Learn more

Refine search


Results (1-50 of 203 matches)

Next   displayed columns for results
Label Char Prim Dim $A$ Field CM Minimal twist Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
35.2.a.a 35.a 1.a $1$ $0.279$ \(\Q\) None 35.2.a.a \(0\) \(1\) \(-1\) \(1\) $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}-q^{5}+q^{7}-2q^{9}-3q^{11}+\cdots\)
35.2.a.b 35.a 1.a $2$ $0.279$ \(\Q(\sqrt{17}) \) None 35.2.a.b \(-1\) \(-1\) \(2\) \(-2\) $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{3}+(2+\beta )q^{4}+q^{5}+\cdots\)
35.2.b.a 35.b 5.b $2$ $0.279$ \(\Q(\sqrt{-1}) \) None 35.2.b.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}-i q^{3}-2 q^{4}+(-i-2)q^{5}+\cdots\)
35.2.e.a 35.e 7.c $4$ $0.279$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 35.2.e.a \(-2\) \(-2\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{1}-\beta _{2})q^{2}+(\beta _{1}+\beta _{2}+\beta _{3})q^{3}+\cdots\)
35.2.f.a 35.f 35.f $4$ $0.279$ \(\Q(i, \sqrt{10})\) None 35.2.f.a \(-4\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1-\beta _{2})q^{2}+\beta _{1}q^{3}-\beta _{1}q^{5}+(-\beta _{1}+\cdots)q^{6}+\cdots\)
35.2.j.a 35.j 35.j $4$ $0.279$ \(\Q(\zeta_{12})\) None 35.2.j.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(-\zeta_{12}+\zeta_{12}^{3})q^{3}-\zeta_{12}^{2}q^{4}+\cdots\)
35.2.k.a 35.k 35.k $4$ $0.279$ \(\Q(\zeta_{12})\) None 35.2.k.a \(-4\) \(-2\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1+\zeta_{12})q^{2}+(-\zeta_{12}^{2}+\zeta_{12}^{3})q^{3}+\cdots\)
35.2.k.b 35.k 35.k $4$ $0.279$ \(\Q(\zeta_{12})\) None 35.2.k.a \(2\) \(-4\) \(4\) \(-10\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1-\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(-1-\zeta_{12}+\cdots)q^{3}+\cdots\)
35.3.c.a 35.c 35.c $1$ $0.954$ \(\Q\) \(\Q(\sqrt{-35}) \) 35.3.c.a \(0\) \(-1\) \(5\) \(-7\) $\mathrm{U}(1)[D_{2}]$ \(q-q^{3}+4q^{4}+5q^{5}-7q^{7}-8q^{9}+\cdots\)
35.3.c.b 35.c 35.c $1$ $0.954$ \(\Q\) \(\Q(\sqrt{-35}) \) 35.3.c.a \(0\) \(1\) \(-5\) \(7\) $\mathrm{U}(1)[D_{2}]$ \(q+q^{3}+4q^{4}-5q^{5}+7q^{7}-8q^{9}+\cdots\)
35.3.c.c 35.c 35.c $4$ $0.954$ \(\Q(i, \sqrt{10})\) None 35.3.c.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+\beta _{3}q^{3}-5q^{4}+(\beta _{2}-\beta _{3})q^{5}+\cdots\)
35.3.d.a 35.d 7.b $2$ $0.954$ \(\Q(\sqrt{-5}) \) None 35.3.d.a \(-2\) \(0\) \(0\) \(14\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+2\beta q^{3}-3q^{4}+\beta q^{5}-2\beta q^{6}+\cdots\)
35.3.d.b 35.d 7.b $2$ $0.954$ \(\Q(\sqrt{-5}) \) None 35.3.d.b \(4\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+2q^{2}+\beta q^{3}-\beta q^{5}+2\beta q^{6}+(-2+\cdots)q^{7}+\cdots\)
35.3.g.a 35.g 5.c $12$ $0.954$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 35.3.g.a \(-4\) \(-4\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{1}q^{2}+\beta _{7}q^{3}+(\beta _{1}+\beta _{3}+\beta _{4}+\beta _{10}+\cdots)q^{4}+\cdots\)
35.3.h.a 35.h 7.d $12$ $0.954$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 35.3.h.a \(-2\) \(-6\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{1}+\beta _{2})q^{2}+(-1+\beta _{7})q^{3}+(-2+\cdots)q^{4}+\cdots\)
35.3.i.a 35.i 35.i $12$ $0.954$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 35.3.i.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{2}+(-\beta _{1}-\beta _{11})q^{3}+(1+\beta _{3}+\cdots)q^{4}+\cdots\)
35.3.l.a 35.l 35.l $24$ $0.954$ None 35.3.l.a \(-2\) \(-2\) \(-4\) \(-6\) $\mathrm{SU}(2)[C_{12}]$
35.4.a.a 35.a 1.a $1$ $2.065$ \(\Q\) None 35.4.a.a \(1\) \(-8\) \(-5\) \(7\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}-8q^{3}-7q^{4}-5q^{5}-8q^{6}+\cdots\)
35.4.a.b 35.a 1.a $2$ $2.065$ \(\Q(\sqrt{2}) \) None 35.4.a.b \(8\) \(2\) \(-10\) \(-14\) $+$ $\mathrm{SU}(2)$ \(q+(4+\beta )q^{2}+(1-4\beta )q^{3}+(10+8\beta )q^{4}+\cdots\)
35.4.a.c 35.a 1.a $3$ $2.065$ 3.3.14360.1 None 35.4.a.c \(-3\) \(2\) \(15\) \(21\) $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(1+\beta _{1}-\beta _{2})q^{3}+\cdots\)
35.4.b.a 35.b 5.b $10$ $2.065$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 35.4.b.a \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{6}q^{3}+(-4+\beta _{2})q^{4}+(1+\cdots)q^{5}+\cdots\)
35.4.e.a 35.e 7.c $2$ $2.065$ \(\Q(\sqrt{-3}) \) None 35.4.e.a \(-3\) \(2\) \(-5\) \(-28\) $\mathrm{SU}(2)[C_{3}]$ \(q-3\zeta_{6}q^{2}+(2-2\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
35.4.e.b 35.e 7.c $4$ $2.065$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 35.4.e.b \(6\) \(2\) \(-10\) \(22\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}-3\beta _{2}+\beta _{3})q^{2}+(1+3\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\)
35.4.e.c 35.e 7.c $10$ $2.065$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 35.4.e.c \(-1\) \(8\) \(25\) \(-62\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}-\beta _{2})q^{2}+(-\beta _{3}-\beta _{5}+2\beta _{6}+\cdots)q^{3}+\cdots\)
35.4.f.a 35.f 35.f $4$ $2.065$ \(\Q(i, \sqrt{5})\) None 35.4.f.a \(-8\) \(0\) \(0\) \(-42\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-2-2\beta _{2})q^{2}+(1+2\beta _{1}+\beta _{2})q^{3}+\cdots\)
35.4.f.b 35.f 35.f $16$ $2.065$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 35.4.f.b \(4\) \(0\) \(0\) \(32\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{7}q^{2}-\beta _{8}q^{3}+(-4\beta _{3}+\beta _{6}-\beta _{7}+\cdots)q^{4}+\cdots\)
35.4.j.a 35.j 35.j $20$ $2.065$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 35.4.j.a \(0\) \(0\) \(3\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{1}q^{2}-\beta _{14}q^{3}+(-\beta _{2}-3\beta _{3}+\beta _{4}+\cdots)q^{4}+\cdots\)
35.4.k.a 35.k 35.k $40$ $2.065$ None 35.4.k.a \(-2\) \(-6\) \(-30\) \(4\) $\mathrm{SU}(2)[C_{12}]$
35.5.c.a 35.c 35.c $1$ $3.618$ \(\Q\) \(\Q(\sqrt{-35}) \) 35.5.c.a \(0\) \(-17\) \(25\) \(49\) $\mathrm{U}(1)[D_{2}]$ \(q-17q^{3}+2^{4}q^{4}+5^{2}q^{5}+7^{2}q^{7}+\cdots\)
35.5.c.b 35.c 35.c $1$ $3.618$ \(\Q\) \(\Q(\sqrt{-35}) \) 35.5.c.a \(0\) \(17\) \(-25\) \(-49\) $\mathrm{U}(1)[D_{2}]$ \(q+17q^{3}+2^{4}q^{4}-5^{2}q^{5}-7^{2}q^{7}+\cdots\)
35.5.c.c 35.c 35.c $2$ $3.618$ \(\Q(\sqrt{-6}) \) None 35.5.c.c \(0\) \(-10\) \(-10\) \(-70\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}-5q^{3}+10q^{4}+(-5+10\beta )q^{5}+\cdots\)
35.5.c.d 35.c 35.c $2$ $3.618$ \(\Q(\sqrt{-6}) \) None 35.5.c.c \(0\) \(10\) \(10\) \(70\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}+5q^{3}+10q^{4}+(5-10\beta )q^{5}+\cdots\)
35.5.c.e 35.c 35.c $8$ $3.618$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 35.5.c.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{2}+3\beta _{3}q^{3}+(-22+\beta _{2})q^{4}+\cdots\)
35.5.d.a 35.d 7.b $12$ $3.618$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 35.5.d.a \(-6\) \(0\) \(0\) \(-50\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1+\beta _{1})q^{2}-\beta _{3}q^{3}+(11-\beta _{1}+\cdots)q^{4}+\cdots\)
35.5.g.a 35.g 5.c $24$ $3.618$ None 35.5.g.a \(0\) \(20\) \(-48\) \(0\) $\mathrm{SU}(2)[C_{4}]$
35.5.h.a 35.h 7.d $20$ $3.618$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 35.5.h.a \(6\) \(-18\) \(0\) \(-54\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\beta _{1}+\beta _{3}+\beta _{4})q^{2}+(-1-\beta _{4}+\cdots)q^{3}+\cdots\)
35.5.i.a 35.i 35.i $28$ $3.618$ None 35.5.i.a \(0\) \(0\) \(-30\) \(0\) $\mathrm{SU}(2)[C_{6}]$
35.5.l.a 35.l 35.l $56$ $3.618$ None 35.5.l.a \(-2\) \(-2\) \(16\) \(46\) $\mathrm{SU}(2)[C_{12}]$
35.6.a.a 35.a 1.a $1$ $5.613$ \(\Q\) None 35.6.a.a \(-8\) \(1\) \(25\) \(49\) $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+q^{3}+2^{5}q^{4}+5^{2}q^{5}-8q^{6}+\cdots\)
35.6.a.b 35.a 1.a $2$ $5.613$ \(\Q(\sqrt{65}) \) None 35.6.a.b \(1\) \(3\) \(-50\) \(-98\) $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(3-3\beta )q^{3}+(-2^{4}+\beta )q^{4}+\cdots\)
35.6.a.c 35.a 1.a $3$ $5.613$ 3.3.577880.1 None 35.6.a.c \(-6\) \(26\) \(-75\) \(147\) $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{2}+(9+\beta _{2})q^{3}+(38+2\beta _{2})q^{4}+\cdots\)
35.6.a.d 35.a 1.a $4$ $5.613$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 35.6.a.d \(7\) \(14\) \(100\) \(-196\) $-$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{2}+(4-\beta _{1}+\beta _{3})q^{3}+(15+\cdots)q^{4}+\cdots\)
35.6.b.a 35.b 5.b $14$ $5.613$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 35.6.b.a \(0\) \(0\) \(156\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}+\beta _{6}q^{3}+(-15+\beta _{1})q^{4}+\cdots\)
35.6.e.a 35.e 7.c $12$ $5.613$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 35.6.e.a \(5\) \(-20\) \(150\) \(-20\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{1}-\beta _{4})q^{2}+(\beta _{1}+\beta _{3}-3\beta _{4}+\cdots)q^{3}+\cdots\)
35.6.e.b 35.e 7.c $16$ $5.613$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 35.6.e.b \(-3\) \(2\) \(-200\) \(158\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(-\beta _{5}+\beta _{6})q^{3}+(\beta _{1}-5^{2}\beta _{2}+\cdots)q^{4}+\cdots\)
35.6.f.a 35.f 35.f $36$ $5.613$ None 35.6.f.a \(-4\) \(0\) \(0\) \(-196\) $\mathrm{SU}(2)[C_{4}]$
35.6.j.a 35.j 35.j $36$ $5.613$ None 35.6.j.a \(0\) \(0\) \(-12\) \(0\) $\mathrm{SU}(2)[C_{6}]$
35.6.k.a 35.k 35.k $72$ $5.613$ None 35.6.k.a \(-2\) \(-6\) \(60\) \(190\) $\mathrm{SU}(2)[C_{12}]$
35.7.c.a 35.c 35.c $1$ $8.052$ \(\Q\) \(\Q(\sqrt{-35}) \) 35.7.c.a \(0\) \(-26\) \(-125\) \(343\) $\mathrm{U}(1)[D_{2}]$ \(q-26q^{3}+2^{6}q^{4}-5^{3}q^{5}+7^{3}q^{7}+\cdots\)
35.7.c.b 35.c 35.c $1$ $8.052$ \(\Q\) \(\Q(\sqrt{-35}) \) 35.7.c.a \(0\) \(26\) \(125\) \(-343\) $\mathrm{U}(1)[D_{2}]$ \(q+26q^{3}+2^{6}q^{4}+5^{3}q^{5}-7^{3}q^{7}+\cdots\)
Next   displayed columns for results