Properties

Label 35.4
Level 35
Weight 4
Dimension 112
Nonzero newspaces 6
Newform subspaces 11
Sturm bound 384
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 35 = 5 \cdot 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 11 \)
Sturm bound: \(384\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(35))\).

Total New Old
Modular forms 168 144 24
Cusp forms 120 112 8
Eisenstein series 48 32 16

Trace form

\( 112 q + 2 q^{2} + 2 q^{3} - 22 q^{4} - 11 q^{5} - 68 q^{6} - 60 q^{7} + 42 q^{8} + 124 q^{9} - 22 q^{10} - 82 q^{11} - 128 q^{12} + 64 q^{13} - 30 q^{14} - 70 q^{15} - 10 q^{16} - 214 q^{17} - 154 q^{18}+ \cdots + 8624 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(35))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
35.4.a \(\chi_{35}(1, \cdot)\) 35.4.a.a 1 1
35.4.a.b 2
35.4.a.c 3
35.4.b \(\chi_{35}(29, \cdot)\) 35.4.b.a 10 1
35.4.e \(\chi_{35}(11, \cdot)\) 35.4.e.a 2 2
35.4.e.b 4
35.4.e.c 10
35.4.f \(\chi_{35}(13, \cdot)\) 35.4.f.a 4 2
35.4.f.b 16
35.4.j \(\chi_{35}(4, \cdot)\) 35.4.j.a 20 2
35.4.k \(\chi_{35}(3, \cdot)\) 35.4.k.a 40 4

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(35))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(35)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)