167i
\(330\) −11656.5 3260.44i −1.94444 0.543883i
\(331\) 1609.07 0.267198 0.133599 0.991036i \(-0.457347\pi\)
0.133599 + 0.991036i \(0.457347\pi\)
\(332\) −17375.8 + 17375.8i −2.87235 + 2.87235i
\(333\) 2956.73 2956.73i 0.486570 0.486570i
\(334\) 8624.80 1.41296
\(335\) −4482.77 + 2523.14i −0.731104 + 0.411504i
\(336\) −8917.10 9751.44i −1.44782 1.58329i
\(337\) −7839.49 7839.49i −1.26719 1.26719i −0.947531 0.319663i \(-0.896430\pi\)
−0.319663 0.947531i \(-0.603570\pi\)
\(338\) 2720.69 2720.69i 0.437828 0.437828i
\(339\) −7785.82 −1.24740
\(340\) −8332.74 + 4690.10i −1.32914 + 0.748107i
\(341\) 1154.28i 0.183307i
\(342\) −1728.68 + 1728.68i −0.273322 + 0.273322i
\(343\) 6295.51 + 848.606i 0.991037 + 0.133587i
\(344\) 13110.6i 2.05487i
\(345\) 95.4317 341.179i 0.0148924 0.0532420i
\(346\) 5717.63i 0.888387i
\(347\) −8391.62 8391.62i −1.29823 1.29823i −0.929561 0.368668i \(-0.879814\pi\)
−0.368668 0.929561i \(-0.620186\pi\)
\(348\) 15496.1 + 15496.1i 2.38700 + 2.38700i
\(349\) 504.762 0.0774192 0.0387096 0.999251i \(-0.487675\pi\)
0.0387096 + 0.999251i \(0.487675\pi\)
\(350\) 2267.86 + 11467.0i 0.346349 + 1.75124i
\(351\) 1964.22 0.298696
\(352\) −2864.04 2864.04i −0.433675 0.433675i
\(353\) 2910.85 + 2910.85i 0.438892 + 0.438892i 0.891639 0.452747i \(-0.149556\pi\)
−0.452747 + 0.891639i \(0.649556\pi\)
\(354\) 8120.80i 1.21925i
\(355\) 1427.85 5104.74i 0.213472 0.763188i
\(356\) 21094.3i 3.14043i
\(357\) 6320.66 + 282.485i 0.937044 + 0.0418787i
\(358\) 5124.64 5124.64i 0.756552 0.756552i
\(359\) 122.174i 0.0179612i −0.999960 0.00898060i \(-0.997141\pi\)
0.999960 0.00898060i \(-0.00285865\pi\)
\(360\) −10197.5 + 5739.71i −1.49294 + 0.840304i
\(361\) −6367.19 −0.928297
\(362\) −12627.8 + 12627.8i −1.83343 + 1.83343i
\(363\) −1925.06 1925.06i −0.278345 0.278345i
\(364\) −13006.5 + 11893.7i −1.87288 + 1.71263i
\(365\) 8848.48 4980.39i 1.26891 0.714207i
\(366\) −1310.68 −0.187187
\(367\) −7525.98 + 7525.98i −1.07044 + 1.07044i −0.0731207 + 0.997323i \(0.523296\pi\)
−0.997323 + 0.0731207i \(0.976704\pi\)
\(368\) 327.371 327.371i 0.0463734 0.0463734i
\(369\) −7135.45 −1.00666
\(370\) −10412.1 2912.38i −1.46297 0.409210i
\(371\) 4071.04 3722.72i 0.569698 0.520955i
\(372\) 3252.07 + 3252.07i 0.453258 + 0.453258i
\(373\) 3824.72 3824.72i 0.530929 0.530929i −0.389920 0.920849i \(-0.627497\pi\)
0.920849 + 0.389920i \(0.127497\pi\)
\(374\) 7573.66 1.04713
\(375\) 9760.83 + 320.515i 1.34413 + 0.0441368i
\(376\) 6207.00i 0.851334i
\(377\) 6895.09 6895.09i 0.941950 0.941950i
\(378\) −3373.27 150.759i −0.459001 0.0205138i
\(379\) 6001.43i 0.813385i 0.913565 + 0.406692i \(0.133318\pi\)
−0.913565 + 0.406692i \(0.866682\pi\)
\(380\) 4177.30 + 1168.44i 0.563923 + 0.157736i
\(381\) 6832.64i 0.918757i
\(382\) −5008.87 5008.87i −0.670880 0.670880i
\(383\) −5683.84 5683.84i −0.758305 0.758305i 0.217709 0.976014i \(-0.430142\pi\)
−0.976014 + 0.217709i \(0.930142\pi\)
\(384\) 12681.7 1.68531
\(385\) 1982.84 6035.85i 0.262480 0.799001i
\(386\) −23494.7 −3.09806
\(387\) 4222.05 + 4222.05i 0.554571 + 0.554571i
\(388\) −16048.4 16048.4i −2.09983 2.09983i
\(389\) 5540.42i 0.722134i 0.932540 + 0.361067i \(0.117587\pi\)
−0.932540 + 0.361067i \(0.882413\pi\)
\(390\) 10525.5 + 18700.3i 1.36661 + 2.42801i
\(391\) 221.678i 0.0286719i
\(392\) 12618.0 10543.5i 1.62577 1.35849i
\(393\) −9127.64 + 9127.64i −1.17157 + 1.17157i
\(394\) 8620.98i 1.10233i
\(395\) 6849.04 + 1915.75i 0.872437 + 0.244031i
\(396\) 11719.2 1.48716
\(397\) 3568.08 3568.08i 0.451076 0.451076i −0.444636 0.895711i \(-0.646667\pi\)
0.895711 + 0.444636i \(0.146667\pi\)
\(398\) 4813.14 + 4813.14i 0.606184 + 0.606184i
\(399\) −1936.85 2118.07i −0.243017 0.265755i
\(400\) 10910.4 + 6621.58i 1.36380 + 0.827697i
\(401\) −304.302 −0.0378956 −0.0189478 0.999820i \(-0.506032\pi\)
−0.0189478 + 0.999820i \(0.506032\pi\)
\(402\) 11479.3 11479.3i 1.42422 1.42422i
\(403\) 1447.03 1447.03i 0.178863 0.178863i
\(404\) 5170.26 0.636708
\(405\) −2535.27 + 9063.89i −0.311058 + 1.11207i
\(406\) −12370.6 + 11312.1i −1.51217 + 1.38279i
\(407\) 4155.21 + 4155.21i 0.506060 + 0.506060i
\(408\) 11580.5 11580.5i 1.40519 1.40519i
\(409\) −11817.3 −1.42867 −0.714334 0.699805i \(-0.753270\pi\)
−0.714334 + 0.699805i \(0.753270\pi\)
\(410\) 9049.51 + 16077.9i 1.09006 + 1.93667i
\(411\) 15140.9i 1.81714i
\(412\) 1045.19 1045.19i 0.124983 0.124983i
\(413\) 4258.28 + 190.312i 0.507352 + 0.0226747i
\(414\) 499.874i 0.0593417i
\(415\) −13685.3 + 7702.81i −1.61876 + 0.911123i
\(416\) 7180.88i 0.846326i
\(417\) −791.543 791.543i −0.0929545 0.0929545i
\(418\) −2429.38 2429.38i −0.284270 0.284270i
\(419\) 6280.26 0.732246 0.366123 0.930567i \(-0.380685\pi\)
0.366123 + 0.930567i \(0.380685\pi\)
\(420\) −11419.0 22592.0i −1.32664 2.62470i
\(421\) 5592.95 0.647467 0.323734 0.946148i \(-0.395062\pi\)
0.323734 + 0.946148i \(0.395062\pi\)
\(422\) 4435.13 + 4435.13i 0.511608 + 0.511608i
\(423\) 1998.86 + 1998.86i 0.229759 + 0.229759i
\(424\) 14279.4i 1.63554i
\(425\) −5935.84 + 1452.07i −0.677484 + 0.165731i
\(426\) 16728.4i 1.90257i
\(427\) 30.7161 687.280i 0.00348117 0.0778918i
\(428\) −12198.3 + 12198.3i −1.37764 + 1.37764i
\(429\) 11663.3i 1.31261i
\(430\) 4158.73 14867.9i 0.466399 1.66743i
\(431\) 3211.63 0.358930 0.179465 0.983764i \(-0.442563\pi\)
0.179465 + 0.983764i \(0.442563\pi\)
\(432\) −2606.91 + 2606.91i −0.290336 + 0.290336i
\(433\) 8998.00 + 8998.00i 0.998652 + 0.998652i 0.999999 0.00134740i \(-0.000428890\pi\)
−0.00134740 + 0.999999i \(0.500429\pi\)
\(434\) −2596.15 + 2374.02i −0.287141 + 0.262573i
\(435\) 6869.50 + 12204.8i 0.757166 + 1.34523i
\(436\) 15218.4 1.67163
\(437\) 71.1070 71.1070i 0.00778377 0.00778377i
\(438\) −22658.8 + 22658.8i −2.47187 + 2.47187i
\(439\) 15391.3 1.67332 0.836658 0.547725i \(-0.184506\pi\)
0.836658 + 0.547725i \(0.184506\pi\)
\(440\) −8066.26 14331.0i −0.873963 1.55274i
\(441\) −668.035 + 7458.78i −0.0721342 + 0.805397i
\(442\) −9494.57 9494.57i −1.02174 1.02174i
\(443\) −5980.38 + 5980.38i −0.641391 + 0.641391i −0.950897 0.309506i \(-0.899836\pi\)
0.309506 + 0.950897i \(0.399836\pi\)
\(444\) 23413.9 2.50265
\(445\) 3631.38 12982.6i 0.386841 1.38300i
\(446\) 5734.38i 0.608813i
\(447\) −1969.86 + 1969.86i −0.208436 + 0.208436i
\(448\) −124.249 + 2780.09i −0.0131031 + 0.293185i
\(449\) 9630.65i 1.01225i −0.862461 0.506123i \(-0.831078\pi\)
0.862461 0.506123i \(-0.168922\pi\)
\(450\) −13385.1 + 3274.36i −1.40217 + 0.343011i
\(451\) 10027.7i 1.04698i
\(452\) −13782.7 13782.7i −1.43425 1.43425i
\(453\) −17158.6 17158.6i −1.77965 1.77965i
\(454\) −22785.1 −2.35542
\(455\) −10052.5 + 5080.97i −1.03575 + 0.523516i
\(456\) −7429.26 −0.762954
\(457\) 10749.0 + 10749.0i 1.10025 + 1.10025i 0.994380 + 0.105873i \(0.0337637\pi\)
0.105873 + 0.994380i \(0.466236\pi\)
\(458\) 15397.5 + 15397.5i 1.57091 + 1.57091i
\(459\) 1765.26i 0.179510i
\(460\) 772.902 435.030i 0.0783407 0.0440943i
\(461\) 7419.80i 0.749620i 0.927102 + 0.374810i \(0.122292\pi\)
−0.927102 + 0.374810i \(0.877708\pi\)
\(462\) −895.191 + 20030.1i −0.0901473 + 2.01706i
\(463\) 7829.44 7829.44i 0.785886 0.785886i −0.194931 0.980817i \(-0.562448\pi\)
0.980817 + 0.194931i \(0.0624483\pi\)
\(464\) 18302.3i 1.83117i
\(465\) 1441.66 + 2561.35i 0.143775 + 0.255441i
\(466\) 32215.7 3.20250
\(467\) −2236.87 + 2236.87i −0.221649 + 0.221649i −0.809193 0.587543i \(-0.800095\pi\)
0.587543 + 0.809193i \(0.300095\pi\)
\(468\) −14691.6 14691.6i −1.45111 1.45111i
\(469\) 5750.35 + 6288.39i 0.566154 + 0.619127i
\(470\) 1968.88 7038.98i 0.193229 0.690817i
\(471\) −5099.24 −0.498855
\(472\) 7801.85 7801.85i 0.760825 0.760825i
\(473\) −5933.42 + 5933.42i −0.576784 + 0.576784i
\(474\) −22444.5 −2.17492
\(475\) 2369.80 + 1438.25i 0.228913 + 0.138929i
\(476\) 10689.0 + 11689.1i 1.02926 + 1.12556i
\(477\) 4598.46 + 4598.46i 0.441402 + 0.441402i
\(478\) 4352.52 4352.52i 0.416485 0.416485i
\(479\) 16127.0 1.53833 0.769167 0.639047i \(-0.220671\pi\)
0.769167 + 0.639047i \(0.220671\pi\)
\(480\) −9932.45 2778.22i −0.944484 0.264183i
\(481\) 10418.2i 0.987586i
\(482\) 8092.22 8092.22i 0.764711 0.764711i
\(483\) −586.272 26.2018i −0.0552304 0.00246838i
\(484\) 6815.59i 0.640081i
\(485\) −7114.37 12639.8i −0.666076 1.18339i
\(486\) 24780.0i 2.31284i
\(487\) 7934.50 + 7934.50i 0.738288 + 0.738288i 0.972247 0.233958i \(-0.0751679\pi\)
−0.233958 + 0.972247i \(0.575168\pi\)
\(488\) −1259.21 1259.21i −0.116807 0.116807i
\(489\) −697.019 −0.0644587
\(490\) 17653.7 7954.32i 1.62758 0.733346i
\(491\) −4160.37 −0.382393 −0.191196 0.981552i \(-0.561237\pi\)
−0.191196 + 0.981552i \(0.561237\pi\)
\(492\) −28252.3 28252.3i −2.58885 2.58885i
\(493\) −6196.67 6196.67i −0.566093 0.566093i
\(494\) 6091.09i 0.554759i
\(495\) 7212.68 + 2017.47i 0.654921 + 0.183189i
\(496\) 3841.01i 0.347715i
\(497\) −8771.83 392.033i −0.791691 0.0353825i
\(498\) 35044.8 35044.8i 3.15340 3.15340i
\(499\) 5858.81i 0.525603i −0.964850 0.262802i \(-0.915353\pi\)
0.964850 0.262802i \(-0.0846465\pi\)
\(500\) 16711.5 + 17846.3i 1.49472 + 1.59622i
\(501\) −11936.6 −1.06445
\(502\) −10403.5 + 10403.5i −0.924961 + 0.924961i
\(503\) −13951.3 13951.3i −1.23669 1.23669i −0.961345 0.275347i \(-0.911207\pi\)
−0.275347 0.961345i \(-0.588793\pi\)
\(504\) 13081.1 + 14305.0i 1.15610 + 1.26428i
\(505\) 3182.07 + 890.062i 0.280397 + 0.0784302i
\(506\) −702.494 −0.0617187
\(507\) −3765.40 + 3765.40i −0.329837 + 0.329837i
\(508\) −12095.3 + 12095.3i −1.05639 + 1.05639i
\(509\) −18246.3 −1.58891 −0.794454 0.607324i \(-0.792243\pi\)
−0.794454 + 0.607324i \(0.792243\pi\)
\(510\) 16806.1 9459.33i 1.45919 0.821306i
\(511\) −11350.5 12412.6i −0.982618 1.07456i
\(512\) 18157.7 + 18157.7i 1.56731 + 1.56731i
\(513\) −566.236 + 566.236i −0.0487328 + 0.0487328i
\(514\) −18089.1 −1.55229
\(515\) 823.200 463.340i 0.0704360 0.0396451i
\(516\) 33433.8i 2.85240i
\(517\) −2809.08 + 2809.08i −0.238962 + 0.238962i
\(518\) −799.627 + 17891.8i −0.0678255 + 1.51761i
\(519\) 7913.14i 0.669265i
\(520\) −7853.71 + 28077.9i −0.662323 + 2.36788i
\(521\) 14936.8i 1.25603i 0.778200 + 0.628016i \(0.216133\pi\)
−0.778200 + 0.628016i \(0.783867\pi\)
\(522\) −13973.2 13973.2i −1.17163 1.17163i
\(523\) 15191.9 + 15191.9i 1.27017 + 1.27017i 0.946001 + 0.324165i \(0.105083\pi\)
0.324165 + 0.946001i \(0.394917\pi\)
\(524\) −32316.0 −2.69415
\(525\) −3138.69 15870.1i −0.260921 1.31930i
\(526\) −31042.7 −2.57324
\(527\) −1300.46 1300.46i −0.107493 0.107493i
\(528\) 15479.5 + 15479.5i 1.27587 + 1.27587i
\(529\) 12146.4i 0.998310i
\(530\) 4529.49 16193.4i 0.371223 1.32717i
\(531\) 5024.92i 0.410664i
\(532\) 320.808 7178.14i 0.0261443 0.584984i
\(533\) −12571.1 + 12571.1i −1.02160 + 1.02160i
\(534\) 42544.4i 3.44771i
\(535\) −9607.47 + 5407.59i −0.776388 + 0.436992i
\(536\) 22056.9 1.77745
\(537\) −7092.44 + 7092.44i −0.569947 + 0.569947i
\(538\) −2567.89 2567.89i −0.205780 0.205780i
\(539\) −10482.1 938.817i −0.837657 0.0750236i
\(540\) −6154.74 + 3464.21i −0.490478 + 0.276066i
\(541\) 8027.88 0.637977 0.318988 0.947759i \(-0.396657\pi\)
0.318988 + 0.947759i \(0.396657\pi\)
\(542\) 18067.2 18067.2i 1.43183 1.43183i
\(543\) 17476.7 17476.7i 1.38121 1.38121i
\(544\) 6453.51 0.508625
\(545\) 9366.29 + 2619.86i 0.736161 + 0.205913i
\(546\) 26232.5 23988.0i 2.05613 1.88021i
\(547\) 5287.54 + 5287.54i 0.413307 + 0.413307i 0.882889 0.469582i \(-0.155595\pi\)
−0.469582 + 0.882889i \(0.655595\pi\)
\(548\) 26802.9 26802.9i 2.08935 2.08935i
\(549\) 811.014 0.0630478
\(550\) −4601.59 18810.6i −0.356750 1.45834i
\(551\) 3975.37i 0.307362i
\(552\) −1074.14 + 1074.14i −0.0828236 + 0.0828236i
\(553\) 525.992 11769.2i 0.0404475 0.905020i
\(554\) 2611.47i 0.200272i
\(555\) 14410.2 + 4030.71i 1.10213 + 0.308278i
\(556\) 2802.43i 0.213758i
\(557\) −4891.64 4891.64i −0.372111 0.372111i 0.496135 0.868245i \(-0.334752\pi\)
−0.868245 + 0.496135i \(0.834752\pi\)
\(558\) −2932.48 2932.48i −0.222477 0.222477i
\(559\) 14876.6 1.12561
\(560\) 6598.17 20085.1i 0.497899 1.51563i
\(561\) −10481.9 −0.788850
\(562\) −3264.55 3264.55i −0.245030 0.245030i
\(563\) 1138.04 + 1138.04i 0.0851916 + 0.0851916i 0.748418 0.663227i \(-0.230814\pi\)
−0.663227 + 0.748418i \(0.730814\pi\)
\(564\) 15828.7i 1.18175i
\(565\) −6109.95 10855.3i −0.454952 0.808297i
\(566\) 47191.2i 3.50459i
\(567\) 15575.1 + 696.087i 1.15360 + 0.0515572i
\(568\) −16071.4 + 16071.4i −1.18722 + 1.18722i
\(569\) 7200.63i 0.530521i 0.964177 + 0.265260i \(0.0854579\pi\)
−0.964177 + 0.265260i \(0.914542\pi\)
\(570\) −8425.07 2356.59i −0.619101 0.173170i
\(571\) 2089.22 0.153119 0.0765597 0.997065i \(-0.475606\pi\)
0.0765597 + 0.997065i \(0.475606\pi\)
\(572\) 20646.7 20646.7i 1.50923 1.50923i
\(573\) 6932.22 + 6932.22i 0.505406 + 0.505406i
\(574\) 22554.0 20624.2i 1.64004 1.49972i
\(575\) 550.578 134.687i 0.0399316 0.00976838i
\(576\) −3280.61 −0.237312
\(577\) −7943.75 + 7943.75i −0.573141 + 0.573141i −0.933005 0.359864i \(-0.882823\pi\)
0.359864 + 0.933005i \(0.382823\pi\)
\(578\) 9008.17 9008.17i 0.648253 0.648253i
\(579\) 32516.5 2.33392
\(580\) −9444.70 + 33765.9i −0.676155 + 2.41733i
\(581\) 17555.0 + 19197.6i 1.25354 + 1.37083i
\(582\) 32367.6 + 32367.6i 2.30529 + 2.30529i
\(583\) −6462.40 + 6462.40i −0.459083 + 0.459083i
\(584\) −43537.8 −3.08494
\(585\) −6512.87 11571.2i −0.460297 0.817794i
\(586\) 11693.1i 0.824295i
\(587\) −18688.9 + 18688.9i −1.31410 + 1.31410i −0.395727 + 0.918368i \(0.629507\pi\)
−0.918368 + 0.395727i \(0.870493\pi\)
\(588\) −32177.5 + 26887.5i −2.25677 + 1.88575i
\(589\) 834.290i 0.0583639i
\(590\) 11322.4 6372.83i 0.790059 0.444687i
\(591\) 11931.4i 0.830440i
\(592\) 13827.0 + 13827.0i 0.959945 + 0.959945i
\(593\) 5453.19 + 5453.19i 0.377632 + 0.377632i 0.870247 0.492615i \(-0.163959\pi\)
−0.492615 + 0.870247i \(0.663959\pi\)
\(594\) 5594.07 0.386410
\(595\) 4566.31 + 9034.22i 0.314622 + 0.622466i
\(596\) −6974.20 −0.479320
\(597\) −6661.34 6661.34i −0.456668 0.456668i
\(598\) 880.667 + 880.667i 0.0602227 + 0.0602227i
\(599\) 13401.4i 0.914136i 0.889432 + 0.457068i \(0.151100\pi\)
−0.889432 + 0.457068i \(0.848900\pi\)
\(600\) −35798.3 21726.2i −2.43576 1.47828i
\(601\) 15689.8i 1.06489i −0.846464 0.532446i \(-0.821273\pi\)
0.846464 0.532446i \(-0.178727\pi\)
\(602\) −25548.6 1141.82i −1.72970 0.0773045i
\(603\) −7103.06 + 7103.06i −0.479700 + 0.479700i
\(604\) 60749.2i 4.09247i
\(605\) 1173.30 4194.70i 0.0788457 0.281882i
\(606\) −10427.8 −0.699008
\(607\) 9429.70 9429.70i 0.630543 0.630543i −0.317661 0.948204i \(-0.602897\pi\)
0.948204 + 0.317661i \(0.102897\pi\)
\(608\) −2070.08 2070.08i −0.138080 0.138080i
\(609\) 17120.8 15655.9i 1.13919 1.04172i
\(610\) −1028.56 1827.42i −0.0682711 0.121295i
\(611\) 7043.10 0.466339
\(612\) −13203.4 + 13203.4i −0.872086 + 0.872086i
\(613\) −13138.6 + 13138.6i −0.865681 + 0.865681i −0.991991 0.126310i \(-0.959687\pi\)
0.126310 + 0.991991i \(0.459687\pi\)
\(614\) 16488.4 1.08374
\(615\) −12524.4 22251.7i −0.821193 1.45898i
\(616\) −20103.4 + 18383.4i −1.31492 + 1.20241i
\(617\) −10622.2 10622.2i −0.693088 0.693088i 0.269822 0.962910i \(-0.413035\pi\)
−0.962910 + 0.269822i \(0.913035\pi\)
\(618\) −2108.02 + 2108.02i −0.137212 + 0.137212i
\(619\) −1244.71 −0.0808224 −0.0404112 0.999183i \(-0.512867\pi\)
−0.0404112 + 0.999183i \(0.512867\pi\)
\(620\) −1982.11 + 7086.26i −0.128393 + 0.459018i
\(621\) 163.736i 0.0105805i
\(622\) −14425.0 + 14425.0i −0.929888 + 0.929888i
\(623\) −22308.9 997.036i −1.43465 0.0641178i
\(624\) 38811.1i 2.48989i
\(625\) 7212.97 + 13860.5i 0.461630 + 0.887072i
\(626\) 18076.6i 1.15413i
\(627\) 3362.24 + 3362.24i 0.214155 + 0.214155i
\(628\) −9026.83 9026.83i −0.573582 0.573582i
\(629\) −9362.91 −0.593519
\(630\) 10296.8 + 20371.8i 0.651168 + 1.28830i
\(631\) −7532.27 −0.475206 −0.237603 0.971362i \(-0.576362\pi\)
−0.237603 + 0.971362i \(0.576362\pi\)
\(632\) −21563.0 21563.0i −1.35717 1.35717i
\(633\) −6138.17 6138.17i −0.385419 0.385419i
\(634\) 17100.0i 1.07118i
\(635\) −9526.37 + 5361.94i −0.595342 + 0.335090i
\(636\) 36414.5i 2.27033i
\(637\) 11963.8 + 14317.6i 0.744148 + 0.890558i
\(638\) 19637.1 19637.1i 1.21856 1.21856i
\(639\) 10351.1i 0.640816i
\(640\) 9952.00 + 17681.4i 0.614668 + 1.09206i
\(641\) −6109.53 −0.376462 −0.188231 0.982125i \(-0.560275\pi\)
−0.188231 + 0.982125i \(0.560275\pi\)
\(642\) 24602.4 24602.4i 1.51243 1.51243i
\(643\) 1890.33 + 1890.33i 0.115937 + 0.115937i 0.762695 0.646758i \(-0.223876\pi\)
−0.646758 + 0.762695i \(0.723876\pi\)
\(644\) −991.452 1084.22i −0.0606657 0.0663419i
\(645\) −5755.64 + 20577.0i −0.351361 + 1.25616i
\(646\) 5474.11 0.333399
\(647\) 18918.1 18918.1i 1.14953 1.14953i 0.162889 0.986644i \(-0.447919\pi\)
0.986644 0.162889i \(-0.0520811\pi\)
\(648\) 28536.1 28536.1i 1.72994 1.72994i
\(649\) −7061.72 −0.427114
\(650\) −17812.8 + 29350.2i −1.07489 + 1.77109i
\(651\) 3593.04 3285.62i 0.216317 0.197809i
\(652\) −1233.88 1233.88i −0.0741144 0.0741144i
\(653\) −3650.44 + 3650.44i −0.218764 + 0.218764i −0.807977 0.589214i \(-0.799438\pi\)
0.589214 + 0.807977i \(0.299438\pi\)
\(654\) −30693.6 −1.83519
\(655\) −19889.1 5563.21i −1.18646 0.331867i
\(656\) 33368.7i 1.98602i
\(657\) 14020.6 14020.6i 0.832567 0.832567i
\(658\) −12095.6 540.579i −0.716617 0.0320273i
\(659\) 30832.1i 1.82253i −0.411817 0.911267i \(-0.635106\pi\)
0.411817 0.911267i \(-0.364894\pi\)
\(660\) 20570.0 + 36546.1i 1.21316 + 2.15539i
\(661\) 4032.29i 0.237274i −0.992938 0.118637i \(-0.962148\pi\)
0.992938 0.118637i \(-0.0378524\pi\)
\(662\) −5744.90 5744.90i −0.337284 0.337284i
\(663\) 13140.4 + 13140.4i 0.769729 + 0.769729i
\(664\) 67336.8 3.93550
\(665\) 1433.16 4362.60i 0.0835723 0.254398i
\(666\) −21113.0 −1.22839
\(667\) 574.771 + 574.771i 0.0333661 + 0.0333661i
\(668\) −21130.6 21130.6i −1.22390 1.22390i
\(669\) 7936.32i 0.458649i
\(670\) 25013.4 + 6996.53i 1.44232 + 0.403432i
\(671\) 1139.75i 0.0655732i
\(672\) −762.791 + 17067.6i −0.0437877 + 0.979758i
\(673\) 17723.3 17723.3i 1.01513 1.01513i 0.0152461 0.999884i \(-0.495147\pi\)
0.999884 0.0152461i \(-0.00485316\pi\)
\(674\) 55979.1i 3.19916i
\(675\) −4384.34 + 1072.53i −0.250005 + 0.0611581i
\(676\) −13331.2 −0.758491
\(677\) −9377.64 + 9377.64i −0.532366 + 0.532366i −0.921276 0.388910i \(-0.872852\pi\)
0.388910 + 0.921276i \(0.372852\pi\)
\(678\) 27797.9 + 27797.9i 1.57459 + 1.57459i
\(679\) −17731.0 + 16214.0i −1.00214 + 0.916399i
\(680\) 25233.8 + 7058.19i 1.42305 + 0.398043i
\(681\) 31534.4 1.77445
\(682\) 4121.14 4121.14i 0.231388 0.231388i
\(683\) 11971.7 11971.7i 0.670693 0.670693i −0.287183 0.957876i \(-0.592719\pi\)
0.957876 + 0.287183i \(0.0927187\pi\)
\(684\) 8470.45 0.473502
\(685\) 21110.1 11881.9i 1.17748 0.662749i
\(686\) −19447.2 25506.8i −1.08236 1.41961i
\(687\) −21310.0 21310.0i −1.18344 1.18344i
\(688\) −19744.3 + 19744.3i −1.09410 + 1.09410i
\(689\) 16202.9 0.895910
\(690\) −1558.84 + 877.399i −0.0860060 + 0.0484087i
\(691\) 4704.44i 0.258995i 0.991580 + 0.129497i \(0.0413364\pi\)
−0.991580 + 0.129497i \(0.958664\pi\)
\(692\) 14008.1 14008.1i 0.769519 0.769519i
\(693\) 553.918 12394.0i 0.0303631 0.679380i
\(694\) 59921.6i 3.27751i
\(695\) 482.438 1724.77i 0.0263308 0.0941357i
\(696\) 60052.1i 3.27050i
\(697\) 11297.7 + 11297.7i 0.613962 + 0.613962i
\(698\) −1802.16 1802.16i −0.0977263 0.0977263i
\(699\) −44586.2 −2.41260
\(700\) 22537.6 33650.0i 1.21692 1.81693i
\(701\) 29583.6 1.59395 0.796974 0.604014i \(-0.206433\pi\)
0.796974 + 0.604014i \(0.206433\pi\)
\(702\) −7012.89 7012.89i −0.377044 0.377044i
\(703\) 3003.31 + 3003.31i 0.161127 + 0.161127i
\(704\) 4610.37i 0.246818i
\(705\) −2724.91 + 9741.87i −0.145569 + 0.520426i
\(706\) 20785.4i 1.10803i
\(707\) 244.376 5467.97i 0.0129996 0.290869i
\(708\) −19895.8 + 19895.8i −1.05612 + 1.05612i
\(709\) 29637.0i 1.56988i −0.619574 0.784938i \(-0.712695\pi\)
0.619574 0.784938i \(-0.287305\pi\)
\(710\) −23323.5 + 13127.7i −1.23284 + 0.693906i
\(711\) 13888.0 0.732548
\(712\) −40873.5 + 40873.5i −2.15140 + 2.15140i
\(713\) 120.624 + 120.624i 0.00633577 + 0.00633577i
\(714\) −21558.2 23575.4i −1.12997 1.23569i
\(715\) 16261.5 9152.80i 0.850551 0.478735i
\(716\) −25110.5 −1.31065
\(717\) −6023.85 + 6023.85i −0.313758 + 0.313758i
\(718\) −436.199 + 436.199i −0.0226724 + 0.0226724i
\(719\) −19761.2 −1.02499 −0.512496 0.858690i \(-0.671279\pi\)
−0.512496 + 0.858690i \(0.671279\pi\)
\(720\) 24001.2 + 6713.40i 1.24232 + 0.347491i
\(721\) −1055.97 1154.78i −0.0545444 0.0596479i
\(722\) 22732.9 + 22732.9i 1.17179 + 1.17179i
\(723\) −11199.5 + 11199.5i −0.576094 + 0.576094i
\(724\) 61875.5 3.17622
\(725\) −11625.6 + 19155.5i −0.595537 + 0.981267i
\(726\) 13746.2i 0.702711i
\(727\) 2991.47 2991.47i 0.152610 0.152610i −0.626673 0.779283i \(-0.715584\pi\)
0.779283 + 0.626673i \(0.215584\pi\)
\(728\) 48248.2 + 2156.32i 2.45631 + 0.109778i
\(729\) 11566.2i 0.587624i
\(730\) −49373.6 13810.3i −2.50328 0.700197i
\(731\) 13369.7i 0.676467i
\(732\) 3211.15 + 3211.15i 0.162141 + 0.162141i
\(733\) 14061.2 + 14061.2i 0.708542 + 0.708542i 0.966229 0.257687i \(-0.0829602\pi\)
−0.257687 + 0.966229i \(0.582960\pi\)
\(734\) 53740.4 2.70244
\(735\) −24432.5 + 11008.7i −1.22613 + 0.552465i
\(736\) −598.595 −0.0299789
\(737\) −9982.22 9982.22i −0.498914 0.498914i
\(738\) 25475.9 + 25475.9i 1.27071 + 1.27071i
\(739\) 3186.25i 0.158604i 0.996851 + 0.0793018i \(0.0252691\pi\)
−0.996851 + 0.0793018i \(0.974731\pi\)
\(740\) 18374.2 + 32644.7i 0.912767 + 1.62168i
\(741\) 8430.00i 0.417927i
\(742\) −27826.3 1243.62i −1.37673 0.0615294i
\(743\) −8149.04 + 8149.04i −0.402368 + 0.402368i −0.879067 0.476699i \(-0.841833\pi\)
0.476699 + 0.879067i \(0.341833\pi\)
\(744\) 12602.8i 0.621024i
\(745\) −4292.32 1200.61i −0.211085 0.0590429i
\(746\) −27311.0 −1.34038
\(747\) −21684.7 + 21684.7i −1.06212 + 1.06212i
\(748\) −18555.3 18555.3i −0.907018 0.907018i
\(749\) 12324.1 + 13477.3i 0.601221 + 0.657475i
\(750\) −33705.0 35993.7i −1.64098 1.75240i
\(751\) −33944.9 −1.64936 −0.824679 0.565601i \(-0.808644\pi\)
−0.824679 + 0.565601i \(0.808644\pi\)
\(752\) −9347.61 + 9347.61i −0.453287 + 0.453287i
\(753\) 14398.3 14398.3i 0.696818 0.696818i
\(754\) −49235.4 −2.37805
\(755\) 10458.0 37388.5i 0.504113 1.80226i
\(756\) 7895.09 + 8633.81i 0.379817 + 0.415355i
\(757\) −1632.37 1632.37i −0.0783743 0.0783743i 0.666833 0.745207i \(-0.267649\pi\)
−0.745207 + 0.666833i \(0.767649\pi\)
\(758\) 21427.1 21427.1i 1.02674 1.02674i
\(759\) 972.244 0.0464957
\(760\) −5830.14 10358.2i −0.278265 0.494384i
\(761\) 8358.98i 0.398177i 0.979981 + 0.199089i \(0.0637982\pi\)
−0.979981 + 0.199089i \(0.936202\pi\)
\(762\) 24394.7 24394.7i 1.15975 1.15975i
\(763\) 719.311 16094.7i 0.0341295 0.763654i
\(764\) 24543.3i 1.16223i
\(765\) −10399.1 + 5853.16i −0.491478 + 0.276629i
\(766\) 40586.3i 1.91442i
\(767\) 8852.78 + 8852.78i 0.416761 + 0.416761i
\(768\) −39337.9 39337.9i −1.84829 1.84829i
\(769\) −26741.8 −1.25401 −0.627006 0.779014i \(-0.715720\pi\)
−0.627006 + 0.779014i \(0.715720\pi\)
\(770\) −28629.3 + 14470.6i −1.33991 + 0.677251i
\(771\) 25035.2 1.16942
\(772\) 57561.6 + 57561.6i 2.68353 + 2.68353i
\(773\) −842.330 842.330i −0.0391934 0.0391934i 0.687238 0.726432i \(-0.258823\pi\)
−0.726432 + 0.687238i \(0.758823\pi\)
\(774\) 30148.2i 1.40007i
\(775\) −2439.80 + 4020.07i −0.113084 + 0.186329i
\(776\) 62192.7i 2.87705i
\(777\) 1106.68 24762.1i 0.0510962 1.14329i
\(778\) 19781.1 19781.1i 0.911551 0.911551i
\(779\) 7247.88i 0.333353i
\(780\) 20028.0 71602.4i 0.919382 3.28690i
\(781\) 14546.8 0.666485
\(782\) 791.462 791.462i 0.0361926 0.0361926i
\(783\) −4576.99 4576.99i −0.208900 0.208900i
\(784\) −34880.7 3124.04i −1.58895 0.142312i
\(785\) −4001.65 7109.59i −0.181943 0.323251i
\(786\) 65177.3 2.95776
\(787\) 5939.92 5939.92i 0.269041 0.269041i −0.559673 0.828714i \(-0.689073\pi\)
0.828714 + 0.559673i \(0.189073\pi\)
\(788\) −21121.2 + 21121.2i −0.954838 + 0.954838i
\(789\) 42962.7 1.93855
\(790\) −17613.4 31293.2i −0.793238 1.40932i
\(791\) −15227.8 + 13924.9i −0.684496 + 0.625930i
\(792\) −22707.9 22707.9i −1.01880 1.01880i
\(793\) 1428.83 1428.83i 0.0639837 0.0639837i
\(794\) −25478.4 −1.13879
\(795\) −6268.77 + 22411.5i −0.279661 + 0.999819i
\(796\) 23584.2i 1.05015i
\(797\) 11178.2 11178.2i 0.496803 0.496803i −0.413639 0.910441i \(-0.635742\pi\)
0.910441 + 0.413639i \(0.135742\pi\)
\(798\) −647.028 + 14477.4i −0.0287024 + 0.642222i
\(799\) 6329.69i 0.280261i
\(800\) −3921.01 16028.5i −0.173286 0.708366i
\(801\) 26325.3i 1.16125i
\(802\) 1086.46 + 1086.46i 0.0478356 + 0.0478356i
\(803\) 19703.8 + 19703.8i 0.865917 + 0.865917i
\(804\) −56248.1 −2.46731
\(805\) −423.547 837.968i −0.0185442 0.0366888i
\(806\) −10332.8 −0.451559
\(807\) 3553.94 + 3553.94i 0.155024 + 0.155024i
\(808\) −10018.2 10018.2i −0.436187 0.436187i
\(809\) 8276.48i 0.359685i 0.983695 + 0.179843i \(0.0575589\pi\)
−0.983695 + 0.179843i \(0.942441\pi\)
\(810\) 41412.8 23309.3i 1.79642 1.01112i
\(811\) 38978.8i 1.68771i 0.536572 + 0.843854i \(0.319719\pi\)
−0.536572 + 0.843854i \(0.680281\pi\)
\(812\) 58022.2 + 2593.15i 2.50761 + 0.112071i
\(813\) −25004.8 + 25004.8i −1.07867 + 1.07867i
\(814\) 29670.9i 1.27760i
\(815\) −546.988 971.815i −0.0235094 0.0417683i
\(816\) −34879.8 −1.49637
\(817\) −4288.57 + 4288.57i −0.183645 + 0.183645i
\(818\) 42191.4 + 42191.4i 1.80341 + 1.80341i
\(819\) −16231.9 + 14843.1i −0.692539 + 0.633285i
\(820\) 17219.5 61561.7i 0.733331 2.62174i
\(821\) −23105.0 −0.982180 −0.491090 0.871109i \(-0.663401\pi\)
−0.491090 + 0.871109i \(0.663401\pi\)
\(822\) −54057.9 + 54057.9i −2.29378 + 2.29378i
\(823\) 3288.90 3288.90i 0.139300 0.139300i −0.634018 0.773318i \(-0.718596\pi\)
0.773318 + 0.634018i \(0.218596\pi\)
\(824\) −4050.45 −0.171243
\(825\) 6368.56 + 26033.7i 0.268757 + 1.09864i
\(826\) −14524.0 15882.9i −0.611808 0.669053i
\(827\) 786.261 + 786.261i 0.0330604 + 0.0330604i 0.723444 0.690383i \(-0.242558\pi\)
−0.690383 + 0.723444i \(0.742558\pi\)
\(828\) 1224.68 1224.68i 0.0514017 0.0514017i
\(829\) 24870.0 1.04194 0.520971 0.853575i \(-0.325570\pi\)
0.520971 + 0.853575i \(0.325570\pi\)
\(830\) 76362.5 + 21359.5i 3.19347 + 0.893251i
\(831\) 3614.24i 0.150874i
\(832\) −5779.70 + 5779.70i −0.240835 + 0.240835i
\(833\) 12867.4 10751.9i 0.535207 0.447218i
\(834\) 5652.13i 0.234673i
\(835\) −9367.32 16642.6i −0.388227 0.689749i
\(836\) 11903.9i 0.492469i
\(837\) −960.549 960.549i −0.0396672 0.0396672i
\(838\) −22422.6 22422.6i −0.924314 0.924314i
\(839\) 22765.1 0.936755 0.468378 0.883528i \(-0.344839\pi\)
0.468378 + 0.883528i \(0.344839\pi\)
\(840\) −21649.4 + 65901.6i −0.889255 + 2.70693i
\(841\) −7744.68 −0.317548
\(842\) −19968.7 19968.7i −0.817299 0.817299i
\(843\) 4518.11 + 4518.11i 0.184593 + 0.184593i
\(844\) 21731.9i 0.886309i
\(845\) −8204.80 2294.98i −0.334028 0.0934315i
\(846\) 14273.2i 0.580049i
\(847\) −7208.03 322.144i −0.292410 0.0130685i
\(848\) −21504.5 + 21504.5i −0.870835 + 0.870835i
\(849\) 65312.2i 2.64017i
\(850\) 26377.2 + 16008.5i 1.06439 + 0.645985i
\(851\) 868.455 0.0349827
\(852\) 40984.3 40984.3i 1.64800 1.64800i
\(853\) 11703.5 + 11703.5i 0.469777 + 0.469777i 0.901842 0.432065i \(-0.142215\pi\)
−0.432065 + 0.901842i \(0.642215\pi\)
\(854\) −2563.48 + 2344.15i −0.102717 + 0.0939286i
\(855\) 5213.19 + 1458.19i 0.208523 + 0.0583263i
\(856\) 47272.3 1.88754
\(857\) 25881.3 25881.3i 1.03161 1.03161i 0.0321229 0.999484i \(-0.489773\pi\)
0.999484 0.0321229i \(-0.0102268\pi\)
\(858\) −41641.7 + 41641.7i −1.65690 + 1.65690i
\(859\) 11267.9 0.447563 0.223782 0.974639i \(-0.428160\pi\)
0.223782 + 0.974639i \(0.428160\pi\)
\(860\) −46614.9 + 26237.3i −1.84832 + 1.04033i
\(861\) −31214.5 + 28543.7i −1.23552 + 1.12981i
\(862\) −11466.6 11466.6i −0.453077 0.453077i
\(863\) 21760.8 21760.8i 0.858338 0.858338i −0.132804 0.991142i \(-0.542398\pi\)
0.991142 + 0.132804i \(0.0423980\pi\)
\(864\) 4766.71 0.187693
\(865\) 11032.9 6209.87i 0.433674 0.244095i
\(866\) 64251.6i 2.52120i
\(867\) −12467.2 + 12467.2i −0.488361 + 0.488361i
\(868\) 12176.8 + 544.210i 0.476161 + 0.0212807i
\(869\) 19517.4i 0.761891i
\(870\) 19048.7 68101.4i 0.742314 2.65386i
\(871\) 25028.0i 0.973642i
\(872\) −29488.1 29488.1i −1.14518 1.14518i
\(873\) −20028.1 20028.1i −0.776460 0.776460i
\(874\) −507.750 −0.0196509
\(875\) 19663.8 16830.3i 0.759722 0.650248i
\(876\) 111027. 4.28227
\(877\) −10089.3 10089.3i −0.388473 0.388473i 0.485669 0.874143i \(-0.338576\pi\)
−0.874143 + 0.485669i \(0.838576\pi\)
\(878\) −54951.9 54951.9i −2.11223 2.11223i
\(879\) 16183.1i 0.620982i
\(880\) −9434.62 + 33729.8i −0.361410 + 1.29208i
\(881\) 12811.2i 0.489920i −0.969533 0.244960i \(-0.921225\pi\)
0.969533 0.244960i \(-0.0787748\pi\)
\(882\) 29015.4 24245.2i 1.10771 0.925598i
\(883\) −30984.3 + 30984.3i −1.18086 + 1.18086i −0.201344 + 0.979521i \(0.564531\pi\)
−0.979521 + 0.201344i \(0.935469\pi\)
\(884\) 46523.0i 1.77006i
\(885\) −15670.1 + 8819.93i −0.595190 + 0.335004i
\(886\) 42703.8 1.61926
\(887\) 15820.5 15820.5i 0.598871 0.598871i −0.341141 0.940012i \(-0.610813\pi\)
0.940012 + 0.341141i \(0.110813\pi\)
\(888\) −45368.1 45368.1i −1.71448 1.71448i
\(889\) 12220.1 + 13363.5i 0.461022 + 0.504159i
\(890\) −59317.3 + 33386.9i −2.23407 + 1.25745i
\(891\) −25829.0 −0.971160
\(892\) 14049.1 14049.1i 0.527353 0.527353i
\(893\) −2030.36 + 2030.36i −0.0760843 + 0.0760843i
\(894\) 14066.1 0.526219
\(895\) −15454.4 4322.78i −0.577189 0.161446i
\(896\) 24803.2 22681.1i 0.924797 0.845671i
\(897\) −1218.83 1218.83i −0.0453687 0.0453687i
\(898\) −34384.6 + 34384.6i −1.27776 + 1.27776i
\(899\) −6743.72 −0.250184
\(900\) 40815.2 + 24771.0i 1.51168 + 0.917445i
\(901\) 14561.7i 0.538424i
\(902\) −35802.3 + 35802.3i −1.32160 + 1.32160i
\(903\) 35358.9 + 1580.27i 1.30307 + 0.0582372i
\(904\) 53412.3i 1.96512i
\(905\) 38081.7 + 10651.9i 1.39876 + 0.391249i
\(906\) 122523.i 4.49290i
\(907\) −24731.1 24731.1i −0.905384 0.905384i 0.0905113 0.995895i \(-0.471150\pi\)
−0.995895 + 0.0905113i \(0.971150\pi\)
\(908\) 55823.1 + 55823.1i 2.04026 + 2.04026i
\(909\) 6452.39 0.235437
\(910\) 54031.3 + 17749.8i 1.96826 + 0.646595i
\(911\) 24805.3 0.902127 0.451063 0.892492i \(-0.351045\pi\)
0.451063 + 0.892492i \(0.351045\pi\)
\(912\) 11188.3 + 11188.3i 0.406230 + 0.406230i
\(913\) −30474.4 30474.4i −1.10466 1.10466i
\(914\) 76754.6i 2.77770i
\(915\) 1423.52 + 2529.12i 0.0514319 + 0.0913773i
\(916\) 75447.1i 2.72144i
\(917\) −1527.44 + 34176.8i −0.0550061 + 1.23077i
\(918\) −6302.54 + 6302.54i −0.226596 + 0.226596i
\(919\) 33228.1i 1.19270i 0.802724 + 0.596351i \(0.203383\pi\)
−0.802724 + 0.596351i \(0.796617\pi\)
\(920\) −2340.56 654.681i −0.0838760 0.0234611i
\(921\) −22819.8 −0.816435
\(922\) 26491.1 26491.1i 0.946245 0.946245i
\(923\) −18236.3 18236.3i −0.650329 0.650329i
\(924\) 51266.5 46880.1i 1.82526 1.66909i
\(925\) 5688.70 + 23254.5i 0.202209 + 0.826599i
\(926\) −55907.3 −1.98405
\(927\) 1304.38 1304.38i 0.0462152 0.0462152i
\(928\) 16732.8 16732.8i 0.591898 0.591898i
\(929\) −41777.1 −1.47542 −0.737708 0.675120i \(-0.764092\pi\)
−0.737708 + 0.675120i \(0.764092\pi\)
\(930\) 3997.66 14292.1i 0.140955 0.503931i
\(931\) −7576.29 678.560i −0.266706 0.0238871i
\(932\) −78927.8 78927.8i −2.77400 2.77400i
\(933\) 19964.1 19964.1i 0.700530 0.700530i
\(934\) 15972.7 0.559576
\(935\) −8225.69 14614.3i −0.287710 0.511164i
\(936\) 56934.5i 1.98821i
\(937\) 12969.5 12969.5i 0.452183 0.452183i −0.443896 0.896078i \(-0.646404\pi\)
0.896078 + 0.443896i \(0.146404\pi\)
\(938\) 1920.97 42982.2i 0.0668678 1.49618i
\(939\) 25017.8i 0.869462i
\(940\) −22069.1 + 12421.6i −0.765760 + 0.431010i
\(941\) 6982.50i 0.241895i −0.992659 0.120947i \(-0.961407\pi\)
0.992659 0.120947i \(-0.0385932\pi\)
\(942\) 18206.0 + 18206.0i 0.629705 + 0.629705i
\(943\) −1047.92 1047.92i −0.0361876 0.0361876i
\(944\) −23498.8 −0.810193
\(945\) 3372.77 + 6672.87i 0.116102 + 0.229702i
\(946\) 42368.5 1.45615
\(947\) 12625.2 + 12625.2i 0.433226 + 0.433226i 0.889724 0.456498i \(-0.150897\pi\)
−0.456498 + 0.889724i \(0.650897\pi\)
\(948\) 54988.6 + 54988.6i 1.88391 + 1.88391i
\(949\) 49402.5i 1.68985i
\(950\) −3325.95 13596.0i −0.113587 0.464327i
\(951\) 23666.2i 0.806972i
\(952\) 1937.90 43361.0i 0.0659746 1.47619i
\(953\) 77.2788 77.2788i 0.00262676 0.00262676i −0.705792 0.708419i \(-0.749409\pi\)
0.708419 + 0.705792i \(0.249409\pi\)
\(954\) 32836.0i 1.11436i
\(955\) −4225.13 + 15105.3i −0.143164 + 0.511829i
\(956\) −21327.2 −0.721517
\(957\) −27177.6 + 27177.6i −0.918001 + 0.918001i
\(958\) −57578.7 57578.7i −1.94184 1.94184i
\(959\) −27079.3 29613.0i −0.911822 0.997138i
\(960\) −5758.25 10230.5i −0.193590 0.343945i
\(961\) 28375.7 0.952493
\(962\) −37196.3 + 37196.3i −1.24663 + 1.24663i
\(963\) −15223.3 + 15223.3i −0.509411 + 0.509411i
\(964\) −39651.5 −1.32478
\(965\) 25517.4 + 45335.9i 0.851228 + 1.51235i
\(966\) 1999.63 + 2186.73i 0.0666015 + 0.0728332i
\(967\) 9581.76 + 9581.76i 0.318644 + 0.318644i 0.848246 0.529602i \(-0.177659\pi\)
−0.529602 + 0.848246i \(0.677659\pi\)
\(968\) −13206.3 + 13206.3i −0.438498 + 0.438498i
\(969\) −7576.11 −0.251166
\(970\) −19727.8 + 70529.0i −0.653011 + 2.33459i
\(971\) 8228.52i 0.271952i 0.990712 + 0.135976i \(0.0434171\pi\)
−0.990712 + 0.135976i \(0.956583\pi\)
\(972\) −60710.4 + 60710.4i −2.00338 + 2.00338i
\(973\) −2963.79 132.459i −0.0976514 0.00436427i
\(974\) 56657.5i 1.86388i
\(975\) 24652.8 40620.4i 0.809764 1.33425i
\(976\) 3792.68i 0.124386i
\(977\) 37618.1 + 37618.1i 1.23184 + 1.23184i 0.963256 + 0.268587i \(0.0865566\pi\)
0.268587 + 0.963256i \(0.413443\pi\)
\(978\) 2488.58 + 2488.58i 0.0813662 + 0.0813662i
\(979\) 36996.0 1.20776
\(980\) −62739.1 23763.3i −2.04503 0.774583i
\(981\) 18992.3 0.618123
\(982\) 14853.9 + 14853.9i 0.482695 + 0.482695i
\(983\) −6732.17 6732.17i −0.218436 0.218436i 0.589403 0.807839i \(-0.299363\pi\)
−0.807839 + 0.589403i \(0.799363\pi\)
\(984\) 109487.i 3.54706i
\(985\) −16635.2 + 9363.18i −0.538114 + 0.302879i
\(986\) 44248.2i 1.42916i
\(987\) 16740.1 + 748.155i 0.539862 + 0.0241277i
\(988\) 14923.0 14923.0i 0.480532 0.480532i
\(989\) 1240.11i 0.0398717i
\(990\) −18548.6 32954.6i −0.595467 1.05795i
\(991\) −26503.0 −0.849543 −0.424771 0.905301i \(-0.639646\pi\)
−0.424771 + 0.905301i \(0.639646\pi\)
\(992\) 3511.62 3511.62i 0.112393 0.112393i
\(993\) 7950.88 + 7950.88i 0.254092 + 0.254092i
\(994\) 29918.6 + 32718.0i 0.954688 + 1.04401i
\(995\) 4060.03 14515.1i 0.129358 0.462471i
\(996\) −171718. −5.46294
\(997\) −20316.7 + 20316.7i −0.645372 + 0.645372i −0.951871 0.306499i \(-0.900842\pi\)
0.306499 + 0.951871i \(0.400842\pi\)
\(998\) −20917.8 + 20917.8i −0.663470 + 0.663470i
\(999\) −6915.65 −0.219020
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.4.f.b.27.2 yes 16
5.2 odd 4 175.4.f.g.118.8 16
5.3 odd 4 inner 35.4.f.b.13.1 16
5.4 even 2 175.4.f.g.132.7 16
7.2 even 3 245.4.l.b.227.1 32
7.3 odd 6 245.4.l.b.117.7 32
7.4 even 3 245.4.l.b.117.8 32
7.5 odd 6 245.4.l.b.227.2 32
7.6 odd 2 inner 35.4.f.b.27.1 yes 16
35.3 even 12 245.4.l.b.68.1 32
35.13 even 4 inner 35.4.f.b.13.2 yes 16
35.18 odd 12 245.4.l.b.68.2 32
35.23 odd 12 245.4.l.b.178.7 32
35.27 even 4 175.4.f.g.118.7 16
35.33 even 12 245.4.l.b.178.8 32
35.34 odd 2 175.4.f.g.132.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.f.b.13.1 16 5.3 odd 4 inner
35.4.f.b.13.2 yes 16 35.13 even 4 inner
35.4.f.b.27.1 yes 16 7.6 odd 2 inner
35.4.f.b.27.2 yes 16 1.1 even 1 trivial
175.4.f.g.118.7 16 35.27 even 4
175.4.f.g.118.8 16 5.2 odd 4
175.4.f.g.132.7 16 5.4 even 2
175.4.f.g.132.8 16 35.34 odd 2
245.4.l.b.68.1 32 35.3 even 12
245.4.l.b.68.2 32 35.18 odd 12
245.4.l.b.117.7 32 7.3 odd 6
245.4.l.b.117.8 32 7.4 even 3
245.4.l.b.178.7 32 35.23 odd 12
245.4.l.b.178.8 32 35.33 even 12
245.4.l.b.227.1 32 7.2 even 3
245.4.l.b.227.2 32 7.5 odd 6